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ON FINITE NON-DEGENERATE BRAIDED TENSOR

CATEGORIES WITH A LAGRANGIAN SUBCATEGORY

SHLOMO GELAKI AND DANIEL SEBBAG

Abstract. Let W be a finite dimensional vector space over C viewed as a

purely odd supervector space, and let sRep(W ) be the finite symmetric tensor
category of finite dimensional superrepresentations of the finite supergroup W .
We show that the set of equivalence classes of finite non-degenerate braided
tensor categories C containing sRep(W ) as a Lagrangian subcategory is a torsor
over the cyclic group Z/16Z. In particular, we obtain that there are 8 non-
equivalent such braided tensor categories C which are integral and 8 which are
non-integral.

1. Introduction

There are two types of finite braided tensor categories, which in a sense are
opposite to each other. On one extreme we have the symmetric tensor categories,
i.e., braided tensor categories which coincide with their Müger centralizer, while
on the other extreme we have the non-degenerate braided tensor categories, i.e.,
braided tensor categories with trivial Müger centralizer.

On one hand, finite symmetric tensor categories over C are completely classified
in supergroup-theoretical terms. Namely, by a theorem of Deligne [D], every such
category is braided tensor equivalent to the category sRep(G � W,u) of finite di-
mensional superrepresentations of a unique (up to isomorphism) finite supergroup
G�W with a central element u ∈ G of order ≤ 2 acting via the parity automorphism
(see [EG1,EGNO]).

On the other hand, the classification of non-degenerate braided fusion categories
C which contain a Tannakian subcategory Rep(G) as a Lagrangian subcategory
(i.e., Rep(G) coincides with its Müger centralizer inside C) is known too. Namely,
such categories C are precisely the centers Z(Vecω(G)) of pointed fusion categories
Vecω(G) [DGNO1,DGNO2].

Furthermore, the classification of non-degenerate braided fusion categories B
which contain the symmetric tensor category sVec of finite dimensional supervector
spaces as a Lagrangian subcategory is also known [DGNO1,DGNO2]. Namely, it is
known that there are exactly 16 such categories B, up to braided tensor equivalence.
Moreover, the categories B form a group B isomorphic to Z/16Z with respect to a

certain modified Deligne tensor product �̃ [DMNO,DNO] (see 4 for more details).
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Our purpose in this paper is to take the first step in an attempt to extend
the classification of [DGNO1,DGNO2] to finite (non-semisimple) non-degenerate
braided tensor categories containing a Lagrangian subcategory. Namely, we classify
finite non-degenerate braided tensor categories C containing

sRep(W ) := sRep(〈u〉�W,u)

as a Lagrangian subcategory for a finite dimensional vector space W viewed as a
purely odd supervector space. Observe that the center Z(sRep(W )) of sRep(W ) is
an example of such category C (see Theorem 2.9).

More precisely, first we prove in Theorem 3.5 that every finite non-degenerate
braided tensor category containing a Lagrangian subcategory sRep(W ) admits a
natural Z/2Z-faithful grading, and has 2 invertible objects and exactly 1 or 2 more
simple objects (non-invertible, if W �= 0).

We then show in Theorem 4.4 that the group B ∼= Z/16Z acts freely on the set of
equivalence classes of finite non-degenerate braided tensor categories C containing
sRep(W ) as a Lagrangian subcategory.

Finally, we use Theorems 3.5, 4.4 to prove the following theorem, which is the
main result of this paper.

Theorem 1.1. The following hold:

(1) The action of the group B ∼= Z/16Z on the set of equivalence classes of
finite non-degenerate braided tensor categories containing sRep(W ) as a
Lagrangian subcategory is free and transitive.

(2) There are 8 equivalence classes of finite non-degenerate braided integral
tensor categories containing sRep(W ) as a Lagrangian subcategory, and
8 equivalence classes of finite non-degenerate braided non-integral tensor
categories containing sRep(W ) as a Lagrangian subcategory.

In particular, Theorem 1.1 yields precise information on the number and pro-
jectivity of the simple objects in a finite non-degenerate braided tensor category
containing a Lagrangian subcategory sRep(W ) (see Corollary 5.5).

The structure of this paper is as follows. Section 2 is devoted to some pre-
liminaries on finite (braided) tensor categories and their exact module categories,
Hopf superalgebras, the finite tensor categories sRep(W ), and the non-degenerate
braided tensor categories Z(sRep(W )). Section 3 is devoted to the proof of Theo-
rem 3.5. Section 4 is devoted to the group B, and to the proof that it acts on the set
of equivalence classes of finite non-degenerate braided tensor categories containing
the same sRep(W ) as a Lagrangian subcategory, freely. Section 5 is devoted to
the proof of Theorem 1.1. In Section 6 we classify finite degenerate braided tensor
categories containing a Lagrangian subcategory sRep(W ). In Section 7 we relate
Theorem 1.1 with the works of Davydov and Runkel [DR1,DR2,DR3].

Remark 1.2. In a future publication, we plan to extend the results of this paper
to finite non-degenerate braided tensor categories containing a Lagrangian subcat-
egory sRep(G�W,u) of the most general form.

2. Preliminaries

Throughout this paper, the ground field will be the field C of complex numbers,
and all categories will be assumed to be C-linear abelian. We refer the reader to
the book [EGNO] for a general background on finite tensor categories.
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2.1. Finite tensor categories. Let C be a finite tensor category, and let Gr(C) be
the Grothendieck ring of C. Recall [EO, Subsection 2.4] that we have a character
FPdim : Gr(C) → R, attaching toX ∈ C the Frobenius-Perron dimension ofX. Fol-
lowing [EO, Subsection 2.4], we set FPdim(C):=

∑
X∈Irr(C)FPdim(X)FPdim(P (X)),

where Irr(C) is the (finite) set of isomorphism classes of simple objects of C, and
P (X) denotes the projective cover of X.

We will need the following (straightforward) extension of [GN, Theorem 3.10] to
the non-semisimple case.

Lemma 2.1. Let C be a finite tensor category with simples Xi, projective covers
Pi, and FPdim(Xi) = di. Suppose FPdim(C) is an integer. If Hom(Pi, Pj) �= 0
(i.e., Xi occurs in Pj) then didj is an integer. In particular, d2i is an integer, so di
is the square root of a positive integer.

Proof. Let FPdim(C) = d. Let Nij be the multiplicity of Xi in Pj . Then∑
i,j Nijdidj = d. Hence for any g ∈ Gal(Q/Q),

∑
i,j Nijg(didj) = d. Also, the

numbers di are algebraic integers largest in absolute value in their Galois orbits.
Hence |g(didj)| ≤ didj for all i, j. This means that g(didj) = didj , (i.e., didj is an
integer) whenever Nij �= 0, as desired. �

Recall that a finite tensor category C is called weakly integral if FPdim(C) is an
integer.

Corollary 2.2. Let C be a weakly integral finite tensor category. Then there is an
elementary abelian 2-group E, a set of distinct square free integers nx > 0, x ∈ E,
with n0 = 1, and a faithful grading C = ⊕x∈E Cx, such that FPdim(X) ∈ Z

√
nx for

each X ∈ Cx. In particular, any tensor subcategory of C is weakly integral.

Proof. By Lemma 2.1, every simple object of C has dimension
√
n for some positive

integer n. Let C0 ⊂ C be the tensor subcategory generated by all simple objects
of integer FP dimension. Then all objects of C0 have integer FP dimension, since
an integer can equal a sum of square roots of integers only if all the summands are
integers. A similar argument shows that for each square free positive integer n the
simple objects of C whose dimension is in Z

√
n generate a C0-subbimodule category

Cn of C. Moreover, it follows from Lemma 2.1 that for every n, Cn ⊂ C is a Serre
subcategory (see [EGNO, Definition 4.14.1]).

Let

E := {n is square free | ∃X ∈ C, such that FPdim(X) ∈ Z
√
n}.

It is clear that for X ∈ Cn and Y ∈ Cm, X ⊗ Y is in C(nm)′ where l′ denotes the
square free part of l. This defines a commutative group operation on E and a
faithful grading on C. Since the order of every element in E is at most 2, E is an
elementary abelian 2-group.

Finally, let D ⊂ C be a tensor subcategory. Since Cx are Serre subcategories,
for any simple X ∈ Cx the projective cover PD(X) of X in D is also in Cx
since P (X) surjects onto PD(X) by the proof of [EGNO, Proposition 6.3.3], so
FPdim(X) FPdim(PD(X)) is an integer. Hence the sum of all these numbers over
all the simples X ∈ D, which is FPdim(D), is also an integer. �

Recall [EO, Section 3] that a left C-module category N is called indecomposable
if it is not a direct sum of two nonzero module categories, and is called exact if
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P ⊗ N is projective for every projective P ∈ C and every N ∈ N . The same
definition applies to right module categories.

2.2. Centralizers and Lagrangian subcategories. Let C be a finite braided
tensor category with braiding c, and let s be the squared braiding, i.e.,

(2.1) sX,Y := cY,X ◦ cX,Y , X, Y ∈ C.
Recall that two objects X,Y ∈ C centralize each other if sX,Y = idX⊗Y , and that
the (Müger) centralizer D′ of a full tensor subcategory D ⊂ C is the full tensor
subcategory of C consisting of all objects which centralize every object of D (see,
e.g., [DGNO1]). Clearly, D is symmetric if and only if D′ ⊂ D. If D′ = D then D
is called Lagrangian. A Lagrangian subcategory of C is a maximal full symmetric
tensor subcategory of C. The category C is called non-degenerate if C′ = Vec,
slightly degenerate if C′ = sVec, and degenerate otherwise.

By [Sh, Theorem 4.9], we have

(2.2) FPdim(D) FPdim(D′) = FPdim(C) FPdim(C′ ∩ D)

and

(2.3) D′′ = D ∨ C′.

We will say that two objects X,Y∈C anti-centralize each other if sX,Y=− idX⊗Y ,
and that the anti-centralizer of a full tensor subcategory D ⊂ C is the full subcat-
egory of C consisting of all objects which anti-centralize every object of D. Note
that the anti-centralizer of D is not a tensor subcategory of C (unlike D′).

2.3. Exact commutative algebras. Let C be a finite braided tensor category. Re-
call [EGNO, Section 8.8] that an algebra object A in C such that dim(Hom(1, A))=1
is called exact if the category Mod(A)C of right A-modules in C is an exact inde-
composable C-module category.

Now let A be an exact commutative algebra object in C, and let A := Mod(A)C.
Then using the braiding on C and its inverse one can define on every M ∈ A two
structures M+, M− of a left A-module:

A⊗M+
cA,M−−−→ M+ ⊗A −→ M+ and A⊗M−

c−1
M,A−−−→ M− ⊗ A −→ M−

(see [DGNO2], [EGNO, Excercise 8.8.3]). Both structures turn M into an
A-bimodule, so A is fully embedded in the finite tensor category BimodC(A), and
hence inherits from it a structure of a finite tensor category with tensor product
⊗A [EGNO, Section 8.8].

Recall [EGNO, Proposition 8.8.10] that the free module functor

(2.4) F : C � A, X �→ X ⊗A,

is a surjective 1 tensor functor.

Lemma 2.3. We have

FPdim(A) =
FPdim(C)
FPdimC(A)

.

Proof. Let I : A → C be the forgetful functor. Then I is right adjoint to F , and
I(1) = I(A) = A. Thus the claim follows from [EGNO, Lemma 6.2.4]. �

1I.e., any Y ∈ A is a subquotient of F (X) for some X ∈ C.
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Recall from [EGNO, Proposition 8.8.10] that the free module functor (2.4) has
a central structure, i.e., it lifts to a braided tensor functor

(2.5) F̃ : C → Z(A)

in such a way that F is the composition of F̃ and the forgetful functor Z(A) � A.
The following results were proved for fusion categories in [DGNO2, Proposition

4.2] and [DMNO, Corollary 3.32]. Thanks to [Sh, Theorem 1.1], which states that
C is non-degenerate if and only if it is factorizable, and (2.2), the proof in the
non-semisimple case is parallel.

Theorem 2.4. Assume C is non-degenerate. Then the following hold:

(1) The braided tensor functor F̃ : C → Z(A) (2.5) is injective.
(2) There is a braided tensor equivalence C � C′ ∼= Z(A), where C′ is the cen-

tralizer of C in Z(A). In particular, C′ is non-degenerate.

If the braided tensor functor (2.5) is an equivalence, the algebra A is called
Lagrangian.

2.4. Equivariantization and de-equivariantization. Let B be a finite tensor
category with an action of a finite group G. Let BG be the G-equivariantization of
B, i.e., the category of objects in B endowed with an action of G. Recall that BG is a
finite tensor category containing Rep(G) as a full Tannakian subcategory, and that
we have FPdim(BG) = |G|FPdim(B). (For more details see, e.g., [EGNO, Section
4.15].)

Let C be a finite braided tensor category containing Rep(G) as a full Tannakian
subcategory. Let A := Fun(G) be the algebra of functions on G (= regular algebra).
Then A is a commutative algebra in Rep(G), and hence in C. Recall that the de-
equivariantization CG of C is the finite tensor category Mod(A)C of right A-modules
in C (see 2.1), and that FPdim(CG) = FPdim(C)/|G|. (For more details see, e.g.,
[EGNO, Section 8.23].)

Let E ⊂ A be finite tensor categories. Recall from [GNN] that the relative center
ZE(A), which is denoted by Z(E ;A) in [Sh], is the category of exact E-bimodule
functors from E to A. By [Sh, Lemma 4.5], ZE(A) is a finite tensor category. The
following result was proved for fusion categories in [GNN, Theorem 3.5]. The proof
in the non-semisimple case is parallel.

Theorem 2.5. Let A = ⊕GAg be a finite tensor category, faithfully graded by a
finite group G, with identity component A1 = E . Then the following hold:

(1) There is a braided tensor equivalence Z(A) ∼= (ZE(A))G. In particular
Z(A) contains a Tannakian subcategory T := Rep(G).

(2) The forgetful functor Z(A) � A maps T and T ′ to Vec and E , respectively.
(3) There is a braided tensor equivalence (T ′)G ∼= Z(E). �

2.5. The symmetric tensor category sVec. Let us first recall the definition of
the finite symmetric tensor category sVec. The objects of sVec are finite dimen-
sional supervector spaces (i.e., Z/2Z-graded vector spaces V = V0 ⊕ V1), and the
morphisms are even linear maps f : V → W between them (i.e., f(Vi) ⊂ Wi for
i = 0, 1). The elements in V0 ∪ V1 are called homogeneous, the elements in V0 are
called even, and the elements in V1 are called odd. The parity of a homogeneous ele-
ment v is denoted by |v|. The symmetric structure of sVec is given by the collection
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{cV,W | V,W ∈ sVec}, where cV,W : V ⊗W
∼=−→ W ⊗ V is defined on homogeneous

elements by

v ⊗ w �→ (−1)|v||w|w ⊗ v.

Recall that a superalgebra A is an algebra in sVec. In other words, A is a supervector
space equipped with an even linear map m : A ⊗ A → A, such that (A,m) is an
ordinary associative algebra. Similarly, supercoalgebras and Hopf superalgebras are
coalgebras and Hopf algebras in sVec, respectively.

A Hopf superalgebra A = A0 ⊕ A1 is called supercommutative if for every ho-
mogeneous elements a, b ∈ A, ba = (−1)|a||b|ab, and is called supercocommutative if
for every homogeneous element a ∈ A, Δ(a) =

∑
a1 ⊗ a2 =

∑
(−1)|a1||a2|a2 ⊗ a1.

A left supermodule over a superalgebra A is a supervector space V = V0 ⊕ V1

together with an even linear map μ : A ⊗ V → V such that (V, μ) is an ordinary
left module over the ordinary algebra A. We let sRep(A) denote the category of
finite dimensional (left) supermodules over A with even morphisms. Then sRep(A)
is an abelian category. If moreover A is a finite dimensional Hopf superalgebra then
sRep(A) is a finite tensor category.

2.6. The tensor category sRep(W ). Let W be an n-dimensional vector space,
viewed as a purely odd supervector space. Then the exterior algebra ∧W is a
supercommutative and supercocommutative Hopf superalgebra (see 2.5) such that
Δ(w) = 1 ⊗ w + w ⊗ 1, ε(w) = 0, and S(w) = −w for every w ∈ W . It follows
that sRep(W ) := sRep(∧W ) is a finite tensor category, which depends only on
the dimension n of W (up to tensor equivalence). Observe also that any linear

surjective map W � V induces an injective tensor functor sRep(V )
1:1−−→ sRep(W )

in a natural way. Thus, if V is a quotient space of W then sRep(V ) can be viewed
as a tensor subcategory of sRep(W ).

Recall that the category sRep(W ) has exactly two nonisomorphic simple objects,
1 := C1|0 and S := C0|1, both of which are invertible. We have P (1) = ∧W ,
P (S) = S ⊗ P (1), and

FPdim(sRep(W )) = 2FPdim(P (1)) = 2 dim(∧W ) = 2n+1.

Note that if n is even then P (1) and P (S) are self dual, while if n is odd then P (1)
and P (S) are dual to each other.

Since ∧W is supercocommutative, (∧W, 1 ⊗ 1) is a triangular Hopf superalge-
bra. Hence, sRep(∧W, 1 ⊗ 1) is a finite symmetric tensor category, which we will
denote by En (or sRep(W ), when there is no confusion). For example, we have
E0 = sRep(0) = sVec.

Recall that the tensor categories sRep(W ) can be realized as representation
categories of certain ordinary Hopf algebras. Namely, let E(n) be the Nichols Hopf
algebra, n ≥ 0. Namely, as an algebra E(n) = C[Z/2Z]�∧W , where Z/2Z = 〈 u 〉 is
the group of grouplike elements of E(n) and W is the space of (1, u)-skew-primitive
elements of E(n). Recall [AEG, Theorem 3.1.1] that we have a tensor equivalence

(2.6) Rep(E(n)) ∼= sRep(W ).

Let χ ∈ E(n)∗ be the 1-dimensional representation of E(n) given by χ(u) = −1

and χ(W ) = 0. It is well known that E(n)
∼=−→ E(n)∗ as Hopf algebras, and

that every such isomorphism maps u to χ and W isomorphically onto W ∗ (see,
e.g., [BN1, 4.3]). In particular, W ∗ is the space of nontrivial (ε, χ)-skew-primitive
elements of E(n)∗. Note that χ corresponds to S under (2.6).
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Let Ext1(1, S) denote the space of extensions of 1 by S in sRep(W ). Recall
that Ext1(1,1) = 0 [EO, Theorem 2.17]. Thus, Ext1(S, S) = 0. Note also that
Ext1(S,1) and Ext1(1, S) are canonically isomorphic.

Lemma 2.6. The following hold:

(1) We have a linear isomorphism Ext1(1, S) ∼= W ∗.
(2) There exists a short exact sequence in sRep(W )

0 → W ⊗ S → U → 1 → 0,

called the universal extension of 1 by S, for which we have Ext1(1, U) = 0.

Proof. (1) By (2.6), we have Ext1(1, S) ∼= Ext1Rep(E(n))(ε, χ). Thus, the claim

follows from the well known fact Ext1Rep(E(n))(ε, χ)
∼= W ∗ (see, e.g., [BN1, Remark

2.11]).
(2) By (1) and Ext1(S, S) = 0, we have a short exact sequence

0 → 1 → U → S⊕n → 0

in sRep(W ) for which Ext1(S,U) = 0 (see, e.g., [EH, Lemma 4.2]). Dualizing this
sequence, we get the statement. �

Recall that quasitriangular structures on E(n) are in one to one correspondence
RA ←� A with matrices A ∈ Mn(C) [PO, Proposition 2, Proposition 3], and that
(E(n), RA) is triangular if and only if A is symmetric [CC, Proposition 1.1]. In
particular, the 0 matrix corresponds to the triangular structure

(2.7) R0 =
1

2
(1⊗ 1 + 1⊗ u+ u⊗ 1− u⊗ u) .

Recall that by [AEG, Theorem 3.1.1], we have

(2.8) En ∼= Rep(E(n), R0)

as symmetric tensor categories. Note that En contains sVec as a symmetric tensor
subcategory for every n.

Recall also [CC, Corollary 2.8] that for every A ∈ Mn(C), we have a braided
tensor equivalence

Rep(E(n), RA) ∼= Rep(E(n), RA−AT ).

For every n, let In ∈ Mn(C) denote the identity matrix, and let Rn be the R-matrix
of E(2n) corresponding to the matrix(

0 In
0 0

)
∈ M2n(C).

Let

Jn =

(
0 In

−In 0

)
∈ M2n(C).

Proposition 2.7. If Rep(E(2n), R) is slightly degenerate (see 2.2) then

Rep(E(2n), R) ∼= Rep(E(2n), Rn)

as braided tensor categories.

Proof. Since Rep(E(2n), R) is slightly degenerate, it follows from [CC, Theorem
2.9] that Rep(E(2n), R) ∼= Rep(E(2n), Jn) as braided tensor categories. Since
Jn = Rn −RT

n , the claim follows from [CC, Corollary 2.8]. �
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For every n, set

(2.9) Dn := Rep(E(2n), Rn).

Remark 2.8. It follows that Dn
∼= sVec(W⊕W ∗) as braided tensor categories, where

the braiding on sVec(W ⊕W ∗) corresponds to the canonical symplectic structure
on W ⊕W ∗.

2.7. The non-degenerate braided tensor category Z(sRep(W )). Retain the
notation of 2.6. Recall that the center Z(sRep(W )) of sRep(W ) is a finite braided
tensor category. By (2.6), we have

Z(sRep(W )) ∼= Rep(D(E(n)),R)

as braided tensor categories, where D(E(n)) is the Drinfeld double of E(n) and R
is its canonical R-matrix (see, e.g., [BN1, 4.3]).

Theorem 2.9. For every n, Z(En) is a finite non-degenerate braided integral tensor
category containing En as a Lagrangian subcategory.

Proof. By [EGNO, Proposition 8.6.3], Z(En) is factorizable. Hence by [Sh, Theorem
1.1], Z(En) is non-degenerate. Since En is braided, we have a canonical injective
braided tensor functor En ↪→ Z(En), so we may view En as a symmetric tensor
subcategory of Z(En).

Now by (2.2), FPdim(En) FPdim(E ′
n) = FPdim(Z(En)). Thus, since

FPdim(Z(En)) = FPdim(En)2 and En ⊂ E ′
n, we obtain that En = E ′

n, as desired. �

Proposition 2.10. There exists an injective braided tensor functor

Dn
1:1−−→ Z(En).

Proof. It is straightforward to verify that the map D(E(n)) → E(2n) given by the
identity matrix I2n is a surjective homomorphism of quasitriangular Hopf algebras
(D(E(n)),R) � (E(2n), Rn). �

Remark 2.11. The categories Rep(D(E(n))) were recently studied by Bontea and
Nikshych in [BN1], where they describe their varieties of Lagrangian subcategories.

3. The Z/2Z-faithful grading

Retain the notation of 2.6. Set n := dim(W ), and E := En.
Let C be a finite non-degenerate braided tensor category containing a Lagrangian

subcategory E = sRep(W ) ⊂ C (see 2.2).
Let S ∈ E be the unique nontrivial invertible object of E . We have inclusions

of braided tensor categories sVec = 〈1, S 〉 ⊂ E ⊂ C. Let C0 := (sVec)′ be the
centralizer of sVec inside C, and let C1 be the anti-centralizer of sVec inside C (see
2.2). Clearly, E ⊂ C0 is a symmetric tensor subcategory. Also since C is non-
degenerate it follows that C0 is strictly contained in C, and by (2.3), C′

0 = sVec.
Thus, C0 is slightly degenerate (see 2.2).

Lemma 3.1. If X /∈ C0 is simple in C then X belongs to C1. 2

2The assumption that C is non-degenerate is not needed in this proposition.
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Proof. By Schur’s lemma, sS,X = λ · idS⊗X for some λ ∈ C× (see (2.1)). Hence, we
have

idX = sS⊗S,X = cX,S⊗S ◦ cS⊗S,X

= ((idS ⊗cX,S) ◦ (cX,S ⊗ idS)) ◦ ((cS,X ⊗ idS) ◦ (idS ⊗cS,X))

= λ2 · idS⊗S⊗X = λ2 · idX ,

which implies that λ2 = 1. Since X /∈ C0 = (sVec)′, it follows that λ = −1, as
claimed. �

It follows from Lemma 3.1 that C1 �= 0 is a full abelian subcategory of C, and
that C admits a Z/2Z-faithful grading

C = C0 ⊕ C1,
with C0 being the identity component. In particular, C1 is an invertible C0-bimodule
category of order 2, FPdim(C) = 2FPdim(C0), and the projective covers P (1) and
P (S) belong to C0.

Proposition 3.2. The objects 1, S are the unique simple objects of C0. In partic-
ular, C0 is a finite pointed tensor category 3.

Proof. 4 The statement is clear for n = 0.
Assume n = 1, and suppose C0 has a simple object not isomorphic to 1 or S.

Let D ⊂ C0 be the Serre tensor closure of E . Note that by our assumption, D
is strictly contained in C0. By Corollary 2.2, D has an integer FP dimension (as
FPdim(C0) = 8). Since D contains E , we have 4 ≤ FPdim(D) < 8, and hence since
FPdim(D) divides 8, we have D = E . This implies that the projective cover P (1)
in C0 (and hence in C) coincides with the projective cover PE(1) of 1 in E . But C
(and hence C0) is unimodular by [EGNO, Proposition 8.10.10] and [Sh, Theorem
1.1], while E is not, a contradiction.

From now on we assume that n ≥ 2.
Since the corresponding Nichols Hopf algebra E(n) is generated in degree 1 (see

2.6), it follows from (2.6) and [EGNO, Proposition 5.11.9] that E is tensor generated
by indecomposable 2-dimensional objects.

Let V be a simple object of C0 not isomorphic to 1 or S. Then there exists a
nontrivial extension E of 1 by S in E such that V does not centralize E. Indeed,
otherwise V would centralize E (as it is generated by indecomposable 2-dimensional
objects, which are all extensions of 1 by S and their duals), so V ∈ E , a contradic-
tion.

This implies that S ⊗ V ∼= V . Indeed, otherwise E ⊗ V has a 2-step filtration
with quotients V ′, V with V ′ �= V . Let s := sE,V . Then s − id is strictly upper
triangular with respect to the above filtration, so it maps V to V ′, i.e., is zero, a
contradiction.

Now let
0 → W ⊗ S → U → 1 → 0

be the universal extension of 1 by a multiple of S in E (see Lemma 2.6). Consider
the endomorphism s− id of U ⊗V , where s := sU,V . The object U ⊗V has a 2-step
filtration with quotients W ⊗V , V , and s− id is strictly upper triangular under this

3I.e., all its simple objects are invertible.
4We are grateful to Pavel Etingof for help with the proof.
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filtration, i.e., defines a morphism V → W ⊗ V , i.e., a vector w in W . This vector
is well defined up to scaling, since it rescales when we rescale the isomorphism

V
∼=−→ S ⊗ V . Also w �= 0, since all extensions of 1 by S are quotients of U , and

there exists one not centralizing with V as shown above. Thus, we obtain a well
defined line LV in W spanned by w.

Since the number of simple objects V is finite, there exist distinct codimension
1 subspaces W1,W2 in W which do not contain LV for any V . Consider the
subcategories Di := sRep(W/Wi) in sRep(W ) (see 2.6), i = 1, 2, and let D′

i be the
centralizers of Di inside C (equivalently, inside C0). Then D′

i cannot contain any
simple object V not isomorphic to 1, S (as V does not centralize Di, since LV is not
contained in Wi). Since FPdim(Di)=4, i=1, 2, we have FPdim(D′

i)=FPdim(C0)/2
for each i. Consider the tensor subcategory D of C0 generated by D′

1 and D′
2. It has

integer FP dimension by Corollary 2.2, which divides FPdim(C0) (by [EO, Theorem
3.47]). Also D is bigger than D′

1,D′
2 (as D1 �= D2 as subcategories of C0), hence

FPdim(D) > FPdim(C0)/2. Hence FPdim(D) = FPdim(C0), i.e., D = C0. But D
has no simple objects other than 1, S (as D′

1,D′
2 do not have such objects). The

proposition is proved. �

Corollary 3.3. We have a braided tensor equivalence C0 ∼= Dn (see (2.9)).

Proof. By Proposition 3.2, C0 is a finite pointed tensor category with semisimple
part 〈1, S 〉 ∼= Rep(Z/2Z) of FP dimension 2 with the trivial associativity. Hence
by [EG2, Theorem 3.1], C0 is tensor equivalent to Rep(E(m)) for some m.

Moreover, on one hand, we have

FPdim(C0) = 2FPdim(P (1)) = 2m+1

and, on the other hand, we have

FPdim(C0) = FPdim(C)/2 = FPdim(E)2/2 = 22n+1.

Hence, m = 2n.
Thus, since C0 is slightly degenerate, the statement follows from Proposition

2.7. �

Since the projective objects of C0 are projective in C (as they are direct sums
of copies of P (1) and P (S)), C and C1 are exact module categories over C0 via the
tensor product in C.

Proposition 3.4. The exact C0-module category C1 is indecomposable, with at most
two nonisomorphic simple objects.

Proof. By Corollary 3.3, C has more than two simple objects. If C1 has exactly one
simple object, there is nothing to prove. Let us therefore assume that C1 has at
least two nonisomorphic simple objects.

Decompose C1 into a direct sum C1 = ⊕n
i=1Mi of exact indecomposable module

categories over C0. By Proposition 3.3 and [EO, Example 4.7], each module category
Mi has at most two simple objects.

Suppose that M1, M2 �= 0, and let X ∈ M1, Y ∈ M2 be simple objects. Since
C is generated by X as a module category over itself there exists an object Z ∈ C
such that HomC(Z ⊗ X,Y ) �= 0. Clearly Z ⊗ X /∈ M1, and hence Z /∈ C0. Also,
since

HomC(X ⊗ ∗Y, ∗Z) ∼= HomC(Z ⊗X,Y ) �= 0,
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we can choose a nonzero morphism g : X ⊗ ∗Y → ∗Z. Let W be a simple quotient
of Im(g). Then HomC(W

∗⊗X,Y ) ∼= HomC(X⊗ ∗Y,W ) �= 0. Thus we may assume
that Z is simple (replacing it by W ∗, if necessary). But then it follows that Z ∈ C1,
and hence Z ⊗ X ∈ C0, a contradiction. Hence, C1 is indecomposable. Since by
Corollary 3.3 and [EO, Example 4.7], C1 has at most two simple objects it follows
that C1 has exactly two nonisomorphic simple objects, as desired. �

To summarize, we have proved the following theorem.

Theorem 3.5. Let C be a finite non-degenerate braided tensor category containing
En as a Lagrangian subcategory. Let C0, C1 be the centralizer and anti-centralizer of
sVec ⊂ En inside C, respectively. Then C admits a Z/2Z-faithful grading C = C0⊕C1,
with C0 being the identity component, such that the following hold:

(1) C0 contains En as a Lagrangian subcategory, it is slightly degenerate, and
C0 ∼= Dn as braided tensor categories.

(2) C1 is an exact indecomposable C0-module category, with at most two non-
isomorphic simple objects. �

Remark 3.6. In [BN2, Section 8] the authors show in particular that Z(En) is
nilpotent of nilpotency class 2.

Example 3.7. Let C := Z(sVec). Then C0 = sVec and C1 have exactly two
invertible objects of order 2.

Let E := En be non-fusion (i.e., n > 0), and let C := Z(E) (see Theorem 2.9).
We claim that the following hold:

(1) C has exactly two nonisomorphic simple projective objects p and q. In other
words, C1 = 〈 p, q 〉 is semisimple of rank 2.

(2) p⊗ p∗ = P (1), q ∼= p⊗ S, and FPdim(p) = FPdim(E)/2.
(3) p and q are self dual if and only if dim(W ) is even.

Indeed, let A ∈ C0 be the commutative algebra corresponding to the forgetful
functor C0 → E . It is easy to see that the Lagrangian algebra B ∈ Z(E), corre-
sponding to the forgetful functor F : Z(E) → E , has the form B = A⊕ p, for some
p ∈ C1. In particular, we have

FPdim(p) = FPdim(A) = FPdim(E)/2.

Now, since F (P (p)) is projective in E , and

HomE(F (P (p)),1) = HomZ(E)(P (p), B) = HomZ(E)(P (p), p) �= 0,

it follows that PE(1) projects onto F (P (p)). Hence, we have

FPdim(E)/2 = FPdim(p)

≤ FPdim(P (p)) ≤ FPdim(PE(1)) = FPdim(E)/2,

which implies that P (p) = p. Thus, p is projective. Therefore, F (p) is projective
in E . Since

HomE(F (p),1) = HomZ(E)(p,B) = HomZ(E)(p, p) �= 0,

it follows that if the dimension of HomZ(E)(p, p) was ≥ 2, so would be the dimension
of HomE(PE(1),1) (as PE(1) projects onto F (p)), which is not the case. Hence, p
is also simple.
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Now, since p⊗p∗ ∈ C0 is projective and HomC(p⊗p∗,1) is 1-dimensional, we have
p⊗p∗ ∼= P (1). In particular, it follows that HomC(p, p⊗S) = HomC(p⊗p∗, S) = 0.
Hence, q := p⊗ S � p is another simple projective object in C1, as desired.

Moreover, we have

2FPdim(C0) = FPdim(C) = FPdim(C0) + 2FPdim(p)2,

which implies that FPdim(p)2 = FPdim(C0)/2 = FPdim(E)2/4. We have thus
established (1) and (2).

Finally, by [EGNO, Theorem 6.1.16] the forgetful functor Z(E) → E maps p and
q to projective objects, and since the Frobenius-Perron dimensions of p and q are
equal to FPdim(PE(1)) = FPdim(PE(S)), it follows that F must map p to PE(1) or
PE(S), and vise versa for q. Thus (3) follows from the fact that PE(1) and PE(S)
are self dual if and only if dim(W ) is even (equivalently, PE(1) and PE(S) are dual
to each other if and only if dim(W ) is odd).

4. The action of the group B

Recall from [DGNO1, Lemma A.11] that there are exactly 8 non-degenerate
braided pointed fusion categories of Frobenius-Perron dimension 4, which contain
sVec as a Lagrangian subcategory (up to braided tensor equivalence), and that 4
of them are supported on the group Z/2Z×Z/2Z, while the other 4 are supported
on the group Z/4Z.

Recall also from [DGNO1, Corollary B.16] that there are exactly 8 non-degenerate
braided non-integral fusion categories of Frobenius-Perron dimension 4, which con-
tain sVec as a Lagrangian subcategory (up to braided tensor equivalence). These
non-integral categories are called Ising categories.

Thus, all together, there are exactly 16 non-degenerate braided fusion categories
of Frobenius-Perron dimension 4, which contain sVec as a Lagrangian subcategory
(up to braided tensor equivalence). Let us denote this set by B.

Now, let D1 and D2 be two finite non-degenerate braided tensor categories con-
taining sVec(W1) and sVec(W2) as a Lagrangian subcategory, respectively. Con-
sider the finite non-degenerate braided tensor category D1 � D2. Then D1 � D2

contains sVec� sVec as a braided tensor category, and hence contains a Tannakian
subcategory T := Rep(Z/2Z). Let T ′ be the centralizer of T inside D1 � D2, and
let

D1�̃D2 := (T ′)Z/2Z

be the de-equivariantization tenosr category (see 2.4).

Proposition 4.1. Let C, D1 and D2 be finite non-degenerate braided tensor cat-
egories containing a Lagrangian subcategory E := sRep(W ), E1 := sRep(W1) and
E2 := sRep(W2), respectively. Then the following hold:

(1) D1�̃D2 is a finite non-degenerate braided tensor category containing
E3 := sVec(W1 ⊕W2) as a Lagrangian subcategory.

(2) For every B ∈ B, C�̃B is a finite non-degenerate braided tensor category
containing E as a Lagrangian subcategory.

Proof. (1) The first claim follows from (2.3). As for the second claim, it is clear

that D1�̃D2 contains the centralizer of T inside E1�E2, and that the latter category

is braided tensor equivalent to E3. The fact that E3 is Lagrangian in D1�̃D2 follows
from dimension considerations.
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(2) Follows from (1).
�

In particular for W = 0, Proposition 4.1(2) says that B forms a group under the

product �̃, with unit element Z(sVec). It is well known that B ∼= Z/16Z [DNO]
(see also [BGHNPRW,LKW]). Also, the pointed categories in B form a subgroup
of index 2.

Moreover, Proposition 4.1(1) states that B ∼= Z/16Z acts on the set of equiv-
alence classes of finite non-degenerate braided tensor categories containing a La-
grangian subcategory E of the same Frobenius-Perron dimension. Hence, by Propo-
sition 2.9, we have the following result.

Corollary 4.2. For every B ∈ B, Z(E)�̃B is a finite non-degenerate braided tensor
category containing E as a Lagrangian subcategory. �

Now let A := Fun(Z/2Z) be the regular algebra (see 2.4). For B ∈ B, let

F : T ′ � Z(E)�̃B, Z �→ Z ⊗A, be the free module functor (see (2.4)). Recall that
F is a surjective braided tensor functor.

Theorem 4.3. Let B ∈ B, and set C := Z(E)�̃B. The following hold:

(1) If B is not pointed then C is not integral, and C has precisely 2 invertible ob-
jects 1, S (non-projective, if W �= 0) and 1 non-invertible simple projective
object X, such that

X ∼= X∗ ∼= S ⊗X, X ⊗X = P (1)⊕ P (S)

and FPdim(X) = FPdim(E)/
√
2.

(2) If B is pointed then C is integral, and C has precisely 2 invertible objects 1, S
(non-projective, if W �= 0) and 2 simple projective objects P , Q∼=P⊗S (non-
invertible, if W �=0), such that P⊗P ∗=P (1) and FPdim(P )=FPdim(E)/2.

Proof. Let p, q be the simple projectives of Z(E) (see Example 3.7).

(1) Let Z be the unique non-invertible simple object of B. We have

Z ∼= Z∗ ∼= S ⊗ Z and Z ⊗ Z = 1⊕ S.

By Theorem 3.5, p � Z is in T ′, and we have that X := F (p � Z) is simple
projective in C. Thus the claim follows from Example 3.7 and the properties of F .

(2) Let h ∈ B be as in the proof of Theorem 4.4. By Theorem 3.5, p � h and
q � h are in T ′, and we have that P := F (p � h) and Q := F (q � h) are simple
projective in C. Thus the claim follows from Example 3.7 and the properties of F .

�

We conclude this section by proving that the action of B is free.

Theorem 4.4. The action of B on the set of equivalence classes of finite non-
degenerate braided tensor categories containing E as a Lagrangian subcategory, is
free.

Proof. Fix a finite non-degenerate braided tensor category C containing E as a

Lagrangian subcategory. It is sufficient to show that the categories C�̃B, B ∈ B is
pointed, are pairwise non-equivalent braided tensor categories.

Let g ∈ B be such that S � g is the nontrivial object of T . Then g has order 2,
and the braiding c(g, g) on g2 = 1 in B is equal to − id1. Let A := 1 � 1 ⊕ S � g
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be the regular algebra of T . Also, pick a simple object h �= 1, g in B. We have
c(h, g)c(g, h) = − idgh.

Pick an object Z ∈ C such that sS,Z = − idS⊗Z (such an object exists by Theorem

3.5). Then Z � h ∈ T ′. Consider the free braided tensor functor F : T ′ → C�̃B,
and let z := F (Z � h) = (Z � h) ⊗ A. Since F is braided, we have the following
commutative diagram

F (Z � h)⊗A F (Z � h)
c̃z,z−−−−→ F (Z � h)⊗A F (Z � h)

∼=
⏐⏐� ∼=

⏐⏐�
F ((Z ⊗ Z)� h2)

F (cZ�h,Z�h)−−−−−−−−−→ F ((Z ⊗ Z)� h2),

where c̃z,z is the braiding on z ⊗A z in C�̃B. But,
cZ�h,Z�h = cZ,Z � c(h, h) idh2 ,

which implies that c(h, h) is determined by the braided tensor category C�̃B. Since
c(h, h) determines B (see, e.g., [DGNO1, Lemma A.11]), we are done. �

5. The proof of Theorem 1.1

Retain the notation of 2.6, 4. Set n := dim(W ), and E := En.
We already proved in Theorem 4.4 that the action of B is free, so it remains to

show it is transitive.
Let C = C0 ⊕ C1 be a finite non-degenerate braided tensor category containing

E as a Lagrangian subcategory. By Proposition 2.10 and Theorem 3.5, we have

an injective braided tensor functor C0 1:1−−→ Z(E). Composing this functor with the
forgetful functor Z(E) � E , yields a surjective tensor functor

(5.1) F : C0 � E .5

It is clear that the functor F̃ : C0 � Z(E) given by the composition

C0 F−→ E ↪→ Z(E)
determines a central structure on F ([EGNO, Definition 8.8.6]).

Let I be the right adjoint functor to F, and let A := I(1). Then A has a
canonical structure of an associative algebra object in C0 [EGNO, Example 7.9.10],
and FPdim(A) = FPdim(E)/2 (see Lemma 2.3).

Lemma 5.1. The algebra object A is commutative, that is, we have m = m ◦ cA,A,
where m : A⊗A → A is the multiplication map on A.

Proof. Follows from [EGNO, Proposition 8.8.8] since F has a central structure. �

The functor F (5.1) defines on E a structure of an exact left indecomposable
module category over C0, and by [EGNO, Theorem 7.10.1], the functor I induces

an equivalence I : E
∼=−→ Mod(A)C0

of left module categories over C0.

Lemma 5.2. The functor I : E
∼=−→ Mod(A)C0

induces an equivalence of tensor
categories, where Mod(A)C0

is viewed as a tensor subcategory of the finite tensor
category BimodC0

(A) (see 2.3).

5If W �= 0, F is not braided!



464 SHLOMO GELAKI AND DANIEL SEBBAG

Proof. One shows that I has a structure of a tensor functor in exactly the same
way as one shows that the right adjoint to the forgetful functor Z(E) � E does (see
[EGNO, Lemma 8.12.2]). �

Since C1 is an exact invertible C0-bimodule category, the category
Mod(A)C1

= C1 �C0
Mod(A)C0

of right A-modules in C1 is naturally a left inde-
composable C0-module category.

Lemma 5.3. The following hold:

(1) There is an equivalence Mod(A)C1
∼= Mod(A)C0

of left module categories
over C0. Thus, Mod(A)C1

is exact over C0.
(2) Mod(A)C is an exact left indecomposable module category over C. Hence,

A := Mod(A)C is a finite tensor subcategory of BimodC(A) (see 2.3).
(3) The tensor category A has a Z/2Z-faithful grading A = A0 ⊕ A1, where

A0
∼= E as tensor categories and A1 ⊂ BimodC1

(A).

Proof. (1), (2) Clearly, Mod(A)C ∼= C �C0
Mod(A)C0

is the induced left module
category of Mod(A)C0

. Thus by Theorem 3.5(1), we have

Mod(A)C ∼= (C0 ⊕ C1)�C0
Mod(A)C0

∼= Mod(A)C0
⊕Mod(A)C1

,

as left C0-module categories. It follows that Mod(A)C1
and Mod(A)C0

must be
equivalent as left module categories over C0 since Mod(A)C is indecomposable over
C. This implies that Mod(A)C1

is exact over C0, and hence so is Mod(A)C. Therefore
by [EG2, Corollary 2.5], Mod(A)C is exact over C. Finally, since A is commutative
in C, A is a finite tensor subcategory of BimodC(A) (see 2.3).

(3) The decomposition Mod(A)C = Mod(A)C0
⊕Mod(A)C1

of module categories
over C0 obtained above clearly induces a Z/2Z-grading on A with the claimed
properties. �

It follows from Proposition 2.4 and Lemma 5.3(2) that we have a decomposition

(5.2) C � C′ ∼= Z(A)

of braided tensor categories, where C′ is the centralizer of C inside Z(A). Since
by (5.2), C′ is non-degenerate with Frobenius-Perron dimension 4, C′ is fusion. We
have thus obtained the following.

Proposition 5.4. There exists an element B in the group B such that C′ ∼= B as
braided tensor categories. Hence, there is a braided tensor equivalence
C � B ∼= Z(A). �

Finally, it follows from Theorem 2.5 and Proposition 5.4 that there is a braided
tensor equivalence C � B ∼= (ZE(A))Z/2Z. In particular C � B contains a Tan-
nakian subcategory T := Rep(Z/2Z), and there is a braided tensor equivalence

(T ′)Z/2Z ∼= Z(E). Hence C�̃B ∼= Z(E), so C ∼= Z(E)�̃B−1, as desired.
The proof of Theorem 1.1 is complete. �
As a corollary of Theorems 1.1, 4.3 we obtain the following result.

Corollary 5.5. Let C be a finite non-degenerate braided tensor category containing
a Lagrangian subcategory En. Then the following hold:

(1) If C is integral then C has exactly four nonisomorphic simple objects: two
invertible objects (non-projective, if n > 0), and two simple projective ob-
jects (non-invertible, if n > 0).
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(2) If C is not integral then C has exactly three nonisomorphic simple objects:
two invertible objects (non-projective, if n > 0), and one simple projective
object. �

Remark 5.6.

(1) Some (but not all) of the finite non-degenerate braided integral tensor cat-
egories containing a Lagrangian subcategory En can be constructed using
the interesting method developed by Davydov-Runkel in [DR1,DR2]. For
example, Z(En) can be constructed using Davydov-Runkel’s method if and
only if n is even (see, [DR3, Theorem 1.2]).

(2) In [DR1, Section 5.1] it is shown that all 8 equivalence classes of non-
degenerate braided non-integral tensor categories containing a Lagrangian
subcategory E0 = sVec (i.e., Ising categories; see 4) can be constructed
using the method of Davydov-Runkel.

In the Appendix below we use Theorem 1.1, and the classification of
R-matrices of the 8-dimensional Nichols Hopf algebra E(2) given in [G], to
verify that all 8 equivalence classes of non-degenerate braided non-integral
tensor categories containing a Lagrangian subcategory E1 arise in this way
as well.

More generally, we expect that Theorem 1.1, and the classification of R-
matrices of the 2n-dimensional Nichols Hopf algebra E(2n) given in [PO],
can be used in a similar way to verify that all 8 equivalence classes of non-
degenerate braided non-integral tensor categories containing a Lagrangian
subcategory En arise in this way for every n.

6. Degenerate braided tensor categories with Lagrangian sRep(W )

Let W be an n-dimensional vector space viewed as a purely odd supervector
space. Let En = sRep(W ), and let S be the unique nontrivial invertible object of
En.
Theorem 6.1. The following hold:

(1) Assume D is a finite degenerate braided tensor category containing En
as a Lagrangian subcategory. Then there exists a vector space V , with
n ≤ dim(V ) ≤ 2n, such that D ∼= sRep(V ) as tensor categories, and we
have FPdim(D′) = 22n−dim(V )+1.

(2) For every integer � such that n ≤ � ≤ 2n, there exist a �-dimensional vector
space V and a finite degenerate braided tensor category D containing En as
a Lagrangian subcategory, such that FPdim(D′) = 22n−�+1.

Proof. (1) We have Vec �= D′ ⊂ E ′
n = En, hence S ∈ D′. Arguing now as in

the proof of Proposition 3.2, we conclude that 1, S are the only simple objects of
D. Therefore it follows from [EG2, Theorem 3.1] that D is tensor equivalent to
sRep(V ) for some finite dimensional purely odd supervector space V .

Since sRep(W ) ⊂ sRep(V ) as tensor categories, n ≤ dim(V ). Moreover, by
(2.2),

FPdim(D)FPdim(D′) = FPdim(En)FPdim(E ′
n) = FPdim(En)2.

Thus,
2dim(V )+1 = FPdim(D) ≤ FPdim(En)2 = 22(n+1),

which implies that dim(V ) ≤ 2n.



466 SHLOMO GELAKI AND DANIEL SEBBAG

(2) By Theorem 2.9, En is Lagrangian in Z(En). Clearly, En is Lagrangian in
every braided tensor subcategory D of Z(En) containing it. Now it is clear that
for every n ≤ � ≤ 2n, there exists a braided tensor subcategory D of Z(En) of
Frobenius-Perron dimension 2�+1 containing En as a Lagrangian subcategory. Since
by (2.2), FPdim(D)FPdim(D′ ∩ En) = FPdim(En)2, we see that D is degenerate
and FPdim(D′) = 22n−�+1, as desired.

�

7. Appendix: Dimension 16

Let E(2) be the 8-dimensional Nichols Hopf algebra, with grouplike element u
and (1, u)-skew-primitive elements x, y (see 2.6). It is well known (and straight-
forward to check) that the dual Hopf algebra E(2)∗ is unimodular (i.e., 1 is the
distinguished grouplike element of E(2)), and that every integral of E(2)∗ is of the
form

λs := s(xy)∗ + s(uxy)∗, s ∈ C.

Let R0 be as in (2.7), and consider the R-matrix

R := R0 −
1

2
(x⊗ uy + ux⊗ uy + x⊗ y − ux⊗ y)

+
1

2
(y ⊗ ux+ uy ⊗ ux+ y ⊗ x− uy ⊗ x)

− (xy ⊗ xy + uxy ⊗ xy + xy ⊗ uxy − uxy ⊗ uxy) .

Clearly R is non-degenerate. It is well known [G] that (E(2), R) is a quasitriangular
Hopf algebra with Drinfeld element u := u(1 + 2xy), and that the finite braided
tensor category Rep(E(2), R) is slightly-degenerate (so, Rep(E(2), R) ∼= D1 (2.9)
as braided tensor categories).

Let

γ := R0 +
i

2
(x⊗ uy − ux⊗ uy + x⊗ y + ux⊗ y)

− i

2
(y ⊗ ux− uy ⊗ ux+ y ⊗ x+ uy ⊗ x)

− 1

2
(xy ⊗ xy + uxy ⊗ xy + xy ⊗ uxy − uxy ⊗ uxy) .

The following can be verified in a straightforward manner.

Lemma 7.1. The 2 triples (γ, λ±i, g = 1) satisfy all the conditions in [DR2, The-
orem 1]. Namely, we have

(1) γ is non-degenerate.
(2) (id⊗ε)(γ) = 1 = (ε⊗ id)(γ).
(3) (id⊗S)(γ) = (S ⊗ id)(γ).
(4) (Δ⊗ id)(γ) = γ13γ23 and (id⊗Δ)(γ) = γ12γ13.
(5) (λ±i ⊗ λ±i)((id⊗S)(γ)) = 1.
(6) (id⊗S2)(γ) = γ21. �

(In the language of [DR2, Theorem 1], (1)–(4) say that γ is a non-degenerate
Hopf-copairing.)

Set a := (1− i)/2 and ζ := eπi/4. Let

σ+ := (a1 + āu)(1 + xy), σ− := uσ+ = σ+u ∈ E(2).
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It is easy to check that σ+, σ− are invertible with inverses

σ−1
+ = (ā1 + au)(1− xy), σ−1

− = uσ−1
+ = σ−1

+ u,

and σ2
+ = σ2

− = u (hence S2(h) = σ2
+hσ

−2
+ for every h ∈ E(2)).

Now using the above properties of σ+, σ− and the properties of the R-matrix R
it is straightforward to verify the following.

Lemma 7.2. Each one of the following 8 sextuplets

(R, σ±, g = 1, λi, γ, β = ±ζ) and (R, σ±, g = 1, λ−i, γ, β = ±iζ)

satisfies all the conditions in [DR2, Theorem 3]. Namely, let σ = σ±, then we have

(1) γ = (σ−1 ⊗ 1)Δ(σ)(1⊗ σ−1).
(2) λ±i(S(h)) = λ±i(σhσ

−1) for every h ∈ E(2).
(3) λi(σ) = β2 and λ−i(σ) = β2.
(4) The map E(2) → E(2)cop, h �→ σhσ−1, is a Hopf algebra isomorphism.
(5) S(σ) = σ.
(6) γ =

∑
σγ1σ

−1 ⊗ σ−1S(γ2)σ, where γ =
∑

γ1 ⊗ γ2. �

In conclusion, Lemmas 7.1 and 7.2 establish that each one of the following 8
sextuplets

(R, σ±, g = 1, λi, γ, β = ±ζ) and (R, σ±, g = 1, λ−i, γ, β = ±iζ)

determines a structure of a finite braided tensor category on the category
Rep(E(2)) + Vec, in the manner prescribed by Davydov-Runkel in [DR1, DR2].
Clearly, these categories are not integral and have Frobenius-Perron dimension 16,
and it is straightforward to verify that they are non-degenerate and contain sRep(C)
as a Lagrangian subcategory.

Lemma 7.3. The 8 finite braided tensor categories constructed above are pairwise
non-equivalent as braided tensor categories.

Proof. Let C = (R, σ, g = 1, λ, γ, β) be one of the 8 finite braided tensor categories
constructed above. Let X be the unique non-invertible simple object of C, and
let χ be the unique nontrivial character of E(2) (viewed as the unique nontrivial
invertible object of C). We have, χ(σ±) = ∓i.

Then it is straightforward to verify that the action of the braiding isomorphism

X ⊗C X
∼=−→ X ⊗C X on the 1-dimensional space HomC(1, X ⊗C X) is given by

multiplication by β.
It is also straightforward to verify that the braiding isomorphism

χ⊗C X
∼=−→ X ⊗C χ

is given by χ(σ) · idX .
It thus follows from the above that the braided tensor equivalence class of C is

determined by σ and β, which implies the claim. �

It thus follows from the above and Theorem 1.1 that all 8 equivalence classes
of finite non-degenerate braided non-integral tensor categories C, containing a La-
grangian subcategory sRep(C), arise from the construction of Davydov-Runkel.
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