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CARTER SUBGROUPS, CHARACTERS AND COMPOSITION

SERIES

I. M. ISAACS

Abstract. Let G be a finite solvable group. We construct a set H of irre-
ducible characters of G such that if C is a Carter subgroup of G, then the
members of H behave well with respect to C-composition series for G, and
we show that H is in bijective correspondence with the set of linear charac-
ters of C. Also, if A is a group that acts coprimely on G, then analogously,
we characterize in terms of A-composition series for G, the set of A-invariant
characters of G that have a linear Glauberman-Isaacs correspondent.

1. Introduction

Our primary concern in this paper is with finite solvable groups. Every such
group contains a unique conjugacy class of nilpotent self-normalizing subgroups.
where we say that a subgroup C is self-normalizing in G if NG(C) = C. These
self-normalizing nilpotent subgroups of G are referred to as the Carter subgroups
of G, and it was R. Carter who proved [1] that every finite solvable group G contains
a Carter subgroup and that all of the Carter subgroups of G are conjugate.

It is clear that if C is a Carter subgroup of G, then C is also a Carter subgroup
of every subgroup of G that contains it. It is perhaps somewhat less obvious that
if C is a Carter subgroup of G and π : G → H is a surjective homomorphism, then
π(C) is a Carter subgroup of H, or equivalently, if N � G, then NC/N is a Carter
subgroup of G/N . It follows easily from this that if G/N is nilpotent, where N � G,
then G = NC, and in particular G = G∞C, where G∞ is the nilpotent residual of
G, which, by definition, is the unique smallest normal subgroup of G for which the
corresponding factor group is nilpotent.

Carter subgroups also arise in a more general context: they are the so-called
“projectors” for the formation of nilpotent groups. We do not know if results anal-
ogous to those in this paper hold more generally for projectors of other saturated
formations, and we will not pursue that question here.

One of our principal results is the following.

Theorem A. Let C be a Carter subgroup of a solvable group G. Then there exists
a uniquely defined subset H of the set Irr(G) of irreducible characters of G such
that H is in bijective correspondence with the set of linear characters of C. The set
H is independent of any choices made in its construction, and also, if χ lies in H,
then χ restricts irreducibly to G∞, and χ(1) divides |G : C|.
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To prove Theorem A, we construct a family of injective maps from the set Lin(C)
of linear characters of a Carter subgroup C of G into the set Irr(G) of irreducible
characters of G, and although we do not claim to have constructed a uniquely
determined map Lin(C) → Irr(G), we show that all of our maps have exactly the
same image H, which we refer to as the set of “head characters” of G, and we
characterize these head characters unambiguously.

Of course, it follows from Theorem A that the number of characters χ ∈ Irr(G)
such that χ restricts irreducibly to G∞ and χ(1) divides |G : C| is at least the
number |C : C ′| of linear characters of C. Computer experiments show that in fact,
the number of characters χ ∈ Irr(G) that satisfy these two conditions can exceed
|C : C ′|, but it is relatively difficult to find examples where this strict inequality
actually occurs.

Since |C : C ′| = |Lin(C)| = |H| ≤ | Irr(G)|, and | Irr(G)| is the number of
conjugacy classes of G, we have the following immediate consequence of Theorem A,
which does not mention characters. It would be interesting to try to find a purely
group-theoretic proof of this fact.

Corollary B. Let C be a Carter subgroup of a solvable group G. Then |C : C ′| is
at most the number of conjugacy classes of G.

In general outline, Theorem A is analogous to work of E. C. Dade and D. Gajen-
dragadkar, who carried out a somewhat similar program with system normalizers
in place of Carter subgroups. Given a system normalizer S of a solvable group G,
Dade constructed a family of injective maps from Irr(S) into Irr(G), and then he
and Gajendragadkar characterized the common image of these maps. (See [2] or
[3].) Note that Dade’s maps are defined on the full set of irreducible characters of
S, whereas our maps are defined only on the set of linear characters of C. Also,
Dade and Gajendragadkar did not limit themselves to the formation of nilpotent
groups, as we do.

The head characters of a solvable group G are defined in terms of the C-
composition series forG, where C is a Carter subgroup ofG. We defer the somewhat
technical definition of a head character to Section 5, but it seems appropriate to
present a very brief discussion of composition series here.

Suppose that A is a group that acts via automorphisms on some group G. (For
example, we could take A to be a subgroup of G, acting by conjugation.) Recall
that an A-composition series for G is a subnormal series

1 = S0 � S1 � · · · � Sr = G

pp of A-invariant subgroups Si of G, where each factor Si+1/Si is A-simple, which
means that it contains no nontrivial proper A-invariant normal subgroup.

If L � K ⊆ G, where L and K are A-invariant, we say that K/L is an A-
composition factor of G if K/L is A-simple and K is subnormal in G. It is easy
to see that this happens if and only if L and K are consecutive terms Si and Si+1

in some A-composition series {Si} of G.
If G is solvable, it is easy to see that all A-composition factors of G are abelian,

and thus the action of A on an arbitrary A-composition factor K/L of G is either
trivial or else it is fixed-point free. In the first case, where CK/L(A) = K/L, we say
that K/L has type TA (trivial action) with respect to A, and otherwise, we have
CK/L(A) = 1, and we say that K/L has type FPF (fixed-point free) with respect
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to A. When we use this notation, we will often neglect to mention the specific
group A that we have in mind, but this should be clear from the context.

In addition to our results involving Carter subgroups, we have included in the
final section of this paper a theorem analogous to our characterization of head
characters. Recall that if A is a group that acts via automorphisms on a group G,
where |A| and |G| are relatively prime, the Glauberman-Isaacs correspondence is a
uniquely determined bijection ( )∗ from the set of A-invariant irreducible characters
of G onto the set Irr(C), where C = CG(A). (See [4, Chapter 13] and [6, The-
orem 8.11].) If G is solvable, we use A-composition series to define the A-head
characters of G, which turn out to be exactly the set of A-invariant characters
χ ∈ Irr(G) such that χ∗ is linear.

We close this introduction by recalling some convenient notation. If A is a group
that acts via automorphisms on a group G, we write IrrA(G) to denote the set of
A-invariant members of Irr(G). Also, if T ⊆ S are subgroups of a group G, and
σ ∈ Irr(S) and τ ∈ Irr(T ), we say that σ lies over τ or that τ lies under σ if τ is a
constituent of σT , and we write Irr(S|τ ) to denote the set of irreducible characters
of S that lie over τ .

2. FPF sections

Let C be a Carter subgroup of a solvable group G, and view C as acting on G
by conjugation. We generalize slightly the notion of a C-composition factor of G of
type FPF. Given C-invariant subgroups L � K of G, we say that K/L is an FPF
section of G with respect to C if CK/L(C) = 1.

We will often neglect to mention any specific Carter subgroup C of G when we
say that K/L is an FPF section. This will generally be clear from the context, but
note, however, that if K and L are normal in G, then because all Carter subgroups
of G are conjugate, the choice of C is really irrelevant.

Let C be a Carter subgroup of a solvable group G, and suppose that L �� K are
C-invariant subgroups of G. Then L and K are subnormal in KC, so there exists a
C-composition series {Si} for KC such that L and K appear among the subgroups
Si. It thus makes sense to discuss the C-composition factors “between” L and K,
and we note that up to C-isomorphism, these factors are uniquely determined.

Lemma 2.1. Let C be a Carter subgroup of a solvable group G, and let L � K be
C-invariant subgroups of G. The following are then equivalent.

(a) K/L is an FPF section.
(b) K ∩ LC = L.
(c) For every choice of C-invariant subgroups A and B such that L ⊆ B � A ⊆

K, the section A/B is FPF.
(d) Every C-composition factor of K/L between L and K is of type FPF.

Proof. We show first that (a) and (b) are equivalent. If (b) holds, then K/L
meets LC/L trivially. Also, since LC/L is a Carter subgroup of KC/L, it is self-
normalizing, and it follows that

CK/L(C) = CK/L(LC/L) ⊆ (LC/L) ∩ (K/L) = 1 ,

and thus K/L is an FPF section and (a) holds. If (b) is false, on the other hand,
then (K ∩LC)/L is a nontrivial normal subgroup of the nilpotent group LC/L, so
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this subgroup meets Z(LC/L) nontrivially. Then

1 < ((K ∩ LC)/L) ∩ Z(LC/L) ⊆ CK/L(C) ,

and thus (a) is false.
Now assume (b). To prove (c), we must show that A/B is an FPF section, so

we want to establish (a) in the situation where A and B replace K and L. We have
already seen that (b) implies (a), so it suffices to check that (b) holds with A and
B in place of K and L, and thus it suffices to show that A∩BC = B. Now B ⊆ A,
so by Dedekind’s lemma, we have

A ∩BC = B(A ∩ C) ⊆ B(K ∩ LC) = BL = B ,

where the penultimate equality holds because we are assuming (b), which asserts
that K ∩ LC = L. This establishes (c).

Next, we assume (c), and we prove (d). Let A/B be an arbitrary C composition
factor between L and K, so L ⊆ B � A ⊆ K. Now (c) guarantees that A/B is an
FPF section, as wanted.

Finally, assuming (d), we complete the proof by showing that K ∩ LC = L, so
(b) holds, and thus (a) also holds. Let D = K ∩ LC, so D ⊇ L, and we work to
obtain a contradiction if D > L.

Assuming that D > L, let E/L be a C-composition factor with L < E ⊆ D,
and observe that E ∩ LC ⊆ D ∩ LC = D > L, so (b) fails if E replaces K, Since
(a) and (b) are equivalent, (a) also fails in this situation, and thus E/L is not an
FPF section. This is a contradiction, however, because we are assuming that all
C-composition factors between L and K are of type FPF, and this completes the
proof �
Corollary 2.2. Let C be a Carter subgroup of a solvable group G, and let L�M�K
be C-invariant subgroups of G, where L � K. Then K/L is an FPF section if and
only if both K/M and M/L are FPF sections.

Proof. By Lemma 2.1, we know that K/L is an FPF section if and only if all C-
composition factors between L and K are of FPF type. Up to C-isomorphism (and
ignoring multiplicities) the C-composition factors between L and K are exactly the
C-composition factors between L and M together with the C-composition factors
between M and K. All of these factors are of type FPF, therefore, precisely when
all of the factors between L and K are of FPF type. By Lemma 2.1, this happens
if and only if both M/L and K/M are FPF sections. �
Corollary 2.3. Suppose G is solvable but not nilpotent, and let K = G∞. Then
there exists a normal subgroup L of G with L < K, and such that K/L is an FPF
section of G.

We mention that in general, there may be many normal subgroups L of G such
that L ⊆ K andK/L is an FPF section ofG. One of the advantages of the particular
construction that we use in the following proof is that it can be implemented fairly
easily by a computer program.

Proof of Corollary 2.3. Since G is solvable but not nilpotent, we have 1 < K < G,
so K is solvable and K > 1. Now K ′ < K = G∞, and thus G/K ′ is not nilpotent.
Then K ′C < G, where C is a Carter subgroup of G, and writing L = K ∩ K ′C,
we see that K ′ ⊆ L ⊆ K, so L � K. Also, C normalizes L, so L � KC = G, as
required.
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Now L ⊆ K ′C, so LC ⊆ K ′C < G = KC, and hence L < K. Finally, since
K ′ ⊆ L ⊆ K ′C, we see that LC = K ′C, and thus K ∩ LC = K ∩K ′C = L. Then
K/L is an FPF section by Lemma 2.1, and the proof is complete. �

Recall that if K/L is a C-composition factor of G, where C is a Carter subgroup,
then K/L is either of type an FPF or of type TA with respect to C, and these
possibilities are mutually exclusive.

Lemma 2.4. Let C be a Carter subgroup of a solvable group G, and let L �� K be
C-invariant subgroups of G. Then the following are equivalent.

(a) Every C-composition factor of KC between L and K is of type TA.
(b) K ⊆ LC.
(c) KC = LC.

Proof. Assuming (a), we prove (b) by induction on |K : L|. Suppose first that there
exists no C-invariant subgroup M with L < M �� K. Then L � K and K/L is a
C-composition factor of KC, so in particular, K/L is abelian, and (a) guarantees
that K/L must be of type TA. Then K/L is not an FPF factor, and it follows by
Lemma 2.1 that K ∩ LC > L. Now K ∩ LC is C-invariant and it is normal in K
because K/L is abelian. We deduce that K ∩ LC = K, and thus (b) holds in this
case.

We can assume, therefore, that there exists a C-invariant subgroup M such that
L < M �� K. All C-composition factors between L and M and between M and K
are of type TA, so by the inductive hypothesis, we have M ⊆ LC and K ⊆ MC.
Then K ⊆ MC ⊆ (LC)C = LC, proving (b).

That (b) implies (c) is clear, so it suffices to assume (c) and to prove (a). Let
S/T be a C-composition factor of KC between L and K, so we must show that
S/T is of type TA. Otherwise, S/T is an FPF section, and we work to derive a
contradiction. Now L ⊆ T ⊆ S ⊆ K, and by (c), we have LC = KC, so TC = SC.
Also, since S/T is an FPF factor, Lemma 2.1 yields T = S∩TC = S∩SC = S > T ,
and this contradiction completes the proof. �

3. Carter-invariant characters

The main result of this section is the following.

Theorem 3.1. Let C be a Carter subgroup of a solvable group G, and suppose
that L � K are C-invariant subgroups of G such that K/L is an FPF section. The
following then hold.

(a) If θ ∈ IrrC(K), then θ lies over a unique character ϕ ∈ IrrC(L).
(b) If ϕ ∈ IrrC(L), then ϕ lies under a unique character θ ∈ IrrC(K).
(c) If θ ∈ IrrC(K) and ϕ ∈ IrrC(L), where θ lies over ϕ, then θ is extendible

to KC if and only if ϕ is extendible to LC.

Note that we can paraphrase (b) by saying that there is a map h : IrrC(L) →
IrrC(K) such that ϕ lies under h(ϕ). By (a), the map h is both injective and
surjective, so (a) and (b) together say that “lying under” defines a bijection from
IrrC(L) onto IrrC(K).

We will need several preliminary results before we can prove Theorem 3.1, but
first, we recall that if L � K and α ∈ Irr(K) and β ∈ Irr(L), then we say that α
and β are fully ramified with respect to each other if αL is a multiple of β and
βK is a multiple of α. In this situation, α and β uniquely determine each other,
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and we sometimes say that α and β are fully ramified with respect to the section
K/L. Recall also that α and β are fully ramified with respect to each other if and
only if αL = eβ, where e2 = |K : L|.
Lemma 3.2. Let K/L be an abelian chief factor of a group G, and suppose
α ∈ Irr(K) lies over β ∈ Irr(L). Assume either that α is invariant in G or that
G = KT , where T is the stabilizer of β in G. Then one of the following occurs.

(a) βK = α and K ∩ T = 1.
(b) αL = β.
(c) α and β are fully ramified with respect to each other.

Proof. See [6, Corollary 7.4]. �
Our next result contains more than we will be need for the proof of Theorem 3.1;

the extra information (about zero values of characters) will be needed later, how-
ever.

Lemma 3.3. Let K/L be an abelian chief factor of a group G, and suppose that
θ ∈ Irr(K) and ϕ ∈ Irr(L) are fully ramified with respect to each other. Suppose
also that U/L is a complement for K/L in G/L. Then

(a) If |K : L| and |G : K| are relatively prime, then ϕ is extendible to U if and
only if θ is extendible to G. Also, if ξ and χ are extensions of ϕ and θ to
U and G, respectively, then for elements u ∈ U , we have ξ(u) = 0 if and
only if χ(u) = 0.

(b) If U/L is nilpotent, then ϕ is extendible to U if and only if θ is extendible
to G

Proof. Since ϕ and θ uniquely determine each other, we see that if θ is not invariant
in G, then ϕ is not invariant in U , and thus neither ϕ nor θ is extendible. In this
case, the lemma is vacuously true, and so we can assume that θ is invariant in G.

Suppose now that |K : L| and |G : K| are relatively prime. By [6, Theorem 8.1],
there is a complement X/L for K/L in G/L such that X has certain special prop-
erties. By the Schur-Zassenhaus theorem, however, all complements for K/L in
G/L are conjugate, and it follows that the given complement U/L enjoys these
properties. In particular, there is a character ψ of U such that ψ(u) �= 0 for all
elements u ∈ U , and ψ(1) = e, where e2 = |K : L| and θL = eϕ. Also, there exists
a bijection f : Irr(G|θ) → Irr(U |ϕ) such that whenever f(χ) = ξ, we have χU = ψξ.

If f(χ) = ξ, then χ(1) = ψ(1)ξ(1) = eξ(1). Since θ(1) = eϕ(1), it follows
that χ(1)/θ(1) = ξ(1)/ϕ(1), and thus χ is an extension of θ if and only if ξ is an
extension of ϕ. In particular, we see that as required, θ is extendible to G if and
only if ϕ is extendible to U .

Continuing to assume that f(χ) = ξ, we see that for elements u ∈ U , we have
χ(u) = ψ(u)ξ(u), and since ψ(u) �= 0, we conclude that χ(u) = 0 if and only
if ξ(u) = 0. Now if ξ0 and χ0 are arbitrary extensions of ϕ and θ to U and G,
respectively, we must show that χ0(u) = 0 if and only if ξ0(u) = 0. This follows
because the Gallagher correspondence guarantees that χ0 and ξ0 can be obtained
from χ and ϕ by multiplying by linear characters, and this completes the proof of
(a).

For (b), observe that if K = G then L = U , so both ϕ and θ are extendible to
U and G and there is nothing further to prove. We can thus assume that K < G,
and we proceed by induction on |G : K|.



476 I. M. ISAACS

Since K/L is an abelian chief factor of G, we see that K/L must be a p-group
for some prime p. If p does not divide |G : K|, the result follows by (a), so we can
assume that p divides |G : K| = |U : L|. By hypothesis, U/L is nilpotent, so we
can choose a normal subgroup T/L of order p in U/L, and we let Z/L = CK/L(T ).
Now Z > L because K/L is a p-group and T/L has order p. Also, Z � K because
K/L is abelian, and since U normalizes T , it follows that U normalizes Z, and thus
Z � KU = G.

Now L < Z ⊆ K and K/L is a chief factor of G, and hence Z = K. Then T
centralizes K/L, and thus K normalizes T , and so T � G. Let S = KT , so S � G
and S/T is G-isomorphic to K/L, and in particular, S/T is a chief factor of G.

Suppose now that ϕ extends to U . Then there exists an extension α of ϕ to T
such that α extends to U . Let β ∈ Irr(S) lie over α, and observe that β lies over
ϕ. It follows that β lies over θ because θ is the unique irreducible character of K
that lies over ϕ. Now S/K is cyclic and θ is invariant in S, and we deduce that β
is an extension of θ to S.

If we suppose instead that θ extends to G, there is an extension β of θ to S such
that β extends to G, and in this case, we let α ∈ Irr(T ) lie under β. Now βL = θL
and θL is a multiple of ϕ, and since β lies over α, it follows that α lies over ϕ. Since
T/L is cyclic and ϕ is invariant in T , we deduce that α is an extension of ϕ.

We are assuming that at least one of ϕ or θ extends to U or G, respectively, so
by the results of the previous two paragraphs, there is an extension α of ϕ to T
and an extension β of θ to S such that β lies over α and either α extends to U or
β extends to G.

Now S/T is an abelian chief factor of G and β ∈ Irr(S) lies over α ∈ Irr(T ).
Also, either β is invariant in G or α is invariant in U , so it follows by Lemma 3.2
that one of the following occurs: either αS = β or βT = α or α and β are fully
ramified with respect to each other.

If αS = β, then β(1) = |S : T |α(1) = |K : L|α(1) = e2α(1), and if βT = α, we
have β(1) = α(1). We know, however, that β(1) = θ(1) = eϕ(1) = eα(1), and since
1 < e < e2, it follows that only the third alternative can occur, and thus α and β
are fully ramified with respect to each other.

Now U/T is a complement for S/T in G/T , and U/T is nilpotent, so we can
apply the inductive hypothesis with T and α in place of L and ϕ, and with S and
β in place of K and θ. It follows that α extends to U if and only if β extends to
G. We know, however, that at least one of these alternatives is true, so in fact α
extends to U and β extends to G. We conclude that ϕ extends to U and θ extends
to G, as required. �

We will also need the following fairly standard result for our proof of Theorem 3.1.

Lemma 3.4. Suppose that Q acts on K via automorphisms, and let L � K, where
L is Q-invariant, and |Q| and |K/L| are relatively prime. The following then hold.

(a) If θ ∈ IrrQ(K), then θ lies over some character ϕ ∈ IrrQ(L).
(b) If CK/L(Q) = 1, then the character ϕ of (a) is unique.
(c) If K/L is abelian and ϕ ∈ IrrQ(L), then ϕ lies under some character θ ∈

IrrQ(K).
(d) If CK/L(Q) = 1, then the character θ of (c) is unique.

Proof. Given θ ∈ IrrQ(K), observe that K/L acts transitively by conjugation on
the set S of irreducible constituents of θL. Also, Q acts on K/L, and since θ is
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Q-invariant, Q also acts on S. Now |Q| and |K/L| are relatively prime, and it is
easy to check that the actions of Q on K/L and on S are compatible in the sense
of Glauberman’s lemma with the action of K/L on S. (See [5, Lemma 3.24] or
[4, Lemma 13.8 and Corollary 13.9].) It follows by Glauberman’s lemma that some
character ϕ ∈ S is Q-invariant, and this establishes (a).

By the conjugacy part of Glauberman’s lemma, the action of CK/L(Q) on the
set of Q-fixed members of S is transitive, so if CK/L(Q) = 1, there is a unique
Q-fixed character in S, and this proves (b).

For (c) and (d), we assume now that K/L is abelian, and we let ϕ ∈ IrrQ(L).
Let T be the set of irreducible constituents of ϕK , and observe that if θ ∈ T and
λ ∈ Irr(K/L), then λθ is irreducible and lies over ϕ, so λθ ∈ T , and thus the group
Irr(K/L) acts by multiplication on T . This action is transitive because if θ ∈ T ,
then every member of T is a constituent of (θL)

K = (1LθL)
K = (1L)

Kθ.
Now Q acts on T because ϕ is Q-invariant, and Q also acts on Irr(K/L). Since

K/L is abelian by assumption, we have | Irr(K/L)| = |K/L|, and by hypothesis, this
number is relatively prime to |Q|. The actions of Q on T and Irr(K/L) are easily
seen to be compatible (in the sense of Glauberman’s lemma) with the multiplication
action of Irr(K/L) on T , and it follows by Glauberman’s lemma that Q fixes some
character θ ∈ T , and (c) follows.

Finally, for (d), we assume that CK/L(Q) = 1, and we show that the charac-
ter θ is unique. By the conjugacy part of Glauberman’s lemma, we know that
CIrr(K/L)(Q) acts transitively on the set of Q-fixed characters in T , so it suffices to
show that only the trivial character of K/L is fixed by Q. Suppose, therefore, that
λ ∈ Irr(K/L) is fixed by Q. Then [K,Q]L ⊆ kerλ, and since by hypothesis, |Q|
and |K/L| are relatively prime and CK/L(Q) is trivial, Fitting’s lemma guarantees
that [K,Q]L = K. It follows that K ⊆ kerλ, so λ is principal, as required. �

We need one more preliminary result.

Lemma 3.5. Let L� G, where G is solvable, and let C be a Carter subgroup of G.
Given χ ∈ Irr(G), there exists at most one C-invariant irreducible character of L
that lies under χ.

Proof. Suppose that α and β are C-invariant irreducible constituents of χL, so we
can write β = αg for some element g ∈ G. Let T be the stabilizer of α in G, and
note that C ⊆ T because α is C-invariant, and thus Cg ⊆ T g. Also, C stabilizes β,
and since the stabilizer of β = αg is T g, we have C ⊆ T g.

Each of C and Cg is a Carter subgroup of T g, so for some element x ∈ T g, we
have Cgx = C. Then gx ∈ NG(C) = C ⊆ T , and thus α = αgx = βx = β, where
the final equality holds because x lies in the stabilizer T g of β. �
Proof of Theorem 3.1. If L = K, there is nothing to prove, so we can assume that
L < K, and we proceed by induction on |K : L|. Observe that K � KC, and since
K and C normalize L, we also have L � KC.

Suppose first that K/L is a chief factor of KC. Then K/L is an abelian p-
group for some prime p, and we let P and Q, respectively, be the Sylow p-subgroup
and the Hall p′-subgroup of the nilpotent group C. Write Z/L = CK/L(P ), and
observe that Z > L because P is a p-group acting on the nontrivial p-group K/L.
Also, Z � K because K/L is abelian, and furthermore, C normalizes Z because C
normalizes P . Then Z � KC, and since we are assuming that K/L is a chief factor
of KC, we deduce that Z = K, and thus P acts trivially on K/L. Now C = PQ, so
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CK/L(Q) = CK/L(C) = 1, where the second equality holds because by assumption,
K/L is an FPF section.

If θ ∈ IrrC(K), then θ is Q-invariant, and since |Q| and |K/L| are relatively
prime, it follows by Lemma 3.4 that there exists a unique Q-invariant character
ϕ ∈ Irr(L) that lies under θ. Also, since Q� C and θ is C-invariant, the uniqueness
of ϕ guarantees that ϕ is C-invariant, and that in fact, ϕ is the unique C-invariant
member of Irr(L) lying under θ. This establishes (a) in the case where K/L is a
chief factor of KC.

Similarly, given ϕ ∈ IrrC(L), it follows by Lemma 3.4 that there is a unique
Q-invariant character θ ∈ Irr(K) that lies over ϕ. Then θ is the unique C-invariant
member of Irr(K) lying over ϕ, and this establishes (b) in the case where K/L is
chief.

Now suppose that θ ∈ IrrC(K) and ϕ ∈ IrrC(L), where θ lies over ϕ. To prove
(c), we must show that ϕ has an extension to LC if and only if θ has an extension
to KC.

Since K/L is an abelian chief factor of KC and ϕ is invariant in LC, we can
apply Lemma 3.2 to conclude that one of the following occurs. Either

(a) ϕK = θ or
(b) θL = ϕ or
(c) ϕ and θ are fully ramified with respect to each other,

and we consider these possibilities in turn.
First, suppose that ϕK = θ, so L is the full stabilizer of ϕ in K, and thus LC

is the full stabilizer of ϕ in KC. By the Clifford correspondence, induction defines
a bijection from Irr(LC|ϕ) onto Irr(KC|ϕ) = Irr(KC|θ). We argue that if this
induction map carries ξ ∈ Irr(LC) to χ ∈ Irr(KC), then ξ is an extension of ϕ if
and only if χ is an extension of θ. To see this, observe that χ(1) = |KC : LC|ξ(1) =
|K : L|ξ(1), and θ(1) = |K : L|ϕ(1), so χ(1)/θ(1) = ξ(1)/ϕ(1), and thus ξ extends
ϕ if and only if χ extends θ, as claimed. It follows from this that ϕ has an extension
to LC if and only if θ has an extension to KC, as required.

Next, suppose that θL = ϕ. By [6, Lemma 2.11(a)], it follows that restriction
defines a bijection from Irr(KC|θ) onto Irr(LC|ϕ), and we argue that if this restric-
tion map carries χ ∈ Irr(KC) to ξ ∈ Irr(LC), then χ is an extension of θ if and only
if ξ is an extension of ϕ. To see this, observe that χ(1) = ξ(1) and θ(1) = ϕ(1),
so χ(1)/θ(1) = ξ(1)/ϕ(1), and thus χ is an extension of θ if and only if ξ is an
extension of ϕ, as claimed. It follows from this that θ has an extension to KC if
and only if ϕ has an extension to LC, as required.

The remaining possibility is that θ and ϕ are fully ramified with respect to each
other. Since K/L is an FPF section, we see by Lemma 2.1 that K ∩ LC = L,
and thus LC/L is a complement for K/L in KC/L. Also, LC/L is nilpotent, so
Lemma 3.3 guarantees that θ has an extension to KC if and only if ϕ has an
extension to LC. This completes the proof of the theorem in the case where K/L
is a chief factor of KC.

We can now assume that K/L is not a chief factor, so there exists a C-invariant
subgroup M with L < M < K, and by hypothesis, K/L is an FPF section, so
Corollary 2.2 guarantees that K/M and M/L are FPF sections.

Let θ ∈ IrrC(K), so by the inductive hypothesis for (a), with M in place of L,
there exists a character α ∈ IrrC(M) such that θ lies over α. Similarly, by the
inductive hypothesis for (a) with M in place of K and α in place of θ, there exists
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a character ϕ ∈ IrrC(L) such that α lies over ϕ. Since θ lies over ϕ, this establishes
existence in (a).

By the inductive hypothesis for (c) withM and α in place of L and ϕ, we see that
θ extends to KC if and only if α extends to MC, and similarly, by the inductive
hypothesis for (c) with M and α in place of K and θ, it follows that α extends to
MC if and only if ϕ extends to LC. We conclude that θ extends to KC if and only
if ϕ extends to LC, and this proves (c).

For uniqueness in (a), suppose that ϕ0 ∈ IrrC(L) also lies under θ, and let
χ ∈ Irr(G) lie over θ. Then ϕ and ϕ0 are C-invariant and lie under χ, so by
Lemma 3.5, we have ϕ0 = ϕ, and this completes the proof of (a).

By (a), there is a well-defined map f : IrrC(K) → IrrC(L), where f(θ) is the
unique member of IrrC(L) that lies under θ, and we work next to show that f is
surjective.

Let ϕ ∈ IrrC(L) be arbitrary. By the inductive hypothesis for (b), with M in
place of K, there exists a character β ∈ IrrC(M), such that β lies over ϕ, and
similarly, by the inductive hypothesis for (b) with M in place of L and β in place
of ϕ, there exists a character θ ∈ IrrC(K) such that θ lies over β. Then θ lies over
ϕ, and since these characters are C-invariant, it follows that f(θ) = ϕ, and thus
the map f : IrrC(K) → IrrC(L) is surjective, as wanted.

By the inductive hypotheses for both (a) and (b), we have | IrrC(K)|=| IrrC(M)|=
| IrrC(L)|, and we deduce that our surjective map f is also injective.

For every member ϕ ∈ IrrC(L) we have seen that there exists a character θ ∈
IrrC(K) such that θ lies over ϕ. For each such character θ, we have f(θ) = ϕ, and
since f is injective, θ is the unique member of IrrC(K) that lies over ϕ. This proves
(b). and so the proof of the theorem is now complete. �

Corollary 3.6. Let C be a Carter subgroup of a solvable group G, and suppose
that L� K are C-invariant subgroups of G such that K/L is an FPF section. Then
KC/K ∼= LC/L, and there exists a bijection h : IrrC(L) → IrrC(K) with the
following properties.

(a) If ϕ ∈ IrrC(L) and θ ∈ IrrC(K), then h(ϕ) = θ if and only if θ lies over ϕ.
(b) If ϕ ∈ IrrC(L) and λ ∈ IrrC(K) is linear, then h(ϕλL) = h(ϕ)λ.
(c) If h(ϕ) = θ, then the numbers of extensions of ϕ to LC and θ to KC are

equal.
(d) If h(ϕ) = θ, then θ(1)/ϕ(1) is an integer dividing |K : L| = |KC : LC|.

Proof. First, since K/L is an FPF section, we see by Lemma 2.1 that K ∩LC = L.
Then KC/K = K(LC)/K ∼= LC/(K ∩ LC) = LC/L, and this proves the first
assertion.

Now given ϕ ∈ IrrC(L), it follows by Theorem 3.1(b) that ϕ lies under a unique
member θ of IrrC(K). Thus ϕ 
→ θ defines a map h : IrrC(L) → IrrC(K). and by
Theorem 3.1(a), this map is a bijection, proving (a).

For (b), observe that if λ ∈ IrrC(K) is linear and ϕ ∈ IrrC(L), then ϕλL lies
in IrrC(L), and this character lies under h(ϕ)λ. Then h(ϕλL) = h(ϕ)λ by (a), as
required.

Now assume that h(ϕ) = θ, where ϕ ∈ IrrC(L) and θ ∈ IrrC(K). Then θ lies
over ϕ, so it follows by Theorem 3.1(c), that ϕ is extendible to LC if and only if θ
is extendible to KC. If the number of extensions of ϕ to LC is 0, therefore, then
the number of extensions of θ to KC is also 0, and (c) holds in this case.
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We can now assume that ϕ has an extension to LC, and thus θ has an extension
to KC. It follows by the Gallagher correspondence ([4, Corollary 6.17]) that the
number of extensions of ϕ to LC is equal to the number of linear characters of
LC/L, and similarly, the number of extensions of θ to KC is equal to the number
of linear characters of KC/K. Assertion (c) now follows because we have seen that
LC/L ∼= KC/K.

Now for (d), observe that θ ∈ Irr(K) lies over ϕ ∈ Irr(L) and L� K, so it follows
that θ(1)/ϕ(1) is an integer divisor of |K : L|. Also, since LC/L ∼= KC/K, we
have |LC||K| = |KC||L|, and thus |K : L| = |KC : LC|, completing the proof of
(d). �

Before we state our next result, we introduce some new notation. If H ⊆ G, we
write

Irr(G‖H) = {χ ∈ Irr(G) | χH is irreducible} .
Thus, for example, Irr(G‖G) = Irr(G), and Irr(G‖1) = Lin(G). Also, we observe
that if H ⊆ K ⊆ G, then Irr(G‖H) ⊆ Irr(G‖K).

Corollary 3.7. Let C be a Carter subgroup of a solvable group G, and suppose that
L� K are C-invariant subgroups of G such that K/L is an FPF section. Then there
exists a (not necessarily unique) bijection k : Irr(LC‖L) → Irr(KC‖K), having the
following properties.

(a) If k(ξ) = χ, then h(ξL) = χK , where h : IrrC(L) → IrrC(K) is the bijection
of Corollary 3.6, and so in particular, ξL lies under χK .

(b) Let S ⊆ Irr(LC‖L) be a subset that is closed under multiplication by linear
characters of LC, and write T = k(S). Then T is closed under multiplica-
tion by linear characters of KC.

(c) Let T = k(S), where as in (b), the set S is closed under multiplication by
linear characters of LC. Then although k is not necessarily unique, the set
T is uniquely determined by S.

(d) If k(ξ) = χ, then χ(1)/ξ(1) is an integer divisor of |K : L| = |KC : LC|.

Proof. Observe that Irr(LC‖L) is exactly the set of extensions to LC of irreducible
characters ϕ ∈ IrrC(L), and similarly, Irr(KC‖K) is the set of extensions to KC
of irreducible characters θ ∈ IrrC(K).

Now let h : IrrC(L) → IrrC(K) be the bijection of Corollary 3.6, and suppose
that h(ϕ) = θ. It follows by Corollary 3.6 that the sets

{ξ ∈ Irr(LC) | ξL = ϕ} and {χ ∈ Irr(KC) | χX = θ}
have equal cardinality, so there exists a bijection from the first of these sets onto the
second. We can construct a map k : Irr(LC‖L) → Irr(KC‖K) by piecing together
these bijections over all pairs ϕ and θ such that h(ϕ) = θ, and we see that k is a
bijection, as required.

Now let k(ξ) = χ, where ξ ∈ Irr(LC‖L) and χ ∈ Irr(KC‖K), and write ϕ = ξL
and θ = χK . Then ϕ and θ are irreducible, and h(ϕ) = θ by the construction of
the map k, and this proves (a).

Suppose now that S ⊆ Irr(LC‖L), where S is closed under multiplication by
linear characters of LC, and let T = k(S). Let χ ∈ T and let λ be a linear
character of KC, so to prove (b), we must show that χλ lies in T .

Since χ ∈ T = k(S), we have χ = k(ξ) for some character ξ ∈ S. Write θ = χK

and ϕ = ξL, so θ = h(ϕ) by (a). Also, (χλ)K = θλK , and this character is
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irreducible, so χλ lies in Irr(KC‖K). Since the map k is surjective, there exists a
character η ∈ Irr(LC‖L) such that k(η) = χλ, and so to prove that χλ lies in T , it
suffices to show that η lies in S.

Now k(η) = χλ, and so h(ηL) = (χλ)K = θλK . Also, h(ϕ) = θ, so h(ϕλL) =
h(ϕ)λK = θλK by Corollary 3.6(b). Then h(ηL) = θλK = h(ϕλL), and since h is
injective, we deduce that ηL = ϕλL.

Also, since ξL = ϕ, we have (ξλLC)L = ϕλL, and we see that η and ξλLC are
irreducible characters of LC that have equal irreducible restrictions to L. By the
Gallagher correspondence, therefore, there exists a linear character ν of LC/L such
that η = ξλLCν.

Now recall that ξ ∈ S, and by hypothesis, S is closed under multiplication by
linear characters of LC. It follows that η lies in S, and thus k(η) lies in T , as
required.

For (c), we must show that T is uniquely determined by S, or in other words,
that if we replace k by some other bijection k′ that also satisfies (a), then this
replacement leaves the set T unchanged. We must show, in other words, that
k(S) = k′(S).

To see this, observe that if ξ ∈ S, then each of the characters k(ξ) and k′(ξ) is
an extension of h(ξL) to KC. Then k′(ξ) = k(ξ)ν for some linear character ν of
KC/K, and since we have shown that T is closed under multiplication by linear
character of KC, it follows that k(ξ) lies in T if and only k′(ξ) lies in T , as required.

Finally for (d), note that if k(ξ) = χ, then writing ξL = ϕ and χK = θ, we
have h(ϕ) = θ, and thus χ(1)/ξ(1) = θ(1)/ϕ(1), and this is an integer divisor of
|KC : LC| = |K : L| by Corollary 3.6(d). �

4. Carter chains

Fix a Carter subgroup C of a solvable group G, and suppose that C < G, or
equivalently, that G is not nilpotent. Write K = G∞, so by Corollary 2.3 there
exists a subgroup L � G, where L < K, and K/L is an FPF section of G. Write
U = LC, and observe that K ∩ U = L by Lemma 2.1, and since L < K, we have
U < G.

Now C is a Carter subgroup of U , and if C < U , we can repeat this construction
with U in place of G, and this yields a subgroup V with G > U > V ⊇ C. We can
continue like this to obtain a strictly decreasing chain of subgroups

G = U0 > U1 > · · · > Um = C ,

and we refer to {Ui | 0 ≤ i ≤ m} as a Carter chain for G of length m, and
descending to the Carter subgroup C.

Note that at each step in the construction of a Carter chain for G, we must choose
a normal subgroup L of G as in Corollary 2.3. There is no requirement, however,
that we must use the algorithm of the proof of Corollary 2.3 (or any other specific
algorithm) so in general, there may be several different Carter chains for a given
group G, and descending to a given Carter subgroup C, and these chains may have
different lengths. We can, of course, standardize the construction process, using
some specific algorithm (such as the one described in our proof of Corollary 2.3)
and if we did this, we would obtain a “canonical” Carter chain. As we shall see,
however, this standardization is not necessary.
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Given an arbitrary (but fixed) Carter chain {Ui} for G, we will define a family
of injective maps f : Lin(C) → Irr(G), depending on the chain {Ui}, and we shall
show that the image f(Lin(C)) does not depend on the choice of the map f in the
family. Perhaps more surprisingly, we shall see that the image set f(Lin(C)) does
not depend on the particular Carter chain {Ui}, and that is why there is little to
be gained by standardizing the construction of a Carter chain.

Consider a consecutive pair of subgroups Ui > Ui+1 in a Carter chain of length
m descending to a Carter subgroup C of a solvable group G. By the construction
of the chain, there are normal subgroups Li < Ki of Ui, where Ki = (Ui)

∞ and
Ki/Li is an FPF section of Ui, and such that Ui+1 = LiC. Note that since C is a
Carter subgroup of Ui and Ui/Ki is nilpotent, we have Ui = KiC. By Corollary 3.6,
therefore, we have Ui/Ki

∼= Ui+1/Li, and it follows that Ui+1/Li is nilpotent, and
thus Ki+1 ⊆ Li. Also, by Corollary 3.7, there is a bijection ki : Irr(Ui+1‖Li) →
Irr(Ui‖Ki).

Holding the Carter chain {Ui | 0 ≤ i ≤ m} fixed, we recursively define sub-
sets Si of Irr(Ui‖Ki), starting with i = m and proceeding to i = 0. We set
Sm = Irr(Um‖Km) = Irr(C‖1) = Lin(C). Then, assuming that we have already
defined the subset Si+1 ⊆ Irr(Ui+1‖Ki+1), and observing that Irr(Ui+1‖Ki+1) ⊆
Irr(Ui+1‖Li), we can apply the map ki to Si+1, and we define Si = ki(Si+1). Then
Si ⊆ Irr(Ui‖Ki), as wanted.

By composing the maps ki, we obtain an injective map f : Lin(C) → Irr(G), and
we note that this actually yields a family of maps f because the ki are not uniquely
determined in Corollary 3.7.

Next, we study the image f(Lin(C)), where f is one of the maps in the family
we have defined. First, we see that f maps Lin(C) onto the set S0 ⊆ Irr(U0‖K0) =
Irr(G‖K), where K = G∞, and thus for each character ψ ∈ f(Lin(C)), we see that
ψK is irreducible.

To compute the degrees of the characters in f(Lin(C)), let ψ = f(λ), where
λ ∈ Lin(C) and as before, let Ki = (Ui)

∞. Define the characters ψi ∈ Irr(Ui‖Ki)
by setting ψm = λ, and for i < m, set ψi = ki(ψi+1), so ψ0 = ψ. Writing di = ψi(1),
we have

ψ(1) =
ψ(1)

λ(1)
=

d0
dm

=
d0
d1

d1
d2

· · · dm−1

dm
.

For notational convenience, write ξ = ψi+1 and χ = ψi and k = ki. Then χ = k(ξ),
and di/di+1 = χ(1)/ξ(1). By Corollary 3.7(d), this number divides |Ui : Ui+1|, and
it follows that ψ(1) divides

|U0 : U1||U1 : U2| · · · |Um−1 : Um| = |U0 : Um| = |G : C| .

We have now proved the following.

Theorem 4.1. Let C be a Carter subgroup of a solvable group G, and write K =
G∞. Then there exists a (not necessarily unique) injective map f from Lin(C) into
the set of characters χ ∈ Irr(G) such that χK is irreducible, and furthermore, the
degree of each member of f(Lin(C)) divides |G : C|.

We have not yet shown, however, that the set f(Lin(C)) does not depend on the
construction of the map f , so Theorem 4.1 is only a weak form of Theorem A of the
introduction. We have proved everything in Theorem A except for the uniqueness
of the image set f(Lin(C)), and in particular, we have now proved Corollary B.
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In general, the map f of Theorem 4.1 fails to be unique for two distinct reasons:
the maps ki are not necessarily unique, and the construction of the map f depends
not only on the ki but also on a choice of a particular Carter chain for G. It is
comparatively easy to see that the ambiguity in the maps ki does not affect the
image set f(Lin(C)), but the fact that f(Lin(C)) does not depend on the choice of
the Carter chain seems deeper, and we defer that proof to Section 5.

To prove that the choices of the maps ki do not affect the image set f(Lin(C)),
recall that once we have chosen a Carter chain, our definition of the map f involved
constructing subsets Si of Irr(Ui‖Ki), where Sm = Lin(C) and Si = ki(Si+1) for
i < m. Now observe that Sm is unambiguously defined, and it is invariant under
multiplication by linear characters of C = Um. It follows by repeated application of
Corollary 3.7(b) and (c) that all of the sets Si are invariant under multiplication by
linear characters, and thus all of these sets are uniquely determined. In particular,
S0 = f(Lin(C)) is uniquely determined. (We stress that we have established this
uniqueness only when a particular Carter chain has been fixed.)

Because it is possible to make an unambiguous choice of a Carter chain by con-
sistently using a specified algorithm to produce the normal subgroup L of Corol-
lary 2.3, we can define the image set f(Lin(C)) in some unique way. This is still
weaker than Theorem A, however, because it requires choosing an algorithm.

5. Composition series and head characters

In proving Theorem 4.1, we constructed injective maps f : Lin(C) → Irr(G),
and in this section, we show that all of these maps have the same image, and we
present a characterization of this image, expressed in terms of C-composition series
for G

Let C be a Carter subgroup of a solvable group G, and let {Si | 0 ≤ i ≤ r} be a
C-composition series for G. Observe that by the Jordan-Hölder theorem, together
with the fact that all Carter subgroups of G are conjugate, it follows that the
composition length r is an invariant of G.

Now choose C-invariant characters θi ∈ Irr(Si), and suppose that θi lies under
θi+1 for 0 ≤ i < r. In this situation, we say that {(Si, θi) | 0 ≤ i ≤ r} is a
C-pair series for G, and we say that this C-pair series is associated with the
C-composition series {Si}. Also, we say that a C-pair series {(Si, θi) | 0 ≤ i ≤ r}
for G is strong if each of the characters θi is extendible to SiC

If {(Si, θi) | 0 ≤ i ≤ r} is a strong C-pair series for G, we say that θr is the
head character of the C-pair series {(Si, θi)}. (We have chosen the word “head”
to describe the character θr because θr occurs at the top, or head, of the series.)
Also, given a character χ ∈ Irr(G), we say that χ is a head character of G if it
appears as the head character of some strong C-pair series for G, and we observe
that the set of head characters of G is independent of the choice of a particular
Carter subgroup C because the Carter subgroups of G are conjugate.

If λ is a linear character of G, then λ is automatically a head character. To see
this, let {Si | 0 ≤ i ≤ r} be an arbitrary C-composition series for G, and let θi be
the restriction of λ to Si. Now {(Si, θi)} is clearly a strong C-pair series, and since
θr = λ, we see that λ is a head character of G, as claimed.

If G is nilpotent, then conversely, every head character of G is linear. To prove
this, let {(Si, θi) | 0 ≤ i ≤ r} be a strong C-pair series for G, and observe that
G is a Carter subgroup for G, so all of the subgroups Si are normal in G, and all
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of the characters θi are G-invariant. Also, the index |Si+1 : Si| is prime for all i,
and it follows easily by downward induction on i that the restriction of the head
character θr to Si is exactly θi. Then θr(1) = θ0(1) = 1, and so the head character
θr is linear, as claimed.

We will show that the head characters of an arbitrary solvable group G are
exactly the members of the image set f(Lin(C)), where f is any of the injective
maps constructed as in Theorem 4.1.

Lemma 5.1. Let C be a Carter subgroup of a solvable group G, and suppose that
S/T is a C-composition factor of G. Also, let σ ∈ Irr(S) lie over τ ∈ Irr(T ), and
suppose that σ and τ are extendible to SC and TC, respectively. Then τ is the
unique C-invariant irreducible character of T lying under σ, and if S/T has type
TA, then σT = τ .

Proof. Since σ and τ extend to SC and TC, these characters are C-invariant. If
S/T is of type FPF, then Theorem 3.1 guarantees that τ is the unique C-invariant
member of Irr(T ) lying under σ, as required. Otherwise, S/T is of type TA, so
T ⊆ S ⊆ TC by Lemma 2.4. Since τ extends to TC, it follows that τ extends to
S, and because S/T is abelian, we conclude by the Gallagher correspondence that
every member of Irr(S) that lies over τ is an extension of τ , and thus σT = τ , and
the proof is complete. �

The following is an immediate consequence of Lemma 5.1.

Corollary 5.2. Let C be a Carter subgroup of a solvable group G, and let {(Si, θi) |
0 ≤ i ≤ r} be a strong C-pair series with for G. Then the head character θr uniquely
determines all of the characters θi.

Next, we state our principal result concerning head characters.

Theorem 5.3. Let C be a Carter subgroup of a solvable group G, and let χ ∈
Irr(G). Then the following are equivalent.

(a) χ lies in the image of the injective map f of Theorem 4.1.
(b) χ is a head character of G.
(c) Every C-composition series {Si | 0 ≤ i ≤ r} for G is associated with a

unique strong C-pair series {(Si, θi)}, such that the head character θr is
the given character χ.

Observe first that it is a triviality that assertion (c) of Theorem 5.3 implies
assertion (b). To see this, let {Si | 0 ≤ i ≤ r} be an arbitrary C-composition series
for G. By (c) there is a strong C-pair series {(Si, θi)} associated with {Si} such
that θr = χ. By definition, therefore, χ is the head character of {(Si, θi)}, and so
χ is a head character of G. To prove that (b) implies (c), however, is much more
difficult, and we need the following technical result.

Lemma 5.4. Let C be a Carter subgroup of a solvable group G, and suppose that
K/L is an FPF section of G with respect to C. Let θ ∈ Irr(K) lie over ϕ ∈ Irr(L),
where θ and ϕ are extendible to KC and LC, respectively. Also let X/K and Y/L
be C-composition factors of G, where K ∩ Y = L and KY = X, and assume that
Y/L is of type TA. Finally, let α ∈ IrrC(X) lie over β ∈ IrrC(Y ). Then α lies over
θ if and only if β lies over ϕ.
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Proof. Since Y/L is a C-composition factor, of type TA, it follows by Lemma 2.4
that L ⊆ Y ⊆ LC. By assumption, ϕ is extendible to LC, so ϕ has a C-invariant
extension ϕ̂ ∈ Irr(Y ), and by Gallagher’s theorem, every irreducible character of Y
that lies over ϕ has the form ϕ̂λ for some character λ ∈ Irr(Y/L). Also, since C
acts trivially on Y/L, we see that λ is C-invariant, and it follows that every member
of Irr(Y |ϕ) is C-invariant.

Now X/K and Y/L are C-isomorphic, and we are assuming that Y/L is a TA
factor, so X/K is also a TA factor, and since θ extends to KC by hypothesis,
reasoning similar to that in the previous paragraph shows that every member of
Irr(X|θ) is C-invariant.

Next, observe that X/Y is C-isomorphic to K/L, so X/Y is an FPF section.
By Theorem 3.1, therefore, each member of IrrC(X) lies over a unique member of
IrrC(Y ), and each member of IrrC(Y ) lies under a unique member of IrrC(X). In
particular, β is the unique member of IrrC(Y ) that lies under α, and furthermore,
α is the unique member of IrrC(X) that lies over β.

Now suppose that α lies over θ. Then α lies over ϕ, so some irreducible con-
stituent β0 of αY lies over ϕ. Then β0 is C-invariant, and the uniqueness of β
guarantees that β = β0, and thus β lies over ϕ, as required.

Conversely now, assume that β lies over ϕ. Then

[(βX)K , θ] = [(βL)
K , θ] = [βL, θL] > 0 ,

where the final inequality is strict because β and θ each lie over ϕ ∈ Irr(L). It
follows that some irreducible constituent α0 of βX lies over θ, and hence α0 is C-
invariant. Then α0 = α by the uniqueness of α, and we conclude that α lies over
θ, as required. �

Theorem 5.5 shows that (b) implies (c) in Theorem 5.3.

Theorem 5.5. Let C be a Carter subgroup of a solvable group G, and suppose
{Ti | 0 ≤ i ≤ r} is an arbitrary C-composition series for G. Also, let χ ∈ Irr(G) be
a head character of G. Then the series {Ti} is associated with some unique strong
C-pair series {(Ti, ϕi)|0 ≤ i ≤ r} having head character χ.

Proof. By assumption, χ is a head character of G, so by definition, there exists a
strong C-pair series {(Si, θi) | 0 ≤ i ≤ r} for G with respect to C, where θr = χ.
Our goal is to show that there exist characters ϕi ∈ Irr(Ti), where ϕr = χ, and
such that {(Ti, ϕi)} is a strong C-pair series for G with respect to C. This will
establish existence in the statement of the theorem; the uniqueness then follows by
Corollary 5.2.

Now, Sr = G = Tr, so there is a unique smallest nonnegative integer m such
that Si = Ti for all subscripts i with m ≤ i ≤ r. If m = 0, then Ti = Si for all
i, so we can take ϕi = θi, and there is nothing further to prove. We can assume,
therefore, that m > 0, and we proceed by downward induction on m.

Now Sm = Tm and Sm−1 �= Tm−1, and since S0 = 1 = T0, we have m − 1 > 0,
and thus m ≥ 2. For notational simplicity, we define M = Sm = Tm and we write
U = Sm−1 and V = Tm−1, so U and V are nontrivial and distinct, and we write
D = U ∩ V .

Now M/U and M/V are C-composition factors of G, so U and V are maximal
among C-invariant normal subgroups of M , and since U �= V , we have UV = M .
Then U/D is C-isomorphic to M/V , and thus U/D is a C-composition factor of G,
and similarly, V/D is a C-composition factor of G.
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The C-composition length of U = Sm−1 is m − 1, and it follows that the C-
composition length of D is m− 2, so we can choose a C-composition series

1 = D0 � D1 � · · · � Dm−2 = D

for D. Observe that if we append the subgroups Si for m− 1 ≤ i ≤ r to the series
{Di}, we obtain a new C-composition series for G. Writing {Ni} to denote this
series, we see that Ni = Di if 0 ≤ i ≤ m − 2, and Ni = Si if m − 1 ≤ i ≤ r. In
particular, we have Nm−1 = Sm−1 = U and Nm−2 = Dm−2 = D.

We can now apply the inductive hypothesis with the series {Ni} in place of {Ti}
and with m − 1 in place of m. We conclude that the series {Ni} is associated
with some strong C-pair series with head character χ. Also, if i ≥ m, we have
Ti = Si = Ni, so there is no loss if we replace the series {Si} with the series
{Ni}. We can thus assume that Ni = Si for all i, and in particular, we have
D = Dm−2 = Nm−2 = Sm−2. (Note that the original series {Si} is now irrelevant.)

Next, we create yet another C-composition series for G. To do this, we modify
the series {Si} by replacing the term Sm−1 = U with the subgroup V . To see
that this actually does yield a C-composition series, it suffices to observe that
Sm−2 = D � V � M = Sm, and that V/D is C-isomorphic to the C-composition
factor M/U = Sm/Sm−1 and M/V is the C-composition factor Tm/Tm−1. Writing
{Xi} to denote this new series, we observe that Xi = Si for i �= m − 1 and
Xm−1 = V .

Our next goal is to show that the C-composition series {Xi} is associated with a
strong C-pair series with head character χ. Assuming for the moment that this has
been accomplished, we note that Ti = Si = Xi for i ≥ m, and Tm−1 = V = Xm−1,
and thus we can apply the inductive hypothesis with {Xi} in place of {Si} and with
m− 1 in place of m. We conclude that the C-composition series {Ti} is associated
with a strong C-pair series with head character χ, as required.

To complete the proof of the theorem, therefore, we seek characters βi ∈ Irr(Xi)
with βr = χ, and such that {(Xi, βi)} is a strong C-pair series. Recall that if
i �= m − 1, we have Xi = Si, so we can set βi = θi for these subscripts i. Since
Xm−1 = V , it suffices to find a suitable character β ∈ Irr(V ), so that we can set
βm−1 = β.

To state the conditions that β ∈ Irr(V ) must satisfy, it is convenient to write
α = θm and γ = θm−2, so α ∈ Irr(M) and γ ∈ Irr(D).

The conditions on β are thus as follows:

(1) β is extendible to V C,
(2) β lies under α and
(3) β lies over γ.

Also, for further notational convenience, we write θ = θm−1, so θ ∈ Irr(U). Observe
that each of the pairs (M,α), (U, θ) and (D, γ) is one of the terms of the strong
C-pair series {(Si, θi)}, so α, θ and γ extend to MC, UC and DC, respectively,
and also, α lies over θ and θ lies over γ,

Now M/U and U/D are C-composition factors, so each of them is either of type
TA or type FPF. Also V/D is C-isomorphic to M/U and M/V is C-isomorphic to
U/D, so there are a total of four distinct cases that must be considered.

Suppose first that M/U is of type TA. It follows by Lemma 5.1 that αU = θ.
Similarly, if U/D is also of type TA, then θD = γ, and hence αD = γ. In particular,
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αD is irreducible, so αV is irreducible, and we take β = αV . Then βD = γ, and
hence conditions (2) and (3) hold.

Now α extends to MC, and since αV = β, it follows that β extends to MC. Also,
M/V is of type TA because it is C-isomorphic to U/D, so Lemma 2.4 guarantees
that V C = MC. Then β extends to V C, and condition (1) is satisfied, so the proof
is complete in this case.

Continuing to assume that M/U is of type TA, suppose now that U/D is of type
FPF, so M/V is also of type FPF. Since α extends to MC, Theorem 3.1 guarantees
that αV has a unique irreducible constituent that extends to V C, and we take β to
be this constituent, so conditions (1) and (2) are satisfied. To complete the proof in
this case, therefore, we must verify that β lies over γ, and we will use Lemma 5.4 to
accomplish this, with U , D, M and V in the roles of K, L, X and Y , respectively.

To check that the hypotheses of Lemma 5.4 are satisfied, recall that UV = M ,
that U ∩V = D, and that U/D is an FPF factor, as required. Also, θ and γ extend
to UC and DC. respectively, and θ lies over γ. Now M/U is of type TA so V/D
is also of type TA. Also, α is C-invariant, and by the choice of β, we know that α
lies over β and β extends to V C, so β is C-invariant.

We can now apply Lemma 5.4, to deduce that α lies over θ if and only if β
lies over γ. We know, however, that α does lie over θ, so β lies over γ, and thus
condition (3) holds. This completes the proof in the case where M/U is of type
TA.

We can now assume that M/U is type FPF. Then V/D is also of type FPF, and
since γ ∈ Irr(D) extends to DC, Theorem 3.1 guarantees that there is a unique
member of Irr(V ) that lies over γ and extends to V C, and we take β to be this
character. Conditions (1) and (3) on β are thus satisfied, so it suffices to verify
condition (2), so we argue that β lies under α.

Continuing to assume that M/U is of type FPF, we suppose now that U/D is
also of type FPF. By Corollary 2.2, we see that M/D is an FPF section, and since
α and γ are C-invariant and α lies over γ, it follows by Theorem 3.1 that α is the
unique C-invariant irreducible character of M that lies over γ. Theorem 3.1 also
guarantees the existence of a C-invariant irreducible character α0 of M that lies
over β, and since β lies over γ, we see that α0 lies over γ, and thus α0 = α. Then
α lies over β, and thus condition (2) is satisfied, so in this case too, the proof is
complete.

Finally, we can assume that U/D is of type TA, and we recall that we have
defined β ∈ Irr(V ) so that conditions (1) and (3) are satisfied, so it remains to
verify condition (2), which, we recall, asserts that α lies over β. To accomplish this,
we apply Lemma 5.4 once again, but this time, with V , D, M and U in the roles
of K, L, X and Y , respectively.

To check the hypotheses of Lemma 5.4, observe that V/D is C-isomorphic to
M/U , so V/D is an FPF factor. Also, β lies over γ and β and γ extend to V C
and DC, respectively. Also U/D is of type TA, so M/V is also of type TA, and we
recall that α and θ are C-invariant and α lies over θ, so we can apply Lemma 5.4.

Since θ lies over γ, it follows that α lies over β and the proof is complete. �

To complete the proof of Theorem 5.3, we must show that the set of head char-
acters of a solvable group G is exactly the image of any one of the not-necessarily-
unique injective maps f of Theorem 4.1. We recall that to constuct f , we start
with an arbitrary Carter chain {Ui | 0 ≤ i ≤ m} for G, where U0 = G and Um is
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a Carter subgroup C. Next, a collection of subsets Si ⊆ Irr(Ui) is defined, where
Sm = Lin(C) and Si = ki(Si+1) for i < m, where ki is as in Corollary 3.7 and the
image set f(Lin(C)) is exactly S0.

Now C is nilpotent, so as we have seen, the set of head characters of C is
Lin(C) = Sm. To show that the set of head characters of G is f(Lin(C)) = S0,
therefore, it suffices to observe that for each subscript i with 0 ≤ i ≤ m, the set
Si is exactly the set of head characters of Ui. Since Si = ki(Si+1), this follows by
repeated application of the following.

Lemma 5.6. Let C be a Carter subgroup of a solvable group G, and suppose
that K/L is an FPF section of G with respect to C. Also, let k : Irr(LC‖L) →
Irr(KC‖K) be the (not necessarily unique) bijection of Corollary 3.7. Then k car-
ries the set of head characters of LC onto the set of head characters of KC.

To prove this, we begin with a preliminary result.

Corollary 5.7. Let χ ∈ Irr(G) be a head character, where G is solvable, and
suppose that K � G and G/K is nilpotent. Then χK is irreducible.

Proof. Let C be a Carter subgroup ofG, and let {Ti | 0 ≤ i ≤ r} be a C-composition
series for G, where K is one of the subgroups Ti, say K = Ta. Since χ is a head
character of G, Theorem 5.5 guarantees that there exists a strong C-pair series
{(Ti, θi)}, where θr = χ.

Since G/K is nilpotent, we have G = KC, and it follows by Lemma 2.4 that
every C-composition factor between K and KC = G is of type TA. In particular,
each of the factors Ti+1/Ti for i ≥ a is of type TA, and hence Lemma 5.1 guarantees
that θi+1 restricts irreducibly to Ti for i ≥ a. SinceK = Ta and χ = θr, we conclude
that χK is irreducible, as wanted. �
Proof of Lemma 5.6. Let {Ti | 0 ≤ i ≤ n} be a C-composition series for KC
such that L and K appear among its terms, say L = Ta and K = Tb, where
0 ≤ a ≤ b ≤ n, and let {Si | 0 ≤ i ≤ m} be a C-composition series for LC such
that Si = Ti for 0 ≤ i ≤ a. Also, observe that for a ≤ i ≤ m, we have SiC = LC,
and for b ≤ i ≤ n, we have TiC = KC.

Suppose first that ξ is a head character of LC. Since LC/L is nilpotent, it
follows by Corollary 5.7 that ξL is irreducible, so ξ ∈ Irr(LC‖L), and we write
ϕ = ξL. Then k(ξ) is defined and lies in Irr(KC‖K), and we write χ = k(ξ) and
θ = χK , so θ is irreducible. Also, θ = h(ϕ) by Corollary 3.7, and thus θ is the
unique C-invariant irreducible character of K that lies over ϕ.

We must show that χ is a head character of KC, so it suffices to find characters
θi ∈ Irr(Ti) such that {(Ti, θi) | 0 ≤ i ≤ n} is a strong C-pair series for KC with
θn = χ. We require, therefore, that θi is extendible to TiC for all i, and we also
require that θi lies under θi+1 for i < n.

By assumption, ξ is a head character of LC, so it follows by Theorem 5.5 that
there exist characters ϕi ∈ Irr(Si) such that {(Si, ϕi) | 0 ≤ i ≤ m} is a strong
C-pair series for LC, where ϕm = ξ. Now m ≥ a, so ξ = ϕm lies over ϕa, and since
Ta = L and ξL = ϕ, we see that ϕa = ϕ.

To define the characters θi, suppose first that 0 ≤ i ≤ a. Then Ti = Si, so we can
set θi = ϕi, and in particular, θa = ϕa = ϕ. Also, since {(Si, ϕi)} is a strong C-pair
series, it follows for subscripts i such that 0 ≤ i ≤ a that θi = ϕi is extendible to
SiC = TiC, as required. Also, if i < a, then θi+1 = ϕi+1 lies over ϕi = θi, as is
also required.
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Now θa = ϕ, and θa is extendible to the character ξ of LC = TaC. Working
by induction on i, we proceed to define θi ∈ Irr(Ti) for a < i ≤ b such that θi is
extendible to TiC.

Suppose that we have already defined θi−1 ∈ Irr(Ti−1), where a < i ≤ b, and
where θi−1 is extendible to Ti−1C. Observe that Ti/Ti−1 is a C-composition factor
between L = Ta and K = Tb, so Ti/Ti−1 is of type FPF. Since θi−1 is extendible
to Ti−1C, it follows by Theorem 3.1 that there is a unique irreducible character of
Ti that lies over Ti−1 and extends to TiC, and we let θi be this character.

We have now defined θi for all subscripts i with a ≤ i ≤ b, and where θi is
extendible to TiC, as is required. Furthermore, for a ≤ i < b, we see that θi+1 lies
over θi, as is also required.

Now θb is a C-invariant character of Tb = K, and θb lies over θa = ϕ. Then θb = θ
because as we have observed, θ is the unique C-invariant irreducible character of
K that lies over ϕ.

Finally, to define θi for b ≤ i ≤ n, recall that K = Tb and that χK = θ is
irreducible. Then χTi

is irreducible for b ≤ i ≤ n, so we can set θi = χTi
for i in

this range. In particular, this yields θb = χTb
= χK = θ, so this is consistent with

our earlier definition of θb, and furthermore, we have θn = χ. Now for b ≤ i ≤ n,
we have TiC = KC, so θi = χTi

is extendible to the character χ of TiC. Also, for
b ≤ i < n, we see that θi+1 lies over θi, as required.

We see now that {(Ti, θi) | 0 ≤ i ≤ n} is a strong C-pair series for KC with
θn = χ, and thus χ is a head character of KC, as wanted.

Conversely now, suppose that χ is a head character of KC. Then χK is irre-
ducible by Corollary 5.7, so χ ∈ Irr(KC‖K), and we write θ = χK . Since k maps
Irr(LC‖L) onto Irr(KC‖K), there exists a character ξ ∈ Irr(LC‖L) such that
k(ξ) = χ. Also, ξL is irreducible because χ ∈ Irr(LC‖L), and we write χL = ϕ.
Then h(ϕ) = θ by Corollary 3.7. and thus ϕ is the unique C-invariant character of
L that lies under θ.

To complete the proof, it suffices to show that ξ is a head character of LC, so
we seek characters ϕi ∈ Irr(Si) with ϕm = ξ, and such that {(Si, ϕi) | 0 ≤ i ≤ m}
is a strong C-pair series for LC. In particular, we require ϕi to be extendible to
SiC for all i and we also require that ϕi lies under ϕi+1 if i < m.

Since χ is a head character of KC, it follows by Theorem 5.5 that there exist
characters θi ∈ Irr(Ti), where θn = χ, and such that {(Ti, θi) | 0 ≤ i ≤ n} is a
strong C-pair series for KC. In particular, θb lies under θn = χ, and since Tb = K
and χK = θ, we see that θb = θ.

To define the characters ϕi, suppose first that 0 ≤ i ≤ a. Then Si = Ti, so
we can set ϕi = θi, and thus ϕi is extendible to TiC = SiC because {(Ti, θi)} is a
strong C-pair series. Furthermore, if 0 ≤ i < a, then ϕi = θi lies under θi+1 = ϕi+1,
as required. Also ϕa = θa is a C-invariant irreducible character of Ta = L that lies
under θb = θ, and we deduce that ϕa = ϕ.

To define ϕi for a ≤ i ≤ m, recall that Sa = Ta = L, and that ξL = ϕ, where
ϕ is irreducible. Then ξSi

is irreducible for a ≤ i ≤ m, and we define ϕi = ξSi
. In

particular, this yields ϕa = ξSa
= ξL = ϕ, which agrees with our earlier definition

of ϕa. Now ϕi is extendible to the character ξ of SiC = LC for a ≤ i ≤ m. Also, if
a ≤ i < m, then ϕi+1 and ϕi are the restrictions of ξ to Si+1 and Si, respectively,
and thus ϕi lies under ϕi+1, as required. Also, since Sm = LC, we have ϕm = ξ.
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We see now that {(Si, ϕi) | 0 ≤ i ≤ m is a strong C-pair series for LC, and since
ϕm = ξ. It follows that ξ is a head character of LC. �

Now that Lemma 5.6 has been established, we have completed the proof of
Theorem 5.3.

6. Carter-nonvanishing characters

We say that a character χ of a group G is nonvanishing if for all x ∈ G, we
have χ(x) �= 0. Also, χ is Carter nonvanishing if for a Carter subgroup C of G,
the restriction χC is nonvanishing.

Clearly, every linear character is nonvanishing, and conversely, by a well-known
result of W. Burnside (see, for example, Theorem 3.15 of [5]) a nonvanishing ir-
reducible character must be linear. Also, we have seen that if G is nilpotent,
then the linear characters of G are exactly the head characters of G. This suggests
that perhaps for an arbitrary solvable group G, the Carter-nonvanishing irreducible
characters are exactly the head characters.

By Theorem 5.3, the head characters of a solvable group G are exactly the
characters χ lying in f(Lin(C)), where f is as in Theorem 4.1, and by Theorem 4.1,
the cardinality of f(Lin(C)) is |Lin(C)| = |C : C ′|. If it is true, therefore that the
head characters of G are exactly the Carter-nonvanishing characters, it would follow
that the number of Carter-nonvanishing characters χ ∈ Irr(G) is equal to |C : C ′|,
where C is a Carter subgroup of G.

Abundant computational evidence suggests that this might always be true, as
was conjectured by G. Navarro [8]. Further computer experiments indicate that not
only does it seem to be true that the number of Carter-nonvanishing irreducible
characters of G is equal to |C : C ′|, but also that these Carter-nonvanishing char-
acters of G actually are the head characters of G.

Unfortunately, we have made only slight progress in proving this, and the fol-
lowing very special case is the best we have been able to obtain so far.

Theorem 6.1. Suppose that a Carter subgroup C of a solvable group G is a maxi-
mal subgroup of G, and let χ ∈ Irr(G). Then χ is Carter nonvanishing if and only
if it is a head character.

We need some preliminary results.

Lemma 6.2. Let K � G, and let χ ∈ Irr(G), where G is solvable and K ⊆ kerχ.
Also, if χ̃ is the irreducible character if G/K defined by the formula χ̃(Kx) = χ(x),
then χ̃ is Carter nonvanishing if and only if χ is Carter nonvanishing. Also, χ̃ is
a head character of G/K if and only if χ is a head character of G.

Proof. Let C be a Carter subgroup of G, so KC/K is a Carter subgroup of G/K.
Then χ̃ is Carter nonvanishing if and only if χ̃(Kc) �= 0 for every element c ∈ C.
Since χ̃(Kc) = χ(c), this happens if and only if χ(c) �= 0 for all c ∈ C, and thus
the first assertion of the lemma is clear.

Now suppose that {Si | 0 ≤ i ≤ r} is a C-composition series for G, where K is
one of its terms, say K = Sa. Then {Si/K | a ≤ i ≤ r} is a (CK/K)-composition
series for G/K.

If χ is a head character for G, then by Theorem 5.5, there exist characters
θi ∈ Irr(Si) with θr = χ, and such that {(Si, θi) | 0 ≤ i ≤ r} is a strong C-pair
series for G. Now if a ≤ i ≤ r, then θi lies over θa, and in particular, χ lies over
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θa. Since Sa = K ⊆ kerχ, it follows that θa is principal, and thus K ⊆ ker θi. It

should now be clear that {(Si/K, θ̃i) | a ≤ i ≤ r} is a strong C-pair series for G/K,

where θ̃r = χ̃, and thus χ̃ is a head character for G/K.
Conversely, if χ̃ is a head character for G/K, then by Theorem 5.5, there exist

characters θi ∈ Irr(Si) for a ≤ i ≤ r with K ⊆ ker θi and θr = χ, and such that

{(Si/K, θ̃i) | a ≤ i ≤ r} is a strong G-pair series for G/K. Now for 0 ≤ i < a, let θi
to be the principal character of Si. Then it is easy to see that {(Si, θi) | 0 ≤ i ≤ r}
is a strong C-pair series for G, and thus χ is a head character for G. �

In order to prove Theorem 6.1, we need some conditions sufficient to guarantee
that a character value is or is not zero. The following well-known fact is such a
result, and we present the short proof here.

Lemma 6.3. Let χ be a character of G, and suppose that χ(x) = 0 for some
element x ∈ G, where the order of x is a power of a prime q. Then q divides χ(1).

Proof. We can assume that G = 〈x〉, so we can write χ as a sum of linear characters
λi for 1 ≤ i ≤ χ(1). Now λi(x) is a q-power root of unity, and thus λi(x) ≡ 1 mod
I, where I is a maximal ideal of the ring R of algebraic integers and q ∈ I, or
equivalently, I ∩ Z is the principal ideal (q) of the rational integers Z. Then

0 = χ(x) =
∑
i

λi(x) ≡
∑
i

1 = χ(1) mod I ,

and thus χ(1) ∈ I ∩ Z = (q), so q divides χ(1), as wanted. �

The following is also well known.

Lemma 6.4. Let K � G, where G/K is nilpotent, and let χ ∈ Irr(G). Then χK is
reducible if and only if there exists a subgroup H with K ⊆ H < G, and such that
χ vanishes on the elements of G−H.

Proof. Since G/K is nilpotent, it follows by [4, Theorem 6.22] that there exists a
subgroup X of G containing K and a character α of X such that αK is irreducible
and αG = χ. If χK is reducible, then χ is not α, and so X < G. Then X
is contained in some maximal subgroup H of G, and since K ⊆ H and G/K is
nilpotent, it follows that H � G. Now χ is induced from X, so it is induced from
the normal subgroup H, and thus χ vanishes on G−H, as wanted.

Conversely, suppose that there is a proper subgroup H of G such that χ vanishes
on G − H. It follows that [χH , χH ] = |G : H|[χ, χ] = |G : H| > 1, and so χH is
reducible. If K ⊆ H, therefore, we see that χK is reducible. �

Proof of Theorem 6.1. Let M = kerχ, and let χ̃ be the character of G/M corre-
sponding to χ as in Lemma 6.2. By that lemma, it suffices to show that χ̃ is a
Carter-nonvanishing character of G/M if and only if it is a head character of G/M .

Suppose first that G/M is nilpotent. Then χ̃ is Carter nonvanishing if and only
if it is nonvanishing, and that happens if and only if χ̃ is linear. Furthermore,
since we are assuming that G/M is nilpotent, χ̃ is linear if and only if it is a head
character. Then χ̃ is Carter nonvanishing if and only if it is a head character, and
there is nothing further that we must prove in this case.

We can now assume that G/M is not nilpotent, so C ⊆ MC < G. and thus
C = MC by the maximality of C. Then M ⊆ MC = C, and C/M is a Carter
subgroup of G/M . Also, C/M is a maximal subgroup of G/M , so it suffices to
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prove the theorem with G/M in place of G. We can thus assume that M = 1, and
hence χ is faithful.

Let L = coreG(C). Now L ⊆ C < G, so we can choose a chief factor K/L of
G. Then K �⊆ C, and thus KC = G by the maximality of C, so G/K is nilpotent.
We argue next that K/L is a C-composition factor. Otherwise, there exists a C-
invariant subgroup X such that L < X < K, and since K/L is abelian, X is also
K-invariant. Then X � KC = G, and this is a contradiction because K/L is a chief
factor of G.

Now L ⊆ K ∩ C < K, and K ∩ C is C-invariant. Since C acts irreducibly on
K/L, it follows that L = K ∩ C, so L ⊆ C and C/L is a complement for K/L
in G/L. If C acts trivially on K/L, then C � G, which is not the case. The C-
composition factor K/L is thus not of type TA, and hence it is of type FPF. We
can thus apply Corollary 3.7 to deduce that the map k of that lemma is a bijection
from Irr(LC‖L) onto Irr(KC‖K).

We show next that if χ is either a head character or a Carter-nonvanishing char-
acter, then χK is irreducible. If χ is a head character, this follows by Corollary 5.7
because G/K is nilpotent. Suppose now that χ is Carter nonvanishing. If χK is
not irreducible, then since G/K is nilpotent, Lemma 6.4 guarantees the existence
of a subgroup H with K ⊆ H < G, and such that χ vanishes on G−H. If C ⊆ H,
then G = KC ⊆ H < G, and this contradiction shows that in fact, C �⊆ H, and
thus there exists an element x ∈ C such that x �∈ H. Then χ(x) = 0, and this
contradicts the assumption that χ is Carter nonvanishing. We deduce that χK is
irreducible in this case too.

Our goal is to show that χ is a head character if and only if it is Carter nonva-
nishing. If χK is not irreducible, then by the result of the previous paragraph, χ
has neither of these properties, so there is nothing further that we must prove. We
can assume, therefore, that χK is irreducible, so χ ∈ Irr(G‖K) = Irr(KC‖K). By
Corollary 3.7, therefore, there exists a character ξ ∈ Irr(LC‖L) such that k(ξ) = χ

Writing θ = χK and ϕ = ξL, we see that θ and ϕ are irreducible and C-invariant,
and that θ lies over ϕ. Lemma 5.6 guarantees that χ is a head character of G if and
only if ξ is a head character of C, and since C is nilpotent, ξ is a head character of
C if and only if ξ is linear. We want to show that χ is Carter nonvanishing if and
only if ξ is linear, or equivalently, if and only if ϕ is linear.

Since K/L is an abelian chief factor of G and θ is invariant in G, we can apply
Lemma 3.2 to deduce that either θL = ϕ, or that θ and ϕ are fully ramified with
respect to each other, or that ϕK = θ and C is the stabilizer of ϕ in G.

Suppose first that θL = ϕ. Then, χL = ϕ, so if ϕ is linear, then χ is linear,
and hence χ is Carter nonvanishing. Conversely, if χ is Carter nonvanishing, then
since in this case, χL = ϕ and L ⊆ C, we see that ϕ is nonvanishing. Since ϕ is
irreducible, Burnside’s theorem guarantees that ϕ is linear, as wanted.

Next, suppose that θ and ϕ are fully ramified with respect to each other. Recall
that C/L is a complement for K/L in G/L. Also, the irreducible action of C/L on
K/L is faithful because L = coreG(K). Since C/L is nilpotent, it follows that the
unique prime divisor of |K/L| cannot divide |C/L|, and thus |G : K| and |K : L| are
relatively prime. Since χ and ξ are extensions of θ and ϕ, to G and C respectively,
we can apply Lemma 3.3(a) to deduce for elements x ∈ C that χ(x) = 0 if and only
if ξ(x) = 0. Then χ is Carter nonvanishing if and only if ξ is nonvanishing, and
since ξ ∈ Irr(C), this happens if and only if ξ is linear, or equivalently, ϕ is linear.
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Finally, suppose ϕK = θ. Assuming first that χ is Carter nonvanishing, we work
to show that ϕ is linear. Now ϕ is C-invariant, and in fact, C is the full stabilizer
of ϕ in G because ϕ induces irreducibly to K, and so the stabilizer of ϕ in G meets
K at L.

Since χ lies over ϕ, it follows by the Clifford correspondence that χ = ηG for
some character η ∈ Irr(C|ϕ). Also

ϕK = θ = χK = (ηG)K = (ηL)
K ,

and since ϕ is a constituent of ηL, we deduce that ηL = ϕ.
Now C is nilpotent and C > L, so there exists a subgroup T such that L ⊆ T � C

and |T : L| is prime. Then C ⊆ NG(T ) < G, where the final containment is strict
because otherwise T � G by the maximality of C, and this is not the case because
T > L = coreG(C).

Let τ = ηT , and observe that τL = ηL = ϕ, and so it suffices to show that τ is
linear. If this is false, the restriction of τ to the identity subgroup is reducible, and
since T is nilpotent, we can apply Lemma 6.4 to deduce that there exists a proper
subgroup H of T such that τ vanishes on T −H.

Each of the subgroups L and H is proper in T , so we cannot have T = L ∪H,
and hence there exists an element t ∈ T with t �∈ L and t �∈ H. Now t ∈ T ⊆ C,
and by assumption, χ is Carter nonvanishing, so χ(t) �= 0. We proceed now to show
that in fact, χ(t) = 0, and from this contradiction, we deduce that τ is linear, as
wanted.

Write S = KT , so S ∩ C = T , and S � G because C normalizes T . Now
τS = (ηT )

S = (ηG)S = χS , and thus we have χ(t) = τS(t). By the definition of
character induction, τS(t) is a multiple of

∑
s τ (t

s), where s runs over elements
s ∈ S such that ts lies in T .

Suppose that ts ∈ T , where s ∈ S, and recall that t �∈ L, and thus also ts �∈ L
because L�G. Since |T : L| is prime, and both t and ts lie in T but not in L, we have
〈L, t〉 = T = 〈L, ts〉. Then T s = 〈L, t〉s = 〈L, ts〉 = T , and thus s ∈ NG(T ) = C.
Then s ∈ S ∩ C = T , and hence τ (ts) = τ (t) = 0, where the final equality holds
because t �∈ H. We conclude that χ(t) = τS(t) = 0, and this completes the proof
that ϕ is linear.

Conversely now, continuing to suppose that ϕK = θ, we assume that ϕ is linear,
and we work to show that χ is Carter nonvanishing. Recall that χ is faithful and
L � G, and since χL has the linear constituent ϕ, it follows that L is abelian.

Now C > L, so |C : L| > 1. Let π be the set of those prime numbers r such that
|C : L| is not a power of r. If q �∈ π, therefore, then |C : L| is a nontrivial power of
q, and since this can occur for at most one prime, we see that most one prime can
fail to lie in π. Also, C/L is a nontrivial p′-group, so |C : L| is not a power of p,
and thus p ∈ π.

Now let r ∈ π, and let R be the unique Sylow r-subgroup of L. Let B = CG(R),
so B � G and L ⊆ B because L is abelian. Now R is an r-subgroup of the nilpotent
group C, so the Hall r′-subgroup of C centralizes R, and thus |C : B ∩ C| is a
power of r. Since r ∈ π, however, |C : L| is not a power if r, and we deduce that
B ∩ C > L, so B > L. Since B � G and L = coreG(C), it follows that B �⊆ C, and
thus BC = G by the maximality of C.

Then G/B is nilpotent, and since also G/K is nilpotent, we see that G/(K ∩B)
is nilpotent. Now L ⊆ (K ∩ B) and G/L is not nilpotent, and it follows that
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L < K ∩B ⊆ K. Since K/L is a chief factor of G, we deduce that K ∩B = K, so
K ⊆ B, and thus R ⊆ Z(K).

Now χ is faithful and χK is irreducible, and it follows that R ⊆ Z(K) ⊆ Z(χ) =
Z(G), so R ⊆ L ∩ Z(G). Now writing Z = L ∩ Z(G), we see that no prime r ∈ π
can divide |L : Z|.

Recall now that we are assuming that ϕK = θ. Since θ is irreducible and L < K,
we deduce that L is not central in G, and thus |L : Z| > 1, so there exists a prime
q dividing |L : Z|. By the result of the previous paragraph, we see that q �∈ π, and
thus q is the unique prime not lying in π, and hence |L : Z| is a power of q. Also,
we see that q �= p because p ∈ π. Furthermore, since q �∈ π, the definition of π
guarantees that |C : L| is a power of q, so |C : Z| is a power of q. We can thus
write C = ZQ, where Q is a q-group.

Now let x ∈ C, so we have x = za, where z ∈ Z ⊆ Z(G) and a has q-power order.
Then χ(z) = δχ(1) for some root of unity δ, and it follows that χ(x) = δχ(a). Now
χ(1) = θ(1) = ϕK(1) = |K : L|ϕ(1) = |K : L|, so χ(1) is a power of p. Since the
order of a is a power of q and q �= p, it follows by Lemma 6.3 that χ(a) �= 0. Then
χ(x) �= 0, and hence χ is Carter nonvanishing, as required. �

7. An analogy

We close this paper by presenting a theorem that is analogous to our results on
head characters, but which does not involve Carter subgroups. In the following, we
suppose that a group A acts via automorphisms on a group G, where |A| and |G|
are relatively prime, and we let C = CG(A). In this situation, the Glauberman-
Isaacs correspondence is defined, and we recall that it is a canonical bijective map
from IrrA(G) onto Irr(C).

If H ⊆ G is an A-invariant subgroup, and α ∈ IrrA(H), we will consistently
write α∗ to denote the image of the character α under the Glauberman-Isaacs map
from IrrA(H) onto Irr(H ∩ C). Although we will be using the notation ( )∗ to
denote several different maps, which are defined on different sets, we trust that this
convention will not result in confusion.

Assuming that G is solvable, the principal result in this section provides a charac-
terization in terms of A-composition series of the characters χ ∈ IrrA(G) such that
the Glauberman-Isaacs correspondent χ∗ is linear. To state our result, consider an
A-composition factor K/L of G, and note that since G is solvable, K/L is abelian,
and thus either A acts trivially on K/L or else CK/L(A) = 1. As before, we say in
these cases that K/L has type TA (trivial action) or type FPF (fixed-point-free),
respectively.

Now consider an A-composition series

1 = S0 � S1 � · · · � Sr = G

for G, and let θi ∈ IrrA(Si), where θi lies under θi+1 for 0 ≤ i < r. In this situation,
we say that {(Si, θi) | 0 ≤ i ≤ r} is an A-pair series for G, and we say that this A-
pair series is strong if θi+1 restricts irreducibly to Si whenever the A-composition
factor Si+1/Si has type TA.

We say that θr is the head character of the strong A-pair series {(Si, θi) | 0 ≤
i ≤ r}, and we say that a character χ ∈ IrrA(G) is an A-head character of G if χ
is the head character of some strong A-pair series for G.

The following is the main result of this section.
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Theorem 7.1. Let A act on G via automorphisms, where G is solvable, and |A|
and |G| are relatively prime. Then

(a) The A-head characters of G are exactly the characters χ ∈ IrrA(G) such
that the Glauberman-Isaacs correspondent χ∗ is linear.

(b) Suppose χ is an A-head character of G, and let {Si | 0 ≤ i ≤ r} be an
arbitrary A-composition series for G. Then there exist uniquely determined
A-invariant irreducible characters θi of the subgroups Si such that {(Si, θi) |
0 ≤ i ≤ r} is a strong A-pair series, and χ = θr is the head character of
this series.

We begin working toward a proof of Theorem 7.1 by stating some known results.

Lemma 7.2. Suppose A acts on G via automorphisms, where |A| and |G| are
relatively prime, and let C = CG(A). Let N � G be A-invariant, and write B =
N ∩ C. Also, let χ ∈ IrrA(G) and θ ∈ IrrA(N), so χ∗ ∈ Irr(C) and θ∗ ∈ Irr(B).
Then

(a) If χ lies over θ, then χ∗ lies over θ∗.
(b) If χN = θ, then (χ∗)B = θ∗.

Proof. Assertion (a) is immediate from [10, Theorem 2.5], and (b) appears as part
of [7, Theorem A]. �

Corollary 7.3. Suppose A acts on G via automorphisms, where |A| and |G| are
relatively prime. Let N � G be A-invariant, and suppose that χ ∈ IrrA(G). Then
there exists an A-invariant irreducible constituent θ of χN , and if χ∗ is linear, then
θ is unique and θ∗ is linear.

Proof. The existence of an A-invariant irreducible constituent θ of χN is guaranteed
by Lemma 3.4(a). Now suppose χ∗ is linear and that θ1 and θ2 are A-invariant irre-
ducible constituents of χN . Then χ∗ lies over both (θ1)

∗ and (θ2)
∗ by Lemma 7.2(a).

By hypothesis, however, χ∗ is linear, and hence (θ1)
∗ = (θ2)

∗, and it follows by the
injectivity of the Glauberman-Isaacs map that θ1 = θ2. and so θ is unique, as
required. Also, since the linear character χ∗ lies over θ∗, we see that θ∗ must also
be linear. �

The following is a converse for Lemma 7.2(b) in the case where the action of A on
G/N is trivial. This result is actually a consequence of the more general Theorem
2.12 of Wolf’s paper [10], but it is an important step in our proof of Theorem 7.1,
so we have decided to state it here, and to give a proof.

Lemma 7.4. Suppose A acts on G via automorphisms, where |A| and |G| are
relatively prime. Let N � G be A-invariant, and suppose that the action of A on
G/N is trivial. Let C = CG(A), and write B = N ∩ C. Let χ ∈ IrrA(G), and
assume that (χ∗)B is irreducible. Then χN is irreducible, and (χN )∗ = (χ∗)B.

Proof. We can assume that N < G, and we proceed by induction on |G : N |.
Since the Glauberman-Isaacs map from IrrA(N) to Irr(B) is surjective and (χ∗)B
is irreducible, we can write (χ∗)B = θ∗ for some character θ ∈ IrrA(N). We will
complete the proof by showing that χN = θ.

We show first that θ is extendible to G. To see this, consider a subgroup H
with N ⊆ H < G, and observe that H is A-invariant and A acts trivially on
H/N because A acts trivially on G/N . Write D = H ∩ C, so D ∩ N = B, and
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thus χ∗ restricts irreducibly to D because B ⊆ D, and by hypothesis, χ∗ restricts
irreducibly to B. We can thus write (χ∗)D = ξ∗ for some character ξ ∈ IrrA(H),
and since (ξ∗)B = (χ∗)B = θ∗, it follows by the inductive hypothesis that ξN = θ.
Thus θ has an A-invariant extension to H.

If G/N is a p-group, then in the notation of the previous paragraph, we can
suppose that H has index p in G, so H � G. Also, ξ is an A-invariant extension of
θ to H. Now D � C and ξ∗ is the restriction to D of the character χ∗ of C, so ξ∗ is
C-invariant, and it follows by the injectivity of the Glauberman-Isaacs map that ξ
is also C-invariant.

Since A acts trivially on G/N and |A| and |G| are relatively prime, we have
G = NC, and hence ξ is G-invariant. Now G/H has prime order and ξ ∈ Irr(H) is
G-invariant, and thus ξ is extendible to G. We conclude that θ is extendible to G,
as wanted.

We can now suppose that there is no prime p such that G/N is a p-group. Then
if S/N is any Sylow subgroup of G/N , we have N ⊆ S < G, and so θ is extendible
to S. It follows by [4, Theorem 11.3] that θ is extendible to G, as claimed.

We argue next that every member of the set S of extensions of θ to G is A-
invariant. By the Gallagher correspondence, the group Λ of linear characters of
G/N acts transitively on S by multiplication. Also |Λ| and |A| are relatively prime,
so we can appeal to Glauberman’s lemma to deduce that some member of S is A-
invariant. Each member of Λ is A-invariant, however, and since Λ acts transitively
on S, it follows that all members of S are A-invariant, as claimed.

If ψ ∈ S, then ψN = θ, so Lemma 7.2(b) guarantees that ψ∗ is an extension of
θ∗. The Glauberman-Isaacs correspondence thus defines an injective map from S
into the set T of extensions of θ∗ to C. Also, G/N ∼= C/B because G = NC, and
thus

|S| = |(G/N) : (G/N)′| = |(C/B) : (C/B)′| = |T | .
The injective map ψ 
→ ψ∗ thus carries S onto T , and since χ∗ ∈ T , there exists
ψ ∈ S such that ψ∗ = χ∗. Then ψ = χ so χN = θ, as required, �

Proof of Theorem 7.1. First, suppose that χ is an A-head character of G, so by
definition, there is a strong A-pair series {(Si, θi) | 0 ≤ i ≤ r}, such that θr = χ.
All of the characters θi are A-invariant, so in particular, χ is A-invariant, and χ∗

is defined, and we must show that χ∗ is linear.
Now (θ0)

∗ is linear because it is the trivial character of the trivial subgroup of
G, If χ∗ is not linear, therefore, then since χ = θr, there exists a subscript a with
0 ≤ a < r, such that a is maximal with the property that (θa)

∗ is linear. For
notational convenience, we write b = a+ 1.

Now θb lies over θa, so (θb)
∗ lies over (θa)

∗ by Lemma 7.2(a). Also (θb)
∗ is not

linear and (θa)
∗ is linear, so (θb)

∗ does not restrict irreducibly to Sa ∩ C, and it
follows by Lemma 7.2(b) that θb does not restrict irreducibly to Sa. It follows
by the definition of a strong A-pair series that Sb/Sa is not of type TA, and we
conclude that Sb/Sa has type FPF.

Now A has no nontrivial fixed points on Sb/Sa, so the A-fixed-point subgroups in
Sb and Sa are identical, and thus (θb)

∗ and (θa)
∗ are characters of the same group.

Since (θb)
∗ lies over (θa)

∗, it follows that (θb)
∗ = (θa)

∗, and this is a contradiction
because (θa)

∗ is linear but (θb)
∗ is not. This completes the proof that χ∗ is linear.

Conversely now, suppose that χ∗ is linear, where χ ∈ IrrA(G), and let {Si | 0 ≤
i ≤ r} be an arbitrary A-composition series for G. We must show that there is a
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unique choice of A-invariant characters θi ∈ Irr(Si) such that {(Si, θi) | 0 ≤ i ≤ r}
is a strong A-pair series with θr = χ.

We are forced to define θr = χ, so (θr)
∗ is linear by assumption. Since Sr−1 � G,

we can apply Corollary 7.3 (with Sr−1 in the role of N) to deduce that there is a
unique A-invariant irreducible character θ of Sr−1 that lies under θr, so we must
define θr−1 = θ. Also, Corollary 7.3 guarantees that θ∗ is linear, so (θr−1)

∗ is linear.
We can now apply Corollary 7.3 again, this time with Sr−1 in the role of G

and Sr−2 in the role of N . We deduce that θr−1 lies over a unique A-invariant
irreducible character of Sr−2, so we are forced to define θr−2 to be that character,
and it follows by Corollary 7.3 that (θr−2)

∗ is linear. Continuing like this, with
repeated applications of Corollary 7.3, we see that all of the characters θi are
uniquely determined, and thus there is a unique A-pair series {(Si, θi) | 0 ≤ i ≤ r}
such that θr = χ.

To complete the proof, we must show that this A-pair series is strong. In other
words, if Sa� Sb are consecutive terms in the given A-composition series, and Sb/Sa

has type TA, we must show that θb restricts irreducibly to Sa. Now (θb)
∗ is linear, so

it restricts irreducibly to Sa∩C, and since we are assuming that A acts trivially on
Sb/Sa, it follows by Lemma 7.4 that θb restricts irreducibly to Sa, as required. �

We close by mentioning a question that was asked a number of years ago by
Navarro, and which was communicated to the author privately. Suppose that A
acts on G, where |A| and |G| are relatively prime, and let C = CG(A). Also, let
χ ∈ IrrA(G), and as usual, let χ∗ ∈ Irr(C) be the Glauberman-Isaacs correspondent
of χ. Navarro asked if is it true that χ is nonvanishing on C if and only if χ∗ is
linear.

Of course, it was the analogy between the Glauberman-Isaacs bijection and the
material discussed earlier in this paper that motivated the question raised in Section
6: is it true that the head characters of a solvable group G are exactly the Carter
nonvanishing irreducible characters of G.

A small piece of evidence that Navarro’s question might have an affirmative
answer is that if A is a p-group for some prime p, and χ∗ is linear, then it is true
that χ is nonvanishing on the fixed-point subgroup C. To see this, recall that when
A is a p-group, χ∗ is the unique irreducible character of C whose multiplicity e as a
constituent of χC is not divisible by p. Thus if x ∈ C, we have χ(x) ≡ eχ∗(x) mod
M , where M is a maximal ideal of the ring R of algebraic integers such that p ∈ M .
If χ∗ is linear, then χ∗(x) is some root of unity δ, and thus χ(x) ≡ eδ mod M . If
χ(x) = 0, it follows that eδ ∈ M , and since δ is invertible in R, we have e ∈ M .
This is a contradiction, however, because p does not divide e, but M ∩Z = pZ. We
conclude that χ(x) �= 0, as wanted.
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