ON FLOER MINIMAL KNOTS IN SUTURED MANIFOLDS

ZHENGUN LI, YI XIE, AND BOYU ZHANG

ABSTRACT. Suppose $(M, \gamma)$ is a balanced sutured manifold and $K$ is a rationally null-homologous knot in $M$. It is known that the rank of the sutured Floer homology of $M \setminus N(K)$ is at least twice the rank of the sutured Floer homology of $M$. This paper studies the properties of $K$ when the equality is achieved for instanton homology. As an application, we show that if $L \subset S^3$ is a fixed link and $K$ is a knot in the complement of $L$, then the instanton link Floer homology of $L \cup K$ achieves the minimum rank if and only if $K$ is the unknot in $S^3 \setminus L$.

1. Introduction

Suppose $Y$ is a closed oriented 3-manifold and $K$ is a rationally null-homologous knot in $Y$. The spectral sequence in [OS04, Lemma 3.6] implies the following:

\begin{equation}
\text{rank} \widehat{HF}(Y, K; \mathbb{Z}/2) \geq \text{rank} \widehat{HF}(Y; \mathbb{Z}/2).
\end{equation}

The knot $K$ is called Floer simple or Floer minimal if (1.1) attains equality (see [Hed11, Ras07]). The properties of Floer minimal knots have been studied in [NW14, RR17, GL21].

More generally, suppose $(M, \gamma)$ is a balanced sutured 3-manifold and $K$ is a knot in the interior of $M$ such that $[K] = 0 \in H_1(M, \partial M; \mathbb{Q})$. Let $N(K) \subset M$ be an open tubular neighborhood of $K$. Let $\gamma_K$ be the union of $\gamma$ and a pair of oppositely oriented meridians on $\partial N(K)$. Then the following inequality holds for sutured Heegaard Floer homology:

\begin{equation}
\text{rank} SFH(M \setminus N(K), \gamma_K; \mathbb{Z}/2) \geq 2 \cdot \text{rank} SFH(M, \gamma; \mathbb{Z}/2).
\end{equation}

Remark 1.1. The proof of (1.2) is the same as (1.1): a spectral sequence similar to the one in [OS04, Lemma 3.6] implies that

\begin{equation}
\text{rank} SFH(M \setminus N(K), \gamma_K; \mathbb{Z}/2) \geq 2 \cdot \text{rank} SFH(M \setminus B^3, \gamma \cup \delta; \mathbb{Z}/2),
\end{equation}

where $B^3$ is a 3-ball inside $M$ and $\delta$ is a simple closed curve on $\partial B^3$. Inequality (1.2) then follows from [Juh06, Proposition 9.14].

To see that (1.1) follows from (1.2), take $M = Y \setminus B^3$ and take $\gamma$ to be a simple closed curve on $\partial B^3$. 

\[c\] ©2022 by the author(s) under Creative Commons Attribution-NonCommercial 3.0 License (CC BY NC 3.0)
Another interesting special case of (1.2) is when $M$ is a link complement. Let $L$ be a link in $S^3$, let $N(L)$ be an open tubular neighborhood of $L$, let $M = S^3 \setminus N(L)$, and let $\gamma \subset \partial M$ be the union of a pair of oppositely oriented meridians for every component of $L$. In this case, by [Juh06 Proposition 9.2], inequality (1.2) is equivalent to:

\[(1.3) \quad \text{rank} \, \widehat{\text{HFK}}(L \cup K; \mathbb{Z}/2) \geq 2 \cdot \text{rank} \, \widehat{\text{HFK}}(L; \mathbb{Z}/2),\]

where $K$ is an arbitrary knot in $S^3 \setminus L$. It is natural to ask about the properties of the pair $(L, K)$ when the equality of (1.3) is achieved. This question has been studied by Ni [Ni14] and Kim [Kim20]. Ni [Ni14] proved that if $L$ is the unlink and the equality of (1.3) holds, then $L \cup K$ is the unlink. (This property was then used in [Ni14 Proposition 1.4] to prove that the rank of $\widehat{\text{HFK}}$ detects the unlink.) Kim [Kim20 Proposition 4] proved that if the equality of (1.3) holds and $L \cup K$ is non-split, then $L$ is non-split and the linking number of $K$ with every component of $L$ is zero.

It is conjectured by Kronheimer and Mrowka [KM10b Conjecture 7.25] that sutured Heegaard Floer homology is isomorphic to sutured instanton Floer homology. This paper studies an analogue of (1.2) for instanton Floer homology. From now on, all instanton Floer homology groups are defined with $\mathbb{C}$-coefficients. An inequality on instanton Floer homology analogous to (1.2) was proved by Li-Ye [LY22 Proposition 3.14]: letting $(M, \gamma)$, $K$, and $\gamma_K$ be as above, we have

\[(1.4) \quad \dim_{\mathbb{C}} \text{SHI}(M \setminus N(K), \gamma_K) \geq 2 \cdot \dim_{\mathbb{C}} \text{SHI}(M, \gamma).\]

Remark 1.2. To see that (1.4) follows from [LY22 Proposition 3.14], remove a small 3-ball $B^3$ from $M$ centered on $K$ such that $B^3 \cap K$ is an arc. Let $\delta$ be a simple closed curve on $\partial B^3$ separating the two points in $\partial B^3 \cap K$. Consider the balanced sutured manifold $(M \setminus B^3, \gamma \cup \delta)$, and let $T = K \setminus B^3$ be a vertical tangle in $M \setminus B^3$. Then $(M \setminus N(K), \gamma_K)$ can be obtained from $(M \setminus B^3, \gamma \cup \delta)$ by removing a neighborhood of $T$ and adding a meridian of $T$ to the suture. By [LY22 Proposition 3.14] and [Li20 Proposition 4.15],

\[\dim_{\mathbb{C}} \text{SHI}(M \setminus N(K), \gamma_K) \geq \dim_{\mathbb{C}} \text{SHI}(M \setminus B^3, \gamma \cup \delta) = 2 \cdot \dim_{\mathbb{C}} \text{SHI}(M, \gamma).\]

In this paper, we will study the properties of $K$ when the equality of (1.4) is achieved. To simplify notation, we introduce Definition 1.3.

**Definition 1.3.** Suppose $(M, \gamma)$ is a sutured manifold. Suppose $K$ is a knot in $M$ such that $[K] = 0 \in H_1(M, \partial M; \mathbb{Q})$. Let $N(K) \subset M$ be an open tubular neighborhood of $K$. Let $\gamma_K$ be the union of $\gamma$ and a pair of oppositely oriented meridians on $\partial N(K)$. We say that $K$ is **instanton Floer minimal**, if

\[\dim_{\mathbb{C}} \text{SHI}(M \setminus N(K), \gamma_K) = 2 \cdot \dim_{\mathbb{C}} \text{SHI}(M, \gamma).\]

Suppose $(M, \gamma)$ is a connected balanced sutured manifold. Let $\{\gamma_i\}_{1 \leq i \leq s}$ be the components of $\gamma$, then the homotopy class of every $\gamma_i$ defines a conjugacy class $[\gamma_i]$ in $\pi_1(M)$. Define

\[(1.5) \quad \pi'_1(M) := \pi_1(M)/\langle [\gamma_1], \ldots, [\gamma_s] \rangle,
\]

where $\langle [\gamma_1], \ldots, [\gamma_s] \rangle$ is the normal subgroup of $\pi_1(M)$ generated by the conjugacy classes $[\gamma_1], \ldots, [\gamma_s]$.

The first main result of this paper is Theorem 1.4.
Theorem 1.4. Let \((M, \gamma)\) be a connected balanced sutured manifold with 
\[ \text{SHI}(M, \gamma) \neq 0. \]

Suppose \(M\) is decomposed as
\[ M = M_1 \# \cdots \# M_k \# Y, \]
where each \(M_i\) is an irreducible sutured manifold (in particular, \(\partial M_i\) is non-empty), and \(Y\) is a closed manifold, which may be \(S^3\) or reducible. Let \(K\) be a knot in the interior of \(M\) that represents the zero element in \(\pi_1^\prime(M)\). If \(K\) is instanton Floer minimal, then \(K\) is contained in \(Y\) after isotopy.

Remark 1.5. If the knot \(K\) represents the zero element in \(\pi_1^\prime(M)\), then \([K] = 0 \in H_1(M, \partial M; \mathbb{Q})\), and hence Definition 1.3 is applicable to \(K\).

Moreover, when \(Y = S^3\) in (1.6), we have the following result.

Theorem 1.6. Suppose \((M, \gamma)\) is a balanced taut sutured manifold or a connected sum of balanced taut sutured manifolds. Let \(K\) be a knot in the interior of \(M\) that represents the zero element in \(\pi_1^\prime(M)\). Then \(K\) is instanton Floer minimal if and only if \(K\) is the unknot.

Theorem 1.7 has the following immediate corollary:

Corollary 1.8. Suppose \(L\) is an \(n\)-component link in \(S^3\). Then \(L\) is an unlink if and only if \(\dim \mathbb{C} \text{KHI}(L) = 2^{n-1}\).

Proof. Suppose \(K\) is a knot in \(S^3\), then by [KM10b, Proposition 7.16], we have
\[ \dim \mathbb{C} \text{KHI}(K) \geq 1. \]

Moreover, \(K\) is the unknot if and only if \(\dim \mathbb{C} \text{KHI}(K) = 1\). If \(L\) is the unlink with \(n\) components, then \(\dim \mathbb{C} \text{KHI}(L) = 2^{n-1}\) by Theorem 1.7 and induction on \(n\). On the other hand, suppose \(L\) is a link with \(n\) components such that \(\dim \mathbb{C} \text{KHI}(L) = 2^{n-1}\). Let \(K_1, \cdots, K_n\) be the components of \(L\). Then by (1.7) and (1.9), we have
\[ \dim \mathbb{C} \text{KHI}(K_1 \cup \cdots \cup K_m) = \dim \mathbb{C} \text{KHI}(K_1 \cup \cdots \cup K_{m+1}) = 2 \cdot \dim \mathbb{C} \text{KHI}(K_1 \cup \cdots \cup K_m) \]
for every \(m < n\). Therefore by Theorem 1.7, \(K_{m+1}\) is an unknot in 
\[ S^3 \setminus (K_1 \cup \cdots \cup K_m) \]
for every \(m < n\), so \(L\) is the unlink.

Theorems 1.4, 1.6 and 1.7 will be proved in Section 3.3.
2. Sutured manifolds and tangles

2.1. Balanced sutured manifolds and tangles.  This subsection reviews some terminologies on balanced sutured manifolds and tangles.

**Definition 2.1** ([Gab83], [Juh06]). Let \( M \) be a compact oriented 3-manifold with boundary. Suppose \( \gamma \subset \partial M \) is an embedded closed oriented 1-submanifold such that

1. every component of \( \partial M \) contains at least one component of \( \gamma \),
2. \( \gamma = 0 \in H_1(\partial M; \mathbb{Z}) \).

Let \( A(\gamma) \subset \partial M \) be an open tubular neighborhood of \( \gamma \), and let \( R(\gamma) = \partial M \setminus A(\gamma) \). Let \( R_+(\gamma) \) be the subset of \( R(\gamma) \) consisting of components whose boundaries have the same orientation as \( \gamma \), and let \( R_-(\gamma) = R(\gamma) \setminus R_+(\gamma) \). We say that \((M, \gamma)\) is a balanced sutured manifold if it satisfies the following properties:

1. The 3-manifold \( M \) has no closed components.
2. \( \chi(R_+(\gamma)) = \chi(R_-(\gamma)) \).

**Definition 2.2.** Suppose \((M, \gamma)\) is a balanced sutured manifold.

1. A tangle in \((M, \gamma)\) is a properly embedded 1-manifold \( T \subset M \) so that \( \partial T \cap \gamma = \emptyset \).
2. A component \( T_0 \) of \( T \) is called vertical if \( \partial T_0 \cap R_+(\gamma) \neq \emptyset \) and \( \partial T_0 \cap R_-(\gamma) \neq \emptyset \).
3. A tangle \( T \) is called vertical if every component of \( T \) is vertical.
4. A tangle \( T \) is called balanced if \( |T \cap R_+(\gamma)| = |T \cap R_-(\gamma)| \).

**Remark 2.3.** In the following, we will use the notation \( T \subset (M, \gamma) \) to indicate that the tangle \( T \) is in \((M, \gamma)\).

**Remark 2.4.** Note that a tangle \( T \subset (M, \gamma) \) is, a priori, un-oriented. When the tangle is vertical, we may orient each component of \( T \) so that it goes from \( R_+(\gamma) \) to \( R_-(\gamma) \).

**Remark 2.5.** The tangle \( T \) in Definition 2.2 is allowed to be empty.

**Definition 2.6** ([Sch89]). Suppose \((M, \gamma)\) is a balanced sutured manifold, \( T \subset (M, \gamma) \) is a (possibly empty) tangle, and \( S \subset M \) is an oriented properly embedded surface so that \( S \) intersects \( T \) transversely. If \( S \) is connected, define the \( T \)-Thurston norm of \( S \) to be

\[
x_T(S) = \max\{|T \cap S| - \chi(S), 0\}.
\]

Here \(|T \cap S|\) is the number of intersection points between \( T \) and \( S \). If \( S \) is disconnected and \( S_1, \ldots, S_n \) are the connected components of \( S \), then define the \( T \)-Thurston norm of \( S \) to be

\[
x_T(S) = x_T(S_1) + \cdots + x_T(S_n).
\]

Suppose \( N \subset \partial M \) is a subset. For a homology class \( \alpha \in H_2(M, N; \mathbb{Z}) \), define the \( T \)-Thurston norm of \( \alpha \) to be

\[
x_T(\alpha) = \min\{x_T(S) \mid S \text{ is properly embedded in } M, \partial S \subset N, [S] = [\alpha] \in H_2(M, N; \mathbb{Z})\}.
\]

A surface \( S \) properly embedded in \( M \) is said to be \( T \)-norm-minimizing if \( x_T(S) = x_T([S]) \).
Here \([S]\) is the homology class in \(H_2(M, \partial S; \mathbb{Z})\) represented by \(S\).

When \(T = \emptyset\), we simply write \(x_T\) as \(x\).

**Definition 2.7** (Sch89). Suppose \((M, \gamma)\) is a balanced sutured manifold and \(T \subset (M, \gamma)\) is a (possibly empty) tangle. We say that \((M, \gamma)\) is \(T\)-taut, if \((M, \gamma, T)\) satisfies the following properties:

1. \(M \setminus T\) is irreducible.
2. \(R_+ (\gamma)\) and \(R_- (\gamma)\) are both incompressible in \(M \setminus T\).
3. \(R_+ (\gamma)\) and \(R_- (\gamma)\) are both \(T\)-norm-minimizing.
4. Every component of \(T\) is either vertical or closed.

When \(T = \emptyset\), we simply say that \((M, \gamma)\) is taut.

2.2. Sutured manifold hierarchy. Suppose \((M, \gamma)\) is a balanced sutured manifold and \(T \subset (M, \gamma)\) is a tangle. Suppose \(S \subset M\) is an oriented properly embedded surface. Under certain mild conditions, Scharlemann [Sch89] generalized the concepts from [Gab83] and introduced a process to decompose the triple \((M, \gamma, T)\) into a new triple \((M', \gamma', T')\), and this process is called a sutured manifold decomposition. Extending the work of Gabai in [Gab83], Scharlemann [Sch89] also proved the existence of sutured manifold hierarchies for a \(T\)-taut balanced sutured manifold \((M, \gamma)\). In this paper, we will use a modified version of the sutured manifold hierarchy, which is presented in the current subsection.

**Definition 2.8** (c.f. GL19). Suppose \((M, \gamma)\) is a balanced sutured manifold and \(T \subset (M, \gamma)\) is a tangle. An oriented properly embedded surface \(S \subset M\) is called admissible in \((M, \gamma, T)\) if

1. Every component of \(\partial S\) intersects \(\gamma\) nontrivially and transversely.
2. For every component \(T_0\) of \(T\), choose an arbitrary orientation for \(T_0\), then all intersections between \(T_0\) and \(S\) are of the same sign.
3. \(S\) has no closed components.
4. The number \(\frac{1}{2} |S \cap \gamma| - \chi(S)\) is even.

**Theorem 2.9** is essentially a combination of [Sch89 Theorem 4.19] and [Juh08 Theorem 8.2].

**Theorem 2.9.** Suppose \((M, \gamma)\) is a balanced sutured manifold. Suppose \(K\) is a knot in the interior of \(M\) and view \(K\) as a tangle in \((M, \gamma)\). If \((M, \gamma)\) is \(K\)-taut, then there is a finite sequence of sutured manifold decompositions

\[
(M, \gamma, K) \xrightarrow{S_1} (M_1, \gamma_1, K) \sim \cdots \sim (M_{n-1}, \gamma_{n-1}, K) \xrightarrow{S_n} (M_n, \gamma_n, T)
\]

so that the following is true.

1. For \(i = 1, \ldots, n\), the surface \(S_i\) is an admissible surface in \((M_{i-1}, \gamma_{i-1})\).
2. \((M_0 = M\) and \(\gamma_0 = \gamma\)).
3. \(T\) is a vertical tangle in \((M_n, \gamma_n)\).
4. For \(i = 1, \ldots, n - 1\), \((M_i, \gamma_i)\) is \(K\)-taut.
5. \((M_n, \gamma_n)\) is \(T\)-taut.

**Proof.** The proof of the theorem is essentially a combination of the proofs of [Sch89 Theorem 4.19] and [Juh08 Theorem 8.2]. We will only sketch the proof here and point out the adaptations to our current setup.
First, suppose there is a homology class $\alpha \in H_2(M, \partial M; \mathbb{Z})$ so that $\partial_*(\alpha) \neq 0 \in H_1(\partial M; \mathbb{Z})$. The argument in [Sch89, Section 3] then produces a surface $S$ properly embedded in $M$ so that

1. $[S] = [\alpha] \in H_2(M, \partial M; \mathbb{Z})$.
2. The sutured manifold decomposition of $(M, \gamma, K)$ along $S$ yields a taut sutured manifold.

Note that $S$ must have a non-empty boundary. We further perform the following modifications on $S$:

(a) Disregard any closed components of $S$. This makes the decomposition along $S$ resulting in a balanced sutured manifold.

(b) Apply the argument in [Gab83, Section 5] to make $S$ satisfy the following extra property: for every component $V$ of $R(\gamma)$, the intersection of $\partial S$ with $V$ is a collection of parallel oriented non-separating simple closed curves or arcs. Note the argument in [Gab83, Section 5] happens in a collar of $\partial M$ inside $M$, and the tangle $K$ is in the interior of $M$. So the argument applies to our case.

(c) After step (b), we can make $S$ admissible by further isotoping $\partial S$ on $\partial M$ via positive stabilizations on $S$, in the sense of [Li19, Definition 3.1]. Note that by definition, a positive stabilization creates a pair of intersection points between $\partial S$ and $\gamma$, and thus it is possible to modify $S$ so that every component of $S$ intersects $\gamma$ and $\frac{1}{2}|S \cap \gamma| - \chi(S)$ is even. By [Li19, Lemma 3.2], we know that after positive stabilizations, the sutured manifold decomposition along $S$ still yields a $K$-taut (or $T$-taut, if $S \cap K \neq \emptyset$) balanced sutured manifold.

Suppose $S_1$ is the resulting surface after the above modifications. If $S_1$ has a non-trivial intersection with $K$ then we are done. If $S_1 \cap K = \emptyset$, we then know that $S_1$ is admissible and the sutured manifold decomposition

$$(M, \gamma, K) \xrightarrow{S_1} (M_1, \gamma_1, K)$$

yields a $K$-taut balanced sutured manifold $(M_1, \gamma_1)$. We can run the above argument repeatedly. By [Sch89, Section 4], the triple $(M_1, \gamma_1, K)$ has a smaller complexity than $(M, \gamma, K)$, so this decomposition procedure must end after finitely many steps. There are two possibilities when the procedure ends:

**Case 1.** We have a surface $S_n$ that intersects $K$ nontrivially, and $S_1, \ldots, S_{n-1}$ are all disjoint from $K$. After the decomposition along $S_n$, the knot $K$ becomes a collection of arcs $T$ inside $(M_n, \gamma_n)$, and we have a sutured manifold decomposition

$$(M_{n-1}, \gamma_{n-1}, K) \xrightarrow{S_n} (M_n, \gamma_n, T)$$

so that $(M_n, \gamma_n)$ is $T$-taut. Note that $T$ has no closed components and by Condition (4) in Definition 2.7, $T$ is a vertical tangle. Hence the desired properties of the theorem are verified.

**Case 2.** All decomposing surfaces $S_n$ are disjoint from $K$, and we end up with a balanced sutured manifold $(M_n, \gamma_n)$ so that

$$\partial_* : H_2(M_n, \partial M_n; \mathbb{Z}) \to H_1(\partial M_n; \mathbb{Z})$$

is the zero map. In this case, the map

$$i_* : H_1(\partial M_n; \mathbb{Z}) \to H_1(M_n; \mathbb{Z})$$
is injective. It then follows from the “half lives, half dies” principle (see, for example, \cite[Theorem A.3]{How11}) that \( \partial M_n \) must be a union of 2-spheres. Let \( \hat{M}_n \) be the component of \( M_n \) that contains \( K \), and let \( \hat{S} \) be a sphere in \( \hat{M}_n \) that is parallel to one of the boundary components. Then \( \hat{S} \) is a reducing sphere for \( \hat{M}_n \setminus K \), therefore \( (M_n, \gamma_n) \) cannot be \( K \)-taut, which yields a contradiction.

\[ \square \]

2.3. **Instanton Floer homology.** Suppose \( (M, \gamma) \) is a balanced sutured manifold. Kronheimer and Mrowka \cite{KM10b} constructed the **sutured instanton Floer homology** for the couple \( (M, \gamma) \). Given a balanced tangle \( T \subset (M, \gamma) \) (see Definition 2.2), an instanton Floer homology theory for the triple \( (M, \gamma, T) \) was constructed in \cite{XZ19b}. In this subsection, we review the constructions of these instanton Floer theories.

Suppose \( (M, \gamma) \) is a balanced sutured manifold and \( T \subset (M, \gamma) \) is a balanced tangle. We construct a tuple \( (Y, R, L, u) \) as follows: Pick a connected surface \( F \) so that \( \partial F \simeq -\gamma \).

Pick \( n \geq 2 \) points \( p_1, \ldots, p_n \) on \( F \). Let \( u \) be an embedded simple arc connecting \( p_1 \) and \( p_2 \). Glue \([-1, 1] \times F\) to \( M \) along \( A(\gamma)\):

\[
\tilde{M} := M \bigcup_{\overline{A(\gamma)} \sim [-1, 1] \times \partial F} [-1, 1] \times F,
\]

where \( \sim \) is given by a diffeomorphism from \( \overline{A(\gamma)} \) to \([-1, 1] \times \gamma \). The boundary of \( \tilde{M} \) consists of two components:

\[
\partial \tilde{M} = R_+ \cup R_-,
\]

where

\[
R_\pm = R_\pm(\gamma) \cup \{\pm 1\} \times F
\]

are closed surfaces. Let

\[
\tilde{T} = T \cup [-1, 1] \times \{p_1, \ldots, p_n\}.
\]

Now pick an orientation-preserving diffeomorphism

\[
f : R_+ \to R_{-}
\]

so that \( f(\tilde{T} \cap R_+) = \tilde{T} \cap R_{-} \) and \( f(\{1\} \times u) = \{-1\} \times u \). Gluing \( R_+ \) to \( R_{-} \) via \( f \) yields a closed oriented 3-manifold \( Y \). Let \( R \subset Y \) be the image of \( R_\pm \). Let \( L \subset Y \) be the image of \( T \), then \( L \) is a link in \( Y \). We will also abuse notation and let \( u \) denote the image of \( \{\pm 1\} \times u \subset [-1, 1] \times F \) in \( Y \).

**Definition 2.10.** The tuple \( (Y, R, L, u) \) is called a **closure** of \((M, \gamma, T)\).

By the construction of Kronheimer and Mrowka in \cite{KM11}, there is an instanton homology group \( I(Y, L, u) \), which is a finite-dimensional \( \mathbb{C} \)-vector space, associated to the triple \((Y, L, u)\). The homology \( I(Y, L, u) \) is defined using instantons which are singular along \( L \). The surface \( R \) induces a complex linear map

\[
\mu^{\text{orb}}(R) : I(Y, L, u) \to I(Y, L, u).
\]

Given a point \( p \in Y \setminus L \), there is a complex linear map

\[
\mu(p) : I(Y, L, u) \to I(Y, L, u).
\]
The maps $\mu_{\text{orb}}(R)$ and $\mu(p)$ are commutative to each other. The reader may refer to [XZ19b Section 2.1] or [Str12 Section 2.3.2] for a review of the definition of $\mu_{\text{orb}}(R)$ and $\mu(p)$. From now on, if $\mu$ is a linear map on $I(Y,L,u)$, we will use $\text{Eig}(\mu,\lambda)$ to denote the generalized eigenspace of $\mu$ with eigenvalue $\lambda$ in $I(Y,L,u)$.

**Definition 2.11** ([XZ19b Definition 7.6]). Suppose $(M,\gamma)$ is a balanced sutured manifold, and $T \subset (M,\gamma)$ is a balanced tangle. Let $(Y,R,L,u)$ be an arbitrary closure of $(M,\gamma,T)$ such that $|L \cap R|$ is odd and at least 3 (this can always be achieved by increasing the value of $n$ in the construction of the closure). Let $p \in Y \setminus L$ be a point. Then the sutured instanton Floer homology of the triple $(M,\gamma,T)$, which is denoted by $\text{SHI}(M,\gamma,T)$, is defined as

$$\text{SHI}(M,\gamma,T) = \text{Eig} \left( \mu_{\text{orb}}(R), |L \cap R| - \chi(R) \right) \cap \text{Eig} \left( \mu(p), 2 \right) \subset I(Y,L,u).$$

The next statement guarantees that the isomorphism class of $\text{SHI}(M,\gamma,T)$ is well-defined:

**Theorem 2.12** ([XZ19b Proposition 7.7]). For a triple $(M,\gamma,T)$, the isomorphism class of the sutured instanton Floer homology $\text{SHI}(M,\gamma,T)$ as a complex vector space is independent of the choice of the closure of $(M,\gamma,T)$ and the point $p$.

We also have the following non-vanishing theorem:

**Theorem 2.13** ([XZ19b Theorem 7.12]). Suppose $(M,\gamma)$ is a balanced sutured manifold and $T \subset (M,\gamma)$ is a balanced tangle so that $(M,\gamma)$ is $T$-taut. Then we have

$$\text{SHI}(M,\gamma,T) \neq 0.$$ 

Now we establish a theorem relating sutured instanton Floer homology to sutured manifold decompositions, which is analogous to [KM10b Proposition 6.9]:

**Theorem 2.14.** Suppose $(M,\gamma)$ is a balanced sutured manifold and $T \subset (M,\gamma)$ is a balanced tangle. Suppose further that $S \subset (M,\gamma)$ is an admissible surface in the sense of Definition 2.8 and we have a sutured manifold decomposition:

$$(M,\gamma,T) \overset{S}{\sim} (M',\gamma',T').$$

Then there is a closure $(Y,R,L,u)$ of $(M,\gamma,T)$ and a closure $(Y,R',L,u)$ of $(M',\gamma',T')$ so that

1. the two closures share the same 3-manifold $Y$, the same link $L$ and the same arc $u$.
2. there is a closed oriented surface $\bar{S} \subset Y$ extending $S \subset (M,\gamma)$ so that $R'$ is obtained from $R$ and $\bar{S}$ by a double curve surgery in the sense of [Sch89 Definition 1.1].

Let $(Y,R,L,u)$ and $(Y,R',L,u)$ be as above and let $p \in Y \setminus L$. We have

$$\text{SHI}(M,\gamma,T) = \text{Eig} \left( \mu_{\text{orb}}(R), |L \cap R| - \chi(R) \right) \cap \text{Eig} \left( \mu(p), 2 \right)$$

and

$$\text{SHI}(M',\gamma',T') = \text{Eig} \left( \mu_{\text{orb}}(R), |L \cap R| - \chi(R) \right) \cap \text{Eig} \left( \mu(p), 2 \right) \cap \text{Eig} \left( \mu_{\text{orb}}(\bar{S}), |L \cap \bar{S}| - \chi(\bar{S}) \right).$$
Proof. The proof of the theorem is almost the same as that of [KM10b Proposition 7.11], which referred to the argument of [KM10b Proposition 6.9]: the constructions of the closure \((Y, R, L, u)\) and the extension \(\overline{S}\) follow verbatim from the constructions in the proof of [KM10b Proposition 6.9]. Equation (2.1) is precisely the definition of \(\text{SHI}(M, \gamma, T)\) in Definition 2.11. The verification of Equation (2.2) is also similar to the proof of [KM10b Proposition 6.9], except that the surface in the current setup might intersect \(L\) transversely at finitely many points, so we need to replace [KM10b Corollary 7.2] in the proof of [KM10b Proposition 6.9] by [XZ19b Proposition 6.1] for our current setup. □

Remark 2.15. The original proof of [KM10b Proposition 6.9] only works with a surface \(S \subset M\) where \(\frac{1}{2}|S \cap \gamma| - \chi(S)\) is even (or else it is impossible to extend \(S\) to a closed surface \(\overline{S}\) in the closures of \((M, \gamma)\).) This is the reason why we needed to introduce the definition of admissible surfaces in Definition 2.8. This subtlety was not explicitly mentioned in [KM10b].

2.4. A Module Structure on SHI. We introduce an additional module structure on \(\text{SHI}(M, \gamma, T)\) when \(T \neq \emptyset\).

As before, suppose \((M, \gamma)\) is a balanced sutured manifold and \(T \subset (M, \gamma)\) is a balanced tangle. Pick an arbitrary closure \((Y, R, L, u)\) of \((M, \gamma)\) such that \(|L \cap R|\) is odd and at least 3 (so that the condition of Definition 2.11 is satisfied). Pick a point \(p \in Y \setminus L\) and a point \(q \in T\). The point \(q\) determines a complex linear map

\[
\sigma(q) : I(Y, L, u) \to I(Y, L, u)
\]

as described in [XZ19b Section 2.1] (this map was denoted by \(\sigma_q\) in [XZ19b]), and we have \(\sigma(q)^2 = 0\) by [XZ19b Equation (2) and Proposition 2.1]. Moreover, \(\sigma(q)\) commutes with \(\mu(R)\) and \(\mu(p)\). Hence \(\sigma(q)\) defines a complex linear map on

\[
\text{SHI}(M, \gamma, T) = \text{Eig} \left( \mu^\text{orb}(R), |L \cap R| - \chi(R) \right) \cap \text{Eig} \left( \mu(p), 2 \right)
\]

that squares to zero. Therefore, we can view \(\text{SHI}(M, \gamma, T)\) as a \(\mathbb{C}[X]/(X^2)\)–module where the action of \(X\) is defined by \(\sigma(q)\). The proof of [XZ19b Theorem 7.12] applies verbatim to verify Theorem 2.16:

Theorem 2.16. For a triple \((M, \gamma, T)\), the isomorphism class of the sutured instanton Floer homology \(\text{SHI}(M, \gamma, T)\) as a \(\mathbb{C}[X]/(X^2)\)–module is independent of the choice of the closures of \((M, \gamma, T)\). Moreover, if \(q, q' \in T\) are in the same component of \(T\), then the module structure induced by \(q\) is isomorphic to the module structure induced by \(q'\). □

For \(q \in T\), we will call the \(\mathbb{C}[X]/(X^2)\)–module structure on \(\text{SHI}(M, \gamma, T)\) defined as above the module structure induced by \(q\).

Remark 2.17. If \(T\) has only one component, then the isomorphism class of the module structure is independent of \(q\). In this case, it makes sense to refer to the isomorphism class of the module structure on \(\text{SHI}(M, \gamma, T)\) without specifying the point \(q\).

Corollary 2.18. Suppose \((M, \gamma)\) is a balanced sutured manifold and \(T \subset (M, \gamma)\) is a balanced tangle. Suppose further that \(S \subset (M, \gamma)\) is an admissible surface in the sense of Definition 2.8 and we have a sutured manifold decomposition:

\[
(M, \gamma, T) \prec_S (M', \gamma', T').
\]
Suppose \( q \in T \), and let \( q' \in T' \) be the image of \( q \) in \( M' \). If the module structure on \( \text{SHI}(M, \gamma, T) \) induced by \( q \) is a free \( \mathbb{C}[X]/(X^2) \)–module, then so is the module structure on \( \text{SHI}(M', \gamma', T') \) induced by \( q' \).

**Proof.** Notice that if \( Q \) is a finitely generated \( \mathbb{C}[X]/(X^2) \)–module, then

\[
2 \cdot \text{rank}_\mathbb{C}(m_X) \leq \dim_\mathbb{C} Q,
\]

where \( m_X : Q \to Q \) is the multiplication of \( X \). Moreover, \( Q \) is a free \( \mathbb{C}[X]/(X^2) \)–module if and only if

\[
2 \cdot \text{rank}_\mathbb{C}(m_X) = \dim_\mathbb{C} Q.
\]

As a consequence, if \( Q \) is a finitely generated free \( \mathbb{C}[X]/(X^2) \)–module, then every \( \mathbb{C}[X]/(X^2) \)–module that is a direct summand of \( Q \) is also free.

The corollary then follows from Equation (2.2) and the fact that the action of \( X \) commutes with the action of \( \mu(S) \). \( \square \)

### 2.5. SHI with local coefficients

We also introduce a version of sutured instanton Floer homology defined with local coefficients. Let \((M, \gamma)\) be a balanced sutured manifold and let \( T \subset (M, \gamma) \) be a tangle. Suppose \( L \subset T \) is a link in the interior of \( M \). Let \((Y, R, L', u)\) be a closure of \((M, \gamma, T)\) such that \(|L' \cap R|\) is odd and at least 3.

Let \( \Gamma_L \) be the local system for the triple \((Y, L', u)\) associated with \( L \subset L' \) as defined in [XZ19a, Section 3]. By definition, \( \Gamma_L \) is a local system over the ring \( \mathcal{R} = \mathbb{C}[t, t^{-1}] \). For \( h \in \mathbb{C} \), define \( \Gamma_L(h) = \Gamma_L \otimes \mathcal{R}/(t - h) \), then \( \Gamma_L(h) \) is a local system over the ring \( \mathcal{R}/(t - h) \cong \mathbb{C} \), and hence \( I(Y, L', u; \Gamma_L(h)) \) is a \( \mathbb{C} \)–linear space. Let \( p \in Y \setminus L' \) be a point.

**Definition 2.19.** Define \( \text{SHI}(M, \gamma, T; \Gamma_L(h)) \) to be the simultaneous generalized eigenspace of \( \mu_{\text{orb}}(R) \) and \( \mu(p) \) in \( I(Y, L', u; \Gamma_L(h)) \) with eigenvalues \(|L' \cap R| - \chi(R)\) and 2 respectively.

Since \( L \cap R = \emptyset \), the proof of [XZ19b, Theorem 7.12] applies verbatim to verify that:

**Theorem 2.20.** For \( M, \gamma, T, L \) as above and \( h \in \mathbb{C} \), the isomorphism class of the sutured instanton Floer homology \( \text{SHI}(M, \gamma, T; \Gamma_L(h)) \) as a \( \mathbb{C} \)–linear space is well-defined. In other words, it is independent of the choice of the closures of \((M, \gamma, T)\) and the point \( p \). \( \square \)

**Lemma 2.21.**

\[
\limsup_{h \to 1} \dim_\mathbb{C} \text{SHI}(M, \gamma, T; \Gamma_L(h)) \leq \dim_\mathbb{C} \text{SHI}(M, \gamma, T).
\]

**Proof.** This is an immediate consequence of [XZ19a, Lemma 4.1 (1)] and the observation that \( \Gamma_L(1) \) is the trivial local system over \( \mathbb{C} \), thus

\[
\text{SHI}(M, \gamma, T; \Gamma_L(1)) = \text{SHI}(M, \gamma, T).
\] \( \square \)

**Lemma 2.22.** Suppose \( T_0 \) is a tangle in \((M, \gamma)\), and \( L, L' \subset M \) are two links in the interior of \( M \) that are homotopic to each other in \( M \) and are both disjoint from \( T_0 \). Let \( T = T_0 \cup L, T' = T_0 \cup L' \), and suppose \( h \notin \{ \pm 1 \} \). Then

\[
\dim_\mathbb{C}(M, \gamma, T; \Gamma_L(h)) = \dim_\mathbb{C}(M, \gamma, T'; \Gamma_L(h)).
\]

**Proof.** This is an immediate consequence of [XZ19a, Proposition 3.2]. \( \square \)
Lemma 2.23. Suppose $T$ is a tangle in $(M, \gamma)$ and $U$ is an unknot in $M \setminus T$. Then for every $h \in \mathbb{C}$, we have

$$\dim_{\mathbb{C}}\text{SHI}(M, \gamma, T \cup U, \Gamma_U(h)) = 2 \cdot \dim_{\mathbb{C}}\text{SHI}(M, \gamma, T).$$

Proof. Let $B$ be a 3–ball in $M \setminus (T \cup U)$, let $\delta$ be a simple closed curve on $\partial B$. Let $U' \subset S^3$ be an unknot in $S^3$, let $B'$ be a 3–ball in $S^3 \setminus U'$, let $\delta'$ be a simple closed curve on $\partial B'$. By the connected sum formula for SHI (c.f. [Li20, Proposition 4.15]), we have

$$\dim_{\mathbb{C}}\text{SHI}(M \setminus B, \gamma \cup \delta, T \cup U; \Gamma_U(h)) = 2 \cdot \dim_{\mathbb{C}}\text{SHI}(M, \gamma, T \cup U; \Gamma_U(h)) \cdot \dim_{\mathbb{C}}\text{SHI}(S^3 \setminus B', \delta'),$$

and

$$\dim_{\mathbb{C}}\text{SHI}(M \setminus B, \gamma \cup \delta, T \cup U; \Gamma_U(h)) = 2 \cdot \dim_{\mathbb{C}}\text{SHI}(M, \gamma, T) \cdot \dim_{\mathbb{C}}\text{SHI}(S^3 \setminus B', \delta', U'; \Gamma_U(h)).$$

Therefore

$$\dim_{\mathbb{C}}\text{SHI}(M, \gamma, T \cup U; \Gamma_U(h)) = \dim_{\mathbb{C}}\text{SHI}(M, \gamma, T) \cdot \dim_{\mathbb{C}}\text{SHI}(S^3 \setminus B', \delta', U'; \Gamma_U(h)).$$

Since $(S^3 \setminus B', \delta')$ is a product sutured manifold, we have

$$\dim_{\mathbb{C}}\text{SHI}(S^3 \setminus B', \delta') = 1.$$

Let

$$c(h) = \dim_{\mathbb{C}}\text{SHI}(S^3 \setminus B', \delta', U'; \Gamma_U(h)),$$

then $c(h)$ is a function depending on $h$, and we have

$$\dim_{\mathbb{C}}\text{SHI}(M, \gamma, T \cup U, \Gamma_U(h)) = c(h) \cdot \dim_{\mathbb{C}}\text{SHI}(M, \gamma, T),$$

for all $M, \gamma, T$. Recall that $T$ is allowed to be empty.

Now consider special the case where $M$ is a solid torus, $\gamma$ is a pair of oppositely oriented meridians on $\partial M$, and $T = \emptyset$. In this case, we have

$$\dim_{\mathbb{C}}\text{SHI}(M, \gamma, T) = 1.$$

Moreover, the sutured instanton Floer homology $\text{SHI}(M, \gamma, T \cup U, \Gamma_U(h))$ is by definition the same as the annular instanton Floer homology of the unknot with local coefficients given by $\Gamma_U(h)$ (see [Xie21b] and [XZ19a, Sections 2 and 3]). By [Xie21b, Example 4.2], the perturbed Chern-Simons functional for the annular instanton Floer homology of the unknot has two critical points with homological degrees differ by 2. Therefore, we have

$$\dim_{\mathbb{C}}\text{SHI}(M, \gamma, T \cup U, \Gamma_U(h)) = 2$$

for all $h \in \mathbb{C}$. In conclusion, we must have $c(h) = 2$ for all $h$. \qed

Remark 2.24. The $\mathbb{C}[X]/(X^2)$–module structure introduced in Section 2.4 cannot be straightforwardly extended to SHI with local coefficients, because we may no longer have $\sigma(q)^2 = 0$ on $\text{SHI}(M, \gamma, T; \Gamma_L(h))$ when $q \in L$.  

3. Properties of Floer minimal knots

3.1. Irreducibility and module structure. This subsection proves the following theorem. The result is inspired by the work of Wang [Wan21].

**Theorem 3.1.** Suppose $(M, \gamma)$ is a balanced sutured manifold with

\[\text{SHI}(M, \gamma) \neq 0\]

and $K$ is a knot in the interior of $M$. View $K$ as a balanced tangle in $(M, \gamma)$. If $M \setminus K$ is irreducible, then $\text{SHI}(M, \gamma, K)$ is not free as a $\mathbb{C}[X]/(X^2)$-module.

**Proof.** Since $M \setminus K$ is irreducible, by (3.1) and the adjunction inequality for instanton Floer homology [KM10b, Corollary 7.2], we conclude that $(M, \gamma)$ is $K$-taut.

Let

\[\{M, \gamma, K\} \approx \cdots \approx \{M_{n-1}, \gamma_{n-1}, K\} \approx (M_n, \gamma_n, T)\]

be the sutured hierarchy given by Theorem 2.9. In particular, $T$ is a vertical tangle and $(M_n, \gamma_n)$ is $T$-taut.

Assume $\text{SHI}(\gamma, K)$ is a free $\mathbb{C}[X]/(X^2)$-module. Applying Corollary 2.18 repeatedly and applying Theorem 2.13 we conclude that for every point $q \in T$, the module structure on $\text{SHI}(M_n, \gamma_n, T)$ induced by $q$ is a non-trivial free $\mathbb{C}[X]/(X^2)$-module.

Pick any closure $(Y, L, u)$ of $(M_n, \gamma_n, T)$ such that $|R \cap L|$ is odd and at least 3. Suppose $R \cap L = \{p_1, \ldots, p_m\}$. We may also suppose $u \cap R = \emptyset$.

Let $W = [-1, 1] \times (Y, L, u)$ be the product cobordism from $(Y, L, u)$ to itself. We use $R_0$ to denote $\{0\} \times R \subset W$. Removing a neighborhood $N(R_0) \cong D^2 \times R_0$ from $W$, we obtain a cobordism

\[W' : (Y, L, u) \sqcup (S^1 \times R, S^1 \times \{p_1, \ldots, p_m\}, \emptyset) \to (Y, L, u)\]

Now $W'$ induces a map

\[\text{I}(W') : \text{I}(Y, L, u|R) \otimes \text{I}(S^1 \times R, S^1 \times \{p_1, \ldots, p_m\}, \emptyset|R) \to \text{I}(Y, L, u|R)\]

Since the original cobordism $W$ induces the identity map on the Floer homology, $\text{I}(W')$ is a surjection. Moreover $\text{I}(W')$ intertwines the $\sigma(q)$ maps on the three ends since we can move the point $q$ from one end to any other end.

By Section 2.3, we have $\sigma(q)^2 = 0$ on $\text{I}(S^1 \times R, S^1 \times \{p_1, \ldots, p_m\}, \emptyset|R)$. On the other hand, by [XZ19b, Proposition 6.5],

\[\text{I}(S^1 \times R, S^1 \times \{p_1, \ldots, p_m\}, \emptyset|R) \cong \mathbb{C}\]

This implies that $\sigma(q) = 0$ on the above space. Since $\text{I}(W')$ is surjective and intertwines the $\sigma(q)$ maps on the three ends, we conclude that $\sigma(q) = 0$ on $\text{I}(Y, L, u|R) \cong \text{SHI}(M_n, \gamma_n, T)$, which yields a contradiction.

\[\square\]

3.2. Floer minimality and module structure. Recall that for a sutured manifold $(M, \gamma)$, the group $\pi^1(M)$ is defined by Equation 1.5 as a quotient group of $\pi_1(M)$. The main result of this subsection is Theorem 3.2.

**Theorem 3.2.** Let $(M, \gamma)$ be a balanced sutured manifold. Suppose $K$ is a knot in the interior of $M$ that represents the zero element in $\pi^1(M)$. If $K$ is instanton Floer minimal (see Definition 1.3), then $\text{SHI}(M, \gamma, K)$ is a free module over $\mathbb{C}[X]/(X^2)$ (see Section 2.4).
We first establish the following rank inequality for instanton homology.

**Lemma 3.3.** Suppose \((M, \gamma)\) is a balanced sutured manifold, and \(K\) is a knot in the interior of \(M\) such that \(K\) represents the zero element in \(\pi_1(M)\). Then we have

\[
\dim \mathbb{C} \text{SHI}(M, \gamma, K) \geq 2 \cdot \dim \mathbb{C} \text{SHI}(M, \gamma).
\]

**Proof.** Suppose \(\gamma = \gamma_1 \cup \cdots \cup \gamma_m\) has \(m\) components. For each \(i\), let \(\gamma'_i, \gamma''_i\) be a pair of oppositely-oriented simple closed curves on \(\partial M\) parallel to \(\gamma_i\). Moreover, let \(\gamma''_i\) have the same orientation as \(\gamma_i\), let \(\gamma'_i\) have the opposite orientation as \(\gamma_i\), and let \(\gamma_i\) be placed between \(\gamma_i\) and \(\gamma''_i\). Let

\[
\gamma' := \bigcup_i (\gamma_i \cup \gamma'_i \cup \gamma''_i).
\]

Let \(U\) be an unknot in \(M\). The proof of \([\text{KM10a}, \text{Theorem 3.1}]\) implies that

\[
\dim \mathbb{C} \text{SHI}(M, \gamma') = 2^m \cdot \dim \mathbb{C} \text{SHI}(M, \gamma) \qquad (3.3)
\]

\[
\dim \mathbb{C} \text{SHI}(M, \gamma', K) = 2^m \cdot \dim \mathbb{C} \text{SHI}(M, \gamma, K) \qquad (3.4)
\]

Decompose \(A(\gamma')\) as \(A(\gamma) = \bigcup_i (A(\gamma_i) \cup A(\gamma'_i) \cup A(\gamma''_i))\). For each \(i\), let \(D_i\) be a disk, let \(\varphi_i\) be an orientation-reversing diffeomorphism from \([-1,1] \times \partial D_i\) to \(A(\gamma'_i)\), and let

\[
\hat{M} = M \bigcup_{\{\varphi_i\}} \left( \bigcup_i [-1,1] \times D_i \right).
\]

Let \(\hat{\gamma}\) be the image of \(\bigcup_i (\gamma_i \cup \gamma''_i)\) on \(\partial \hat{M}\). Then every component of \(\partial \hat{M}\) contains at least one component of \(\hat{\gamma}\). Moreover, it is straightforward to verify that \((\hat{M}, \hat{\gamma})\) is a balanced sutured manifold. Let \(T_i = [-1,1] \times \{0\} \subset [-1,1] \times D_i\) be a tangle, we can view \(T = T_1 \cup \cdots \cup T_m\) as a vertical tangle inside \((\hat{M}, \hat{\gamma})\). Let \((\hat{M}_T, \hat{\gamma}_T)\) be the balanced sutured manifold obtained from \((\hat{M}, \hat{\gamma})\) by removing a neighborhood of \(T\) and adding a meridian of every component of \(T\) to the suture. It is straightforward to check that \((\hat{M}_T, \hat{\gamma}_T)\) is simply diffeomorphic to \((M, \gamma')\). Hence by \([\text{XZ19b}, \text{Lemma 7.10}]\), we have

\[
\text{SHI}(M, \gamma') \cong \text{SHI}(\hat{M}, \hat{\gamma}, T).
\]

In fact, the proof of \([\text{XZ19b}, \text{Lemma 7.10}]\) also applies verbatim to give

\[
\begin{align*}
\text{SHI}(M, \gamma', K) &\cong \text{SHI}(\hat{M}, \hat{\gamma}, T \cup K), \\
\text{SHI}(M, \gamma', U) &\cong \text{SHI}(\hat{M}, \hat{\gamma}, T \cup U).
\end{align*}
\]

By Lemma \([2.22]\) we have

\[
\dim \mathbb{C} \text{SHI}(\hat{M}, \hat{\gamma}, T \cup U; \Gamma_U(h)) = 2 \cdot \dim \mathbb{C} \text{SHI}(\hat{M}, \hat{\gamma}, T)
\]

for every \(h \in \mathbb{C}\). Since \(K\) represents the zero element in \(\pi_1(M)\), it is homotopic to \(U\) in \(\hat{M}\). By Lemma \([2.22]\) when \(h \notin \{\pm 1\}\), we have

\[
\dim \mathbb{C} \text{SHI}(\hat{M}, \hat{\gamma}, K \cup T; \Gamma_K(h)) = \dim \mathbb{C} \text{SHI}(\hat{M}, \hat{\gamma}, K \cup U; \Gamma_U(h)).
\]

Hence

\[
\dim \mathbb{C} \text{SHI}(\hat{M}, \hat{\gamma}, K \cup T; \Gamma_K(h)) = 2 \cdot \dim \mathbb{C} \text{SHI}(\hat{M}, \hat{\gamma}, T)
\]
for all $h \notin \{\pm 1\}$. Therefore, by Lemma 2.21
\[
\dim \mathbb C \text{SHI}(M, \gamma', K) = \dim \mathbb C \text{SHI}(\tilde{M}, \tilde{\gamma}, T \cup K) \\
\geq 2 \cdot \dim \mathbb C \text{SHI}(\tilde{M}, \tilde{\gamma}, T) \\
= 2 \cdot \dim \mathbb C \text{SHI}(M, \gamma').
\]
Thus by (3.3) and (3.4), we have
\[
\dim \mathbb C \text{SHI}(M, \gamma, K) \geq 2 \cdot \dim \mathbb C \text{SHI}(M, \gamma),
\]
and the lemma is proved. \hfill \Box

Now we can prove Theorem 3.2.

Proof of Theorem 3.2 We define a new instanton Floer homology group \(\text{SHI}(M, \gamma, K)\) as follows. Regard \(K\) as a tangle inside \((M, \gamma)\). Pick a closure \((Y, R, L, u)\) of \((M, \gamma, K)\). Recall that from the construction of closures in Section 2.3, \(L\) has the form
\[
L = K \cup L_1,
\]
where \(L_1\) is the image of the arcs \([-1, 1] \times \{p_1, \ldots, p_n\} \subset [-1, 1] \times F\) in the closure. Now define \(L' = K \cup \mu \cup L_1\) to be a link in \(Y\), where \(\mu\) is a meridian of \(K\), and define \(u' = u \cup v\), where \(v\) is an arc connecting \(K\) with \(\mu\). Define
\[
\text{SHI}(M, \gamma, K) := I(Y, L', u'|R).
\]

![Figure 1. The knot \(K\), \(K^\sharp\), and the unoriented skein triangle](image)

Remark 3.4. If we replace \((M, \gamma)\) by a closed 3-manifold \(Y\) and disregard \(R, L_1,\) and \(u\), then the above construction is the same as the definition of \(I^\sharp(Y, K)\) introduced by Kronheimer and Mrowka in [KM11].

Now apply the un-oriented skein triangle from [KM11, Section 6 and 7] to a crossing between \(K\) and \(\mu\), as shown in Figure 1. The result is the following exact
The map $f$ has been computed explicitly in [Xie21a, Proposition 3.4] (also cf. [DS19, Theorem 8.8]), and we have

$$f = \pm \sigma(q) : \text{SHI}(M, \gamma, K) \to \text{SHI}(M, \gamma, K^2)$$

for a base point $q \in K$. Since $\sigma(q)^2 = 0$, we have

$$\dim \mathbb{C} \text{SHI}(M, \gamma, K) \leq \dim \mathbb{C} \text{SHI}(M, \gamma, K^2),$$

and the equality holds if and only if

$$\text{rank}(\sigma(q)) = \frac{1}{2} \dim \mathbb{C} \text{SHI}(M, \gamma, K).$$

Let $\gamma_K$ be the union of $\gamma$ with a pair of oppositely oriented meridians of $K$ on $\partial N(K)$. The proof of [KM11, Proposition 1.4] (also [XZ19b, Lemma 7.10]) applies verbatim to give the following isomorphism

$$\text{SHI}(M, \gamma, K^2) \cong \text{SHI}(M \setminus N(K), \gamma_K).$$

Recall that $K$ is assumed to be instanton Floer minimal, namely

$$\dim \mathbb{C} \text{SHI}(M \setminus N(K), \gamma_K) = 2 \cdot \dim \mathbb{C} \text{SHI}(M, \gamma).$$

By Lemma 3.3 we have

$$\dim \mathbb{C} \text{SHI}(M, \gamma, K) \geq 2 \cdot \dim \mathbb{C} \text{SHI}(M, \gamma).$$

By (3.5), (3.7), (3.8), (3.9), we conclude that

$$\dim \mathbb{C} \text{SHI}(M, \gamma, K) = \dim \mathbb{C} \text{SHI}(M, \gamma, K^2),$$

therefore the equality holds for (3.3), and hence (3.6) holds. Recall that the action of $X$ equals $\sigma(q)$ in the $\mathbb{C}[X]/(X^2)$–module structure of $\text{SHI}(M, \gamma, K)$. Hence by (3.6), $\text{SHI}(M, \gamma, K)$ is a free $\mathbb{C}[X]/(X^2)$–module. \hfill $\square$

### 3.3. Proofs of the main results.

This subsection proves Theorems 1.4, 1.6, and 1.7.

**Proof of Theorem 1.4** By Theorem 3.2, $\text{SHI}(M, \gamma, K)$ is a non-trivial free module over $\mathbb{C}[X]/(X^2)$. Hence by Theorem 3.1, $M \setminus K$ is reducible.

Therefore, $M$ decomposes as $M = M_1 \# M_2$, where $K \subset M_2$ after isotopy. If $M_2$ is a closed manifold, then the desired result holds.

If $M_2$ is a manifold with boundary, we apply [KM10b, Corollary 7.2] to show that $(M_2, \gamma \cap \partial M_2)$ is also a balanced sutured manifold. In fact, [KM10b] Corollary 7.2 implies that for an admissible triple $(Y, L, \omega)$ and an embedded closed oriented surface $R \subset Y - L$, if the intersection number of $R$ and $\omega$ is odd and the genus of $R$ is positive, then the eigenvalues of $\mu(R)$ on $I(Y, L, \omega)$ are at most $2g - 2$, where $g$ is the genus of $R$. (The statement of [KM10b, Corollary 7.2] is only given for the case when $L = \emptyset$, but the same proof applies verbatim as long as $R \cap L = \emptyset$.)

The statement above gives a lower bound for the genus of $R$ by the eigenvalues of $\mu(R)$. Notice that $\mu(R)$ only depends on the fundamental class of $R$ in $H_2(Y; \mathbb{Z})$. 

Applying [KM10b, Corollary 7.2] to the closure of \((M, \gamma)\) and invoking the assumption that \(\text{SHI}(M, \gamma) \neq 0\), we obtain the following result: if \(R'\) is an embedded surface without closed component in \((M, \gamma)\) such that \(\partial R' = \partial R_+ (\gamma)\) and
\[
[R', \partial R'] = [R_+ (\gamma), \partial R_+ (\gamma)] \in H_2(M, A(\gamma)),
\]
then
\[
\chi(R') \leq \chi(R_+ (\gamma)).
\]
As a consequence,
\[
\chi(R_-(\gamma) \cap M_2) + \chi(R_+ (\gamma) \cap M_1) \\
\leq \chi(R_+ (\gamma)) \\
= \chi(R_+(\gamma) \cap M_2) + \chi(R_+(\gamma) \cap M_1),
\]
therefore
\[
\chi(R_-(\gamma) \cap M_2) \leq \chi(R_+(\gamma) \cap M_2).
\]
Similarly,
\[
\chi(R_+(\gamma) \cap M_2) \leq \chi(R_-(\gamma) \cap M_2).
\]
In conclusion, \((M_2, \gamma \cap \partial M_2)\) is a balanced sutured manifold.

Since \(M_2\) is a balanced sutured manifold, by the connected sum formula for \(\text{SHI}\) and the assumption that \(K\) is instanton Floer minimal in \((M, \gamma)\), we have
\[
\dim \C \text{SHI}(M_2, \gamma, K) = 2 \cdot \dim \C \text{SHI}(M_1, \gamma) \cdot \dim \C \text{SHI}(S^3, \gamma_\mu).
\]
Hence the desired result follows from induction on the number of factors in the prime decomposition of \(M\).

**Proof of Theorem 1.6.** By the connected sum formula for \(\text{SHI}\) and the non-vanishing theorem for taut sutured manifolds [KM10b, Theorem 7.12], we have \(\text{SHI}(M, \gamma) \neq 0\).

By Theorem 1.4 there exists a 3–ball \(B^3 \subset M\) such that \(K \subset B^3\). Hence we can view \(K\) as a knot in the northern hemisphere of \(S^3\). Define \(S^3(K) = S^3 \setminus N(K)\), and let \(\gamma_\mu \subset \partial S^3(K)\) be a pair of oppositely oriented meridians of \(K\). Let \(\gamma_K \subset \partial(M \setminus N(K))\) be the union of \(\gamma\) and a pair of oppositely oriented meridians on \(\partial N(K)\). The connected sum formula for \(\text{SHI}\) implies
\[
\dim \C \text{SHI}(M \setminus N(K), \gamma_K) = 2 \cdot \dim \C \text{SHI}(M, \gamma) \cdot \dim \C \text{SHI}(S^3, \gamma_\mu).
\]
Therefore \(K\) is instanton Floer minimal if and only if
\[
I^\sharp(S^3, K) \cong \text{SHI}(S^3(K), \gamma_\mu) \cong \C.
\]
By the unknot detection result for \(\text{KHI}(S^3, K)\) [KM10b, Proposition 7.16] and the fact that \(\text{KHI}(S^3, K) \cong I^\sharp(S^3, K)\) [KM11, Proposition 1.4], the above equation holds if and only if \(K\) is the unknot.

**Proof of Theorem 1.7.** Let \(M = S^3 \setminus N(L)\), then the prime decomposition of \(M\) does not contain any non-trivial closed component. Let \(\gamma \subset \partial M\) be the suture consisting of a pair of oppositely oriented meridians for each component of \(L\), then \(\pi_1'(M) = 0\). By [KM10b, Proposition 7.16], we have \(\text{SHI}(M, \gamma) \neq 0\), therefore \(M\) satisfies the conditions of Theorem 1.6 and hence (1.8) holds if and only if \(K\) is the unknot in \(M\).
ON FLOER MINIMAL KNOTS IN SUTURED MANIFOLDS

REFERENCES


