
TRANSACTIONS OF THE
AMERICAN MATHEMATICAL SOCIETY, SERIES B
Volume 9, Pages 827–858 (October 13, 2022)
https://doi.org/10.1090/btran/95

A GROUP THEORETIC PERSPECTIVE ON ENTANGLEMENTS

OF DIVISION FIELDS

HARRIS B. DANIELS AND JACKSON S. MORROW

Abstract. In this paper, we initiate a systematic study of entanglements of
division fields from a group theoretic perspective. For a positive integer n and a

subgroup G ⊆ GL2(Z/nZ) with surjective determinant, we provide a definition
for G to represent an (a, b)-entanglement and give additional criteria for G to
represent an explained or unexplained (a, b)-entanglement.

Using these new definitions, we determine the tuples ((p, q), T ), with p <
q ∈ Z distinct primes and T a finite group, such that there are infinitely
many non-Q-isomorphic elliptic curves over Q with an unexplained (p, q)-
entanglement of type T . Furthermore, for each possible combination of en-
tanglement level (p, q) and type T , we completely classify the elliptic curves
defined over Q with that combination by constructing the corresponding mod-
ular curve and j-map.

1. Introduction

Given an elliptic curve E/Q and fixing an algebraic closure of Q, call it Q, one
can construct a Galois representation associated to E

ρE : Gal(Q/Q) → GL2(Ẑ) �
∏

� prime

GL2(Z�).

The image of this representation (which is only defined up to conjugation) encodes
information about the fields of definition of the torsion points on E. In [Ser72],

Serre showed that if E is non-CM, then dE := [GL2(Ẑ) : Im(ρE)] � 2, and work of
Duke [Duk97] and Jones [Jon10] proved that for almost all elliptic curves E/Q (in
the sense of density), dE = 2. In light of these results, it is natural to wonder: what
conditions make the index dE greater than 2?

Using the above isomorphism, we can see that there are two (seemingly) orthog-
onal ways the image of ρE could be smaller than expected:

(1) The image of ρE composed with projection onto GL2(Z�) might be smaller
than expected (i.e., the �-adic Galois representation associated to E might
not be surjective).

(2) Relatively prime division fields with non-trivial intersection force the im-
age of ρE to not be the full direct product of the images of the �-adic
representations.

Recently, there has been great progress in understanding and classifying the ways in
which an elliptic curve overQ can fail to have surjective �-adic Galois representation;
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see for example [RZB15, SZ17, RSZB]. On the other hand, there has been recent
progress [Mor19,DGJ20,CNLM+] in determining what composite images can occur.
However, there has yet to be a systematic study of the way in which the division
fields of elliptic curves can intersect.

Main contributions. The goal of this article is to lay the foundation for the study
of entanglements of division fields of elliptic curves using group theoretic methods.
To date, there has been limited study of the way in which the division fields can have
non-trivial intersection; see for example [BJ16,Mor19,DLR19, JM20]. To initiate
our discussion, we give a formal definition, which captures when division fields have
non-trivial and unexpected intersection.

Definition 1.1. Let E/Q be an elliptic curve and let a, b be positive integers. We
say that E has an (a, b)-entanglement if

K = Q(E[a]) ∩Q(E[b]) �= Q(E[d]),

where d = gcd(a, b). The type T of the entanglement is the isomorphism class of
Gal(K/Q(E[d])).

These entanglements come in two flavors. To see this distinction, we explain the
observation that Serre made in [Ser72] to prove that dE � 2 for all E/Q. Fix an
arbitrary elliptic curve E/Q such that its minimal discriminant ΔE is not a square.
It is a classical result that Q(

√
ΔE) ⊆ Q(E[2]) (see [Ade01] for example). Further,

from the Kronecker–Weber theorem, there is some m > 2 such that Q(
√
ΔE) ⊆

Q(ζm), so that Q(E[2])∩Q(ζm) is a non-trivial quadratic extension of Q, and one of
the many consequences of the Weil pairing is that Q(ζm) ⊆ Q(E[m]) ensuring that,
in this case Q(E[2])∩Q(E[m]) is non-trivial. This non-trivial intersection of division
fields is what causes the index dE to be at least 2. We note that if the minimum m
is odd, then we have a (2,m)-entanglement of type Z/2Z, and when m is even, one
finds a (4,m/4)-entanglement of type Z/2Z coming from Q(

√
−ΔE) ⊂ Q(E[4]) ∩

Q(E[m/4]) or an (8,m/8)-entanglement of type Z/2Z coming from Q(
√
±2ΔE) ⊂

Q(E[8]) ∩ Q(E[m/8]). We say that such an entanglement is explained because its
existence can be explained through the Weil pairing (i.e., Q(ζn) ⊆ Q(E[n]) for all
E/Q) and the Kronecker–Weber theorem (every abelian extension of Q is in Q(ζn)
for some n).

In this work, we will primarily be concerned with unexplained entanglements.
Below, we provide three examples of this flavor of entanglement.

Example 1.2. Let E/Q be the elliptic curve with Cremona label 100a3 which has
Weierstrass model

E : y2 = x3 − x2 − 1033x− 12438.

We claim that E has an entanglement between its 2- and 3-division fields that is not
explained by the Weil pairing and the Kronecker–Weber theorem, in particular we
have that Q(E[2]) ∩Q(E[3]) = Q(

√
5). Indeed, this elliptic curve has a rational 3-

isogeny ϕ : E → E′, and we compute that the kernel of this isogeny is generated by a
point P of order 3 with field of definition Q(P ) = Q(

√
−15). We also determine that

the 2-division field Q(E[2]) is isomorphic to Q(
√
5), and since Q(

√
−3) is contained

in the 3-division field Q(E[3]) by the Weil pairing, we know that Q(E[2])∩Q(E[3]) ⊇
Q(

√
5) and in fact Q(E[2]) ∩ Q(E[3]) = Q(

√
5). Clearly, this entanglement is not

explained by the Weil pairing and the Kronecker–Weber theorem since the Weil

https://www.lmfdb.org/EllipticCurve/Q/100a3/
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pairing only ensures that
√
−3 ∈ Q(E[3]) and does not tell us anything about

√
5

being in Q(E[2]) or Q(E[3]).

Example 1.3. Let E/Q be the elliptic curve with Cremona label 4225f2 which
has Weierstrass model

E : y2 + y = x3 − x2 − 2708x+ 54693.

We start with a few observations about E. First, the discriminant ΔE of E is
equivalent to 13 modulo rational squares, and thus Q(

√
13) ⊆ Q(E[2]). Secondly,

E has a rational 5-isogeny, call it ϕ. Letting P be a generator of the cyclic kernel
of ϕ, we see using Magma that Q(x(P )) = Q(

√
65) ⊆ Q(E[5]). From the Weil-

pairing, we know that Q(
√
5) ⊆ Q(ζ5) ⊆ Q(E[5]) and so again we have a quadratic

intersection between two relatively prime division fields.
Let E′/Q be the codomain of ϕ, let ϕ̂ : E′ → E be the dual isogeny of ϕ, and let

Q be a generator for the kernel of ϕ̂. Using Magma, we again see that ΔE′ ≡ 13 mod
(Q×)2 and that Q(x(Q)) = Q(

√
13), and hence E′ has a quadratic entanglement

between its 2- and 5-division fields; however, this time the entanglement occurs
inside the kernel of ϕ̂. The point is that since Q(E[5]) = Q(E′[5]), it is sensible to
say that E has a (2, 5)-entanglement contained inside the kernel of the dual of its
isogeny; in particular, the isogenous curve E′ has a (2, 5)-entanglement contained
in the kernel of its isogeny. Again, these entanglements cannot be explained by the
Weil pairing and/or the Kronecker–Weber theorem.

Example 1.4. Let E/Q be the elliptic curve with Cremona label 5780c1 which
has Weierstrass model

E : y2 = x3 − 272x− 1564.

This elliptic curve has Im(ρE,5) contained in the exceptional group GS4
(5), which

is a maximal subgroup of GL2(Z/5Z). The 5-division polynomial f5(x) of E is an
irreducible polynomial of degree 12, and if we let L be the splitting field of f5(x),
then there is a unique degree 6 Galois extension K/Q such that K ⊆ L. A quick
check in Magma shows that E[2] ⊆ E(K) and since 2 is not exceptional for E, we
know that K = Q(E[2]). Thus, there is a non-trivial intersection between the 2-
and 5-division fields of E and if we let F = Q(E[2])∩Q(E[5]), then Gal(F/Q) � S3.
Since F is not an abelian extension, it is not possible for the entanglement to be
completely explained by the Weil pairing and the Kronecker–Weber theorem, but
looking closer we see that the unique quadratic extension of Q contained in F is
actually Q(

√
ΔE) � Q(

√
5). Therefore, this part of the entanglement is explained

by the Weil pairing and/or the Kronecker–Weber theorem, but the rest of the
entanglement remains unexplained.

Statement of results. As mentioned above, the goal of our work is to establish
a group theoretical foundation to studying entanglements. The idea behind this
approach is to translate the property of an elliptic curve E/Q having an (a, b)-
entanglement into group theoretic conditions on the image of the mod n Galois
representation associated to E where n = lcm(a, b). Once this is done, for relevant
n, we can search for certain subgroups of GL2(Z/nZ) that represent entanglements
(see Definition 3.1) and then study the associated modular curve. This process
allows us to reduce the question of classifying elliptic curves with non-trivial entan-
glements to a group theoretic problem and a question of rational points on curves.

As an application of the framework we lay out, we prove Theorem A.

https://www.lmfdb.org/EllipticCurve/Q/4225f2/
https://www.lmfdb.org/EllipticCurve/Q/5780c1/
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Theorem A. There are exactly 9 pairs ((p, q), T ), with p < q ∈ Z distinct primes
and T a finite group such that there are infinitely many non-Q-isomorphic elliptic
curves over Q with an unexplained (p, q)-entanglement of type T (Definitions 3.11
and 4.5).

For each possible combination of entanglement level (p, q) and type T , we com-
pletely classify the elliptic curves defined over Q with that combination.

In order to classify the elliptic curves defined over Q with each combination, we
need to compute 24 different modular curves: 22 of which have genus 0 and 2 of
which are genus 1 with positive rank. The details of the classification can be found
in Section A.

During our analysis of the genus 1 groups, we encounter an exceptional isomor-
phism. The two genus 1 groups we find both represent a (2, 7)-entanglement of type
Z/2Z. They both have full image mod 2, and they only differ in their mod 7 im-
age: one of the groups has mod 7 image conjugate to the normalizer of the non-split
Cartan at level 7 and the other has mod 7 image conjugate to the normalizer of the
split Cartan at level 7. We denote these level 14 groups by Gn and Gs, respectively;
the generators for these groups can be found in Section 7. The amazing thing is
that the modular curves associated to these two groups are actually isomorphic
over Q.

Proposition B. The genus one modular curves of positive rank XGs
and XGn

are
both isomorphic over Q to the elliptic curve 196a1.

A priori, there is no reason to expect that these curves would be isomorphic
over Q let alone over Q. Looking at the computations in Section 7, it is unclear if
this is a coincidence or if there is something deeper happening (cf. [Bar14]). Filip
Najman pointed out that there is no “moduli interpretation” of the isomorphism
as the curves have a different number of cusps over Q. While we cannot explain
this isomorphism, one of the referees alerted us to the fact that we can precisely
describe the entanglement field of the moduli of XGn

and XGs
. If E/Q denotes

an elliptic curve whose mod 14 image is conjugate to Gn (resp. Gs), then we have
that quadratic subfield of Q(E[7]) that coincides with Q(

√
ΔE) is the fixed field of

Q(E[7]) by the non-split Cartan subgroup at level 7 (resp. the split Cartan subgroup
at level 7). In the case where E/Q has CM, this fixed field agrees with the CM
field of E (see the table in Section A.3 for examples).

Overview of proof of Theorem A. Our proof of Theorem A is inspired by
the proofs of the main theorems of [RZB15, Zyw15, SZ17]. In these works, the
authors begin by defining a purely group theoretic notion which captures the moduli
problem of interest and computing all of the subgroups of a certain general linear
group which satisfy their notion. Once they have the complete list of such groups,
they determine the equation of the corresponding modular curve, and then proceed
with a determination of the rational points on these modular curves.

In more detail, we break the proof of Theorem A into a few steps and point the
reader to where they can find more information about each step within the paper.

Step 1. Let L be the set of natural numbers n that are products of two distinct
primes such that there exists a congruence subgroup Γ of level n where the genus
of XΓ is either 0 or 1. From [CP84], we know that L is a finite list, and the work

https://www.lmfdb.org/EllipticCurve/Q/196a1/
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of [CP03] makes the list explicit:

L = {6, 10, 14, 15, 21, 22, 26, 33, 34, 38, 39}.
Using [SZ17, Corollary 1.6], we may immediately exclude the levels 34 and 38 as
there are no modular curves of levels 17 or 19, which have infinitely many Q-rational
points. Therefore, we can refine the list L to

L ′ = {6, 10, 14, 15, 21, 22, 26, 33, 39}.
For each n ∈ L ′, we compute the sets

G0(n)={G⊆GL2(Z/nZ) :Gis admissible and the modular curve XG has genus 0},
and

G1(n)={G⊆GL2(Z/nZ) :Gis admissible and the modular curve XG has genus 1},
where we refer the reader to Definition 2.2 for the definition of admissible. We will
search for groups that represent unexplained entanglements from these sets. For
the definition of representing an unexplained entanglement, see Definitions 3.1, 3.4,
and 3.11.

We pause here to remark that it suffices to check only these levels. If G ⊆
GL2(Z/nZ) represents a primitive (p, q)-entanglement (Definition 3.4), then the
corresponding Γ either has level pq, level p, level q, or is all of SL2(Z). If Γ has level
p, level q, or is all of SL2(Z), then Γ represents a trivial entanglement, and hence
G represents an explained entanglement (Definition 3.9) and thus can be excluded.

Step 1a. For each n ∈ L ′, we determine which groups G ∈ G0(n) represent an un-
explained entanglement. For these groups, we sort them into sets G0,k(n) based on
their entanglement level and type, where k is an ordered pair of the form ((a, b), T ).

Step 1b. For each n ∈ L ′, we first determine which groups G ∈ G1(n) have the
property that their corresponding genus 1 modular curve XG has positive rank
over Q. Using [SZ17], this can be determined using only the group G and without
computing XG. Once we have eliminated the groups that correspond to rank zero
elliptic curves, we proceed just as in Step 1a. Again we sort the groups into sets,
only this time G+

1,k(n) has the added condition that XG is not only genus 1, but
also that it has positive rank over Q.

Step 2. For each set of the form G0,k(n) and G+
1,k(n), we compute the set of maximal

elements (with containment, up to conjugation) and put those into sets of the form
M0,k(n) or M1,k(n). The values for which these sets are non-empty correspond to
the 9 pairs ((a, b), T ) in the statement of Theorem A. For a concrete example of
why we take this step, see Example 4.8.

Step 3. The last step is to determine a model for the modular curve XG over Q as
well as its j-map for each G ∈ M0,k or M1,k(n). The details of this step can be
found in Sections 5, 6, and 7.

Related results. Brau–Jones [BJ16] and the second author [Mor19, Theorem 8.7]
have classified all elliptic curves E/Q with (2, 3)-entanglement of non-abelian type.
In recent work, Lozano-Robledo and the first author [DLR19] classified the elliptic
curves E/Q, and primes p and q such that Q(E[p]) ∩ Q(ζqk) is non-trivial and
determined the degree of this intersection. As a consequence, they also classify all
elliptic curves E/Q and integers m,n such that the m-th and n-th division fields
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coincide. Recently, Campagna–Pengo [CP20] have studied the entanglements of CM
elliptic curves focusing on when division fields become linearly disjoint, and they
used their results to determine the index of the adelic image of Galois associated
to a CM elliptic curve over Q inside of the normalizer of a certain Cartan subgroup
(see loc. cit. Corollary 4.6 and Remark 4.7 for details). Finally, Jones–McMurdy
[JM20] determine the genus zero modular curves and their j-maps whose rational
points correspond to elliptic curves with entanglements of non-abelian type.

Comments on code. Wemention here that the code and techniques used through-
out this paper build upon those of previous results. The authors would like to
especially point out the results and code in the following articles [Zyw15,RZB15,
Sut16, SZ17,DLRNS18]. We also relied heavily on the LMFDB [LMF19], in order
to understand and generate the examples in this paper.

All of the computations in this paper were performed using Magma [BCP97]. The
code used to do the computations can be found at the following link.

https://github.com/jmorrow4692/Entanglements

Outline of paper. In Section 2, we recall some background on Galois representa-
tions attached to elliptic curves, modular curves, and Siegel functions. In Section 3,
we give our group theoretic definition of entanglements and an additional criterion
for G to represent an explained or unexplained entanglement. In Section 4, we
show how the group theoretic definitions codify entanglements of division fields of
elliptic curves and provide several examples to illustrate the relationship between
the notions.

Section 5 begins the description of the modular curve computations and gives
explicit examples of these computations for a genus 0 subgroup with −I using Siegel
functions and for genus 0 subgroups without −I. In Sections 6 and 7, we discuss
computations of modular curves of genus 0 and 1, respectively, which were done
using different methods. Finally, in Section A, we provide tables of the various mod-
ular curves whose rational points parametrize elliptic curves with an unexplained
(p, q)-entanglement of type T for the pairs ((p, q), T ) mentioned in Theorem A.

Conventions. Throughout, we will use the following conventions.

Groups. We set some notation for specific subgroups of GL2(Z/�Z). Let �Cs be the
subgroup of diagonal matrices. Let ε = −1 if � ≡ 3 (mod 4) and otherwise let ε � 2
be the smallest integer which is not a quadratic residue modulo �. Let �Cn be the
subgroup consisting of matrices of the form

(
a bε
b a

)
with (a, b) ∈ Z/�Z2 \ {(0, 0)}.

Let �Ns and �Nn(�) be the normalizers of �Cs and �Cn, respectively, in GL2(Z/�Z).
We have [�Ns : �Cs] = 2 and the non-identity coset of �Cs(�) in �Ns(�) is represented
by ( 0 1

1 0 ). Similarly, [�Nn : �Cn] = 2 and the non-identity coset of �Cn in �Nn is
represented by

(
1 0
0 −1

)
. Let �B be the subgroup of upper triangular matrices in

GL2(Z/�Z). This notation was established by Sutherland in [Sut16] and is used in
the LMFDB [LMF19]. We will also use Sutherland’s notation for the less standard
subgroups of level p.

When studying an entanglement group G of composite level, it is useful to keep
track of their images mod a and b. To this end, if we have a group of level pq, we
will assign it a label of [Lp(G), Lq(G)] where Lp(G) (resp. Lq(G)) is the Sutherland
[Sut16] label of the image of G mod p (resp. mod q).

https://github.com/jmorrow4692/Entanglements
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Finally, we will use the notation πa to denote the reduction map of GL2(Z/nZ) →
GL2(Z/aZ) where a | n and n should be clear from context.

Elliptic curves. For a field k, we will use E/k to denote an elliptic curve over k.
For a square-free element d ∈ k×/(k×)2, the twist of E by d will be denoted by
E(d). Any particular elliptic curve over Q mentioned in the paper will be given by
Cremona reference and a link to the corresponding LMFDB [LMF19] page when
possible.

2. Preliminaries

In this preliminary section, we recall background on Galois representations as-
sociated to elliptic curves, modular curves, and Siegel functions.

2.1. Galois representations of elliptic curves and modular curves. Let E
be an elliptic curve over Q. For any positive integer n, we denote the n-torsion
subgroup of E(Q), where Q is a fixed algebraic closure of Q, by E[n]. For a prime
�, let

T�(E) := lim←−
n�1

E[�n] and T (E) := lim←−
n�1

E[n]

denote the �-adic Tate module and adelic Tate module, respectively. By fixing a

Ẑ-basis for T (E), there is an induced Z/nZ-basis on E[n] for any positive integer n.
The absolute Galois group GQ := Gal(Q/Q) has a natural action on each torsion
subgroup, which respects each group structure. In particular, we have the following
continuous representations

ρE,n : GQ −→ Aut(Z/nZ) � GL2(Z/nZ) (mod n),

ρE,�∞ : GQ −→ Aut(T�(E)) � GL2(Z�) (�-adic),

ρE : GQ −→ Aut(T (E)) � GL2(Ẑ) (adelic),

where the image under ρ is uniquely determined up to conjugacy in its respective
general linear group. The n-division field Q(E[n]) is the fixed field of Q by the
kernel of the mod n representation; moreover, the Galois group of this number field
is the image of the mod n representation.

A celebrated theorem of Serre [Ser72] says that for a non-CM elliptic curve E/Q,

the adelic representation ρE has open image in GL2(Ẑ). Using the isomorphism

GL2(Ẑ) �
∏

� prime

GL2(Z�),

we see that for any non-CM elliptic curve over Q, there exists a smallest integer
rE/Q > 0 such that for all � � rE/Q, the �-adic representation is surjective. Serre
[Ser81, p. 399] asked whether rE/Q = 41. In [Zyw20, Conjecture 1.1], Zywina gave
a refined conjecture concerning the surjectivity of the mod � image and provided
a practical algorithm (implemented in Sage) to compute the finite set of primes �
for which ρE,�(GQ) is not surjective; a prime � is called exceptional if it belongs
to this finite set. Finally, Sutherland [Sut16] performed extensive computations on
determining the mod � image of Galois for elliptic curves in the Cremona tables
[LMF19] and in the Stein–Watkins database [SW02], which led to further refine-
ments of these conjectures (see [Sut16, Conjecture 1.1]). Below, we provide a version
of their conjectures.
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Conjecture 2.1 (Serre, Sutherland, Zywina). Let E/Q be a non-CM elliptic curve.
If � > 37, then ρE,� is surjective.

We now describe a set of necessary conditions on the possible non-surjective
images of ρE,N (GQ), where N � 2. We follow closely the conventions laid out in
[SZ17] modifying only the condition that −I ∈ G.

Definition 2.2. A subgroup G of GL2(Z/NZ) is admissible if it satisfies the fol-
lowing conditions:

• G �= GL2(Z/NZ),
• det(G) = (Z/NZ)×,
• G contains an element with trace 0 and determinant −1 that fixes a point
in (Z/NZ)2 of order N .

Proposition 2.3 ([Zyw15, Proposition 2.2]). Let E be an elliptic curve over Q

for which ρE,N (GQ) is not surjective. Then ρE,N (GQ) is an admissible subgroup of
GL2(Z/NZ).

For an admissible subgroup G ⊆ GL2(Z/NZ) with −I ∈ G, we can associate to
it a modular curve XG, which is a smooth, projective, and geometrically irreducible
curve over Q. It comes with a natural morphism

πG : XG −→ SpecQ[j] ∪ {∞} =: P1
Q,

such that for an elliptic curve E/Q with jE /∈ {0, 1728}, the group ρE,n(GQ) is
conjugate to a subgroup of G if and only if jE = πG(P ) for some rational point
P ∈ XG(Q).

There has been extensive work on determining the modular curves XG and their
associated j-maps πG. More precisely, Zywina [Zyw15] has classified (XG, πG)
where G ⊆ GL2(Z/�Z) is an admissible subgroup. Rouse–Zureick-Brown [RZB15]
have determined (XG, πG) where G ⊆ GL2(Z/2

nZ) is an admissible subgroup, and
Sutherland–Zywina [SZ17] have computed (XG, πG) where G ⊆ GL2(Z/�

nZ) is an
admissible subgroup and the associated modular curve XG has genus 0 or genus 1
and positive rank. Our modular curve computations use many of the techniques
laid out in these works, especially [SZ17].

When the admissible subgroup G does not contain −I, one cannot just work
with the coarse space to understand the moduli interpretation because further in-
formation is required. See [RZB15, Sections 2 and 5].

Before describing a technique to compute these modular curves, we prove a
lemma relating the mod n image of Galois for n-isogenous elliptic curves E,E′ over
Q.

Lemma 2.4. Let E1, E2 be elliptic curves over Q. Let φ : E1 → E2 be a cyclic

n-isogeny defined over Q with kernel 〈P1〉, and let φ̂ : E2 → E1 denote the dual
isogeny. Fix a basis {P1, Q1} for the n-torsion on E1. Let P2 = φ(Q1) and fix a
basis {P2, Q2} for the n-torsion on E2.

Let σ be an element of Gal(Q/Q). If

ρE1,n(σ) =

(
a b
0 d

)
,

where a, d ∈ (Z/nZ)× and b ∈ (Z/nZ), then there exists a β ∈ (Z/nZ) such that

ρE2,n(σ) =

(
d β
0 a

)
.
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Proof. Our assumption on the mod n representation of E1 tells us that for an
element σ ∈ GQ, the action of σ on E1[p] can be described as:

σ(P1) = aP1,

σ(Q1) = bP1 + dQ1.

Since φ is defined over Q (in particular, φ is Galois invariant) and a group homo-
morphism, we have that

σ(P2) = σ(φ(Q1)) = φ(σ(Q1)) = φ(bP1 + dQ1) = bφ(P1) + dφ(Q1) = dP2.

Using properties of the Weil pairing (see for example [Sil09, Proposition III.8.1]),
we know that det ◦ρE,n : Gal(Q/Q) → (Z/nZ)× is the mod n cyclotomic character.
Therefore, we have that

det(ρE1,n(σ)) = det(ρE2,n(σ)),

and hence the result follows. �
2.2. Siegel functions. The modular curves XG of genus 0 with XG(Q) �= ∅ are
isomorphic to the projective line, and for each such curve, the function field is of
the form Q(h) for some modular function h of level N . Giving the morphism πG

is then equivalent to expressing the modular j-invariant in the form J(h). Below
we will describe how to compute this modular function h using Siegel functions,
but before doing so, we provide a brief introduction to Siegel functions. A reader
interested in a full treatment of the topic should see [KL81, Chapter 2].

Definition 2.5. The Siegel function ga(τ ) associated to a = (a1, a2) ∈ (Q/Z)2 is
a function on the complex upper half plane H defined by

ga(τ ) := −q(1/2)B2(a1)
τ e2πia2(a1−1)/2(1− qz)

∞∏
n=1

(1− qnτ qz)(1− qnτ /qz),

where qτ = e2πiτ , z = a1τ + a2, qz = e2πiz and B2(x) = x2 − x + 1
6 is the second

Bernoulli polynomial.

The utility of these functions is two fold. First, if a ∈ (Z
[
1
N

]
/Z)2, then the

divisor of ga is completely supported at the cusps of the modular curve X(N) and is
easily computable. Second, if once again we restrict to subscripts a ∈ (Z

[
1
N

]
/Z)2,

then there are explicit conditions under which products of these functions become
modular functions for a congruence subgroup Γ of level N . For example, see [KL81,
Chapter 2], [Dan15, Section 2], and [SZ17, Section 4].

Below, we will give the two main theorems that will allow us to compute the
j-maps for most of the genus zero modular curves with −I, but before we can state
the theorems we need to establish some notation; here we will follow the notation
from [SZ17, Section 4].

We let Γ ⊆ SL2(Z) be a congruence subgroup of level N and let P1, . . . , Pr be
the cusps of the modular curve XΓ. For each cusp Pi, choose a representative
si ∈ Q ∪ {∞} and a matrix Ai ∈ SL2(Z) such that Ai · ∞ = si. For each i, let wi

be the width of Pi (i.e., the smallest integer such that Ai

(
1 wi
0 1

)
A−1

i is in Γ).

Again following [SZ17], we let AN be the subset of a = (a1, a2) in Z
[
1
N

]2 \ Z2

such that one of the following holds:

• 0 < a1 < 1/2 and 0 � a2 < 1,
• a1 = 0 and 0 < a2 � 1/2,
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• a1 = 1/2 and 0 � a2 � 1/2.

The set AN is chosen so that every non-zero coset of Z[ 1N ]2/Z2 is represented by
an element of the form a or −a for a unique a ∈ AN . The group SL2(Z) has a
natural action on AN given by (a, γ) = a · γ where we consider a as a row vector.
Restricting this action to Γ, we can consider the Γ-orbits of AN . Given an orbit O,
we let

gO(τ ) =
∏
a∈O

ga.

From the work in [KL81], we know that g12NO is a modular function for Γ. The
hope is they can be used to generate functions on XΓ.

Lemma 2.6 ([SZ17, Lemma 4.3]). With the notation as above, we have

div(g12NO ) =

r∑
i=1

(
6Nwj

∑
a∈O

B2

(
〈(aAj)1〉

))
· Pi,

where B2(x) = x2−x+ 1
6 , (aAj)1 is the first coordinate of the row vector aAj, and

〈x〉 denotes the positive fractional part of x (i.e., the number 0 � 〈x〉 < 1 such that
x− 〈x〉 ∈ Z).

Before we can state Lemma 2.7, we need one last piece of notation. LetO1, . . . ,On

be the distinct Γ-orbits of AN and let Di = div(g12NOi
).

Lemma 2.7 ([SZ17, Lemma 4.4]). Suppose that XΓ is a genus 0 curve and that
there is an n-tuple m = (m1, . . . ,mn) ∈ Zn such that

n∑
i=1

miDi = −12NP1 + 12NP2.

Then there exists an explicitly computable 2N2-th root of unity ζ such that

h = ζ
n∏

i=1

gmi

O

is a hauptmodul for Γ.

We can use Lemma 2.7 to find generators for the function fields of each genus 0
modular curve XΓ where −I ∈ Γ. Once a hauptmodul h is computed, it suffices to
find an algebraic relationship between h and the usual modular j-invariant J . This
is done using the methods from [Dan15], which we now summarize.

We know that the function field of our modular curve is Q(ζN )(h) and that
J ∈ Q(ζN )(h), and thus there is a rational function

f(t) =
a0 + a1t+ · · ·+ akt

k

b0 + b1t+ · · ·+ bltl
∈ Q(ζN )(t)

such that f(h) = J . We can find f(t) by clearing the denominator to get

a0 + a1h+ · · ·+ akh
k = b0J + b1hJ + · · ·+ blh

lJ,

and since we know the q-expansions of h and J to as many places as necessary, we
can turn this into a linear algebra problem. We do this by considering the functions
in S1 = {1, h, h2, . . . , hk} and S2 = {J, hJ, h2J, . . . , hlJ} as vectors by taking the
coordinate vectors of some approximation with respect to the standard basis and
then look for an intersection between Span(S1) and Span(S2). After expanding h
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and J to sufficiently many places, we can find a common vector in these spans and
we use it to find f(t), and hence determine our j-map πΓ.

For each of the groups G ⊆ GL2(Z/NZ) with −I ∈ G, we can associate to it a
congruence subgroup ΓG by letting ΓG = π−1(H) where H = G ∩ SL2(Z/NZ) and
π : SL2(Z) → SL2(Z/NZ) is the standard component-wise reduction map. Note
that in the construction of our congruence subgroup, we lose some information (i.e.,
we can have subgroups G1 and G2 of GL2(Z/NZ) such that G1 ∩ SL2(Z/NZ) =
G2 ∩ SL2(Z/NZ)). From our above discussion, we have that the modular curves
XΓG

and XG are isomorphic over Q(ζN ). For an explicit example illustrating this
point, we refer the reader to Example 6.1.

In order to find a model for XΓG
that is isomorphic to XG over Q and to ensure

that we get the correct j-map for the given extension of H = G ∩ SL2(Z/NZ), we
have to take an extra step to calibrate h using rational moduli. We do this by
precomposing h with a fractional linear transformation that takes 3 known rational
points onXG to the points 0, 1, and∞. This yields a new hauptmodul h1, and when
we search for an algebraic relationship between h1 and the classical j-function, we
get a rational function defined over Q. It is admittedly messy, but using techniques
from [RZB15], we are able to find a transformation that greatly simplifies these
models.

3. Group theoretic definitions of entanglements

In this section, we define entanglements from a group theoretic perspective.
The relationship between these notions and the entanglements of division fields
mentioned in Section 1 will be postponed until Section 4.

Notation. Let G be a subgroup of GL2(Z/nZ) for some n � 2 with surjective
determinant, let a < b be divisors of n, let c = lcm(a, b), and let d = gcd(a, b). Let
πc : GL2(Z/nZ) → GL2(Z/cZ) be the natural reduction map, and set Gc := πc(G).
We have the following reduction maps and normal subgroups of Gc

πa : GL2(Z/cZ) → GL2(Z/aZ), Na := ker(πa) ∩Gc,

πb : GL2(Z/cZ) → GL2(Z/bZ), Nb := ker(πb) ∩Gc,

πd : GL2(Z/cZ) → GL2(Z/dZ), Nd := ker(πd) ∩Gc.

We will abuse notation and denote restrictions of the above maps to subgroups of
GL2(Z/cZ) with πa, πb, and πd.

We now offer two equivalent definitions for when G represents an (a, b)-entangle-
ment.

Definition 3.1. We say that G represents an (a, b)-entanglement if

〈Na, Nb〉 � Nd.

The type of the entanglement is the isomorphism type of the group Nd/〈Na, Nb〉.

Lemma 3.2. The group G represents an (a, b)-entanglement if and only if

Nd/π
−1
a (πa(Nb)) � Nd/π

−1
b (πb(Na)) �� {I} .

Proof. The equivalence follows from the equality π−1
a (πa(Nb)) = π−1

b (πb(Na)) =
〈Na, Nb〉. �
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Remark 3.3. As it will be useful later on, we define

Na,b(G) := π−1
a (πa(Nb)) = 〈Na, Nb〉 = π−1

b (πb(Na)).

In our computations, we keep track of this group as it will allow us to distinguish
entanglements (see Example 4.9 for more details).

Definition 3.1 and the equivalent condition from Lemma 3.2 represent different
perspectives on the concept of groups representing an entanglement. The main
definition is motivated by the number theory and clearly reflects the entanglement
of the division fields of elliptic curves. The notion from Lemma 3.2 takes a more
group theoretic perspective, by using Goursat’s lemma ([Lan02, page 75] or [Gou89])
to detect if there is an entanglement and the entanglement’s type.

To see how this comes from Goursat’s lemma, one simply needs to consider the
group Gc as a subgroup of Ga×Gb by using the injection g �→ (πa(g), πb(g)). From
this perspective, Gc satisfies all the conditions necessary to apply Goursat’s lemma
which says that there are (constructible) Ma Ga and Mb Gb such that the image
of Gc in Ga/Ma × Gb/Mb is the graph of an isomorphism Ga/Ma � Gb/Mb. In
this context, the groups Ma and Mb are exactly π−1

a (πa(Nb)) and π−1
b (πb(Na)),

respectively.
For further instances of the relationship between Goursat’s lemma and entangle-

ments, we refer the reader to [BJ16] and [Mor19, Lemma 8.2].

Definition 3.1 and Lemma 3.2 provide us with a group theoretic way to describe
entanglements. As mentioned in Section 1, we are interested in studying when cer-
tain entanglements appear infinitely often. In order to make this question tractable,
we need a definition which captures the notion of “maximal” entanglements. The
notion is subtle to define because we need to simultaneously capture when the en-
tanglement is happening at the lowest possible level and when it has the largest
possible type.

Our definition reads as follows.

Definition 3.4. Consider the set

TG = {((a, b), H) |G represents an (a, b)-entanglement of type H}.

We define a relation on TG by declaring that ((a1, b1), H1) � ((a2, b2), H2) if:

(1) H1 and H2 are isomorphic and either (a2 | a1 and b2 | b1) or (b2 | a1 and
a2 | b1), or

(2) H1 is isomorphic to a quotient of H2 and either (a1 | a2 and b1 | b2) or
(b1 | a2 and a1 | b2).

We say the group G represents a primitive (a, b)-entanglement of type H if
((a, b), H) is the unique maximal element of TG and n = lcm(a, b).

Remark 3.5 (How to think of primitive entanglements). Primitive (a, b)-entangle-
ments should be thought of as fundamental building blocks of entanglements, and
when G represents a primitive (a, b)-entanglement of type H, one should think that
H is the largest type of entanglement that G represents and (a, b) is the lowest level
that it occurs. This definition does not consider subgroups of GL2(Z/nZ) to be
primitive entanglements if they are the preimages of entanglements of lower level
or if they are constructed via fibered products of groups of smaller level.
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Remark 3.6.

(1) The relation on TG is not a partial order as it fails to be transitive; however,
the relation is reflexive and anti-symmetric.

(2) If TG does not have a maximal element with respect to �, then G does not
represent a primitive (a, b)-entanglement.

To get a sense of the relation �, consider Example 3.7.

Example 3.7. Let n = 420 = 22 · 3 · 5 · 7 and let G be a subgroup of GL2(Z/nZ).

• If ((2, 3),Z/2Z) and ((4, 3),Z/2Z) are in TG, then condition (1) in Definition
3.4 says that ((4, 3),Z/2Z) � ((2, 3),Z/2Z).

• If ((2, 3),Z/2Z) and ((4, 3),Z/4Z) are in TG, then condition (2) in Definition
3.4 says that ((2, 3),Z/2Z) � ((4, 3),Z/4Z).

• If ((2, 3),Z/2Z) and ((5, 7),Z/4Z) are in TG, then Definition 3.4 says that
these two pairs are incomparable.

For p, q distinct primes, one can immediately see that any subgroup G of
GL2(Z/pqZ) representing a (p, q)-entanglement must in fact be primitive.

Lemma 3.8. If G ⊆ GL2(Z/pqZ) represents a (p, q)-entanglement of type H, then
G represents a primitive (p, q)-entanglement of type H.

Proof. This follows immediately as the set TG is a single element, namely ((p, q), H).
�

With the notion of primitive firmly established, we turn our attention to defining
two classes of entanglements, which were mentioned in Section 1.

Definition 3.9. The group G represents an explained (a, b)-entanglement of type
T if G represents a primitive (a, b)-entanglement of type T and

[(Z/cZ)× : det(Na,b(G))] = [Gc : Na,b(G)].

Remark 3.10. Alternatively, one could define an explained entanglement as follows.
Let N be the kernel of det : Gc → (Z/cZ)×. Then we have that G represents an
explained (a, b)-entanglement if N ⊆ 〈Na, Nb〉.

Definition 3.11. The group G represents an unexplained (a, b)-entanglement of
type T if G represents a primitive (a, b)-entanglement of type T and

[(Z/cZ)× : det(Na,b(G))] �= [Gc : Na,b(G)].

Remark 3.12. When a group G represents an unexplained entanglement, it will
be useful to describe its type as a pair (T, T ′), where G represents a primitive
(a, b)-entanglement of type T and G′ = G ∩ SL2(Z/nZ) represents a primitive
(a, b)-entanglement of type T ′. With this notation, the group T corresponds to
the type of the total entanglement, and the group T ′ corresponds to the type
of the entanglement which is “totally” unexplained. See Example 4.7 for further
discussion.

Remark 3.13. All of the definitions in this section can be extended to open sub-

groups G of GL2(Ẑ) with surjective determinant. To do this, we first consider the
level of the subgroup G, which is the least positive integer N such that G is the in-

verse image of its image under the reduction map GL2(Ẑ) → GL2(Z/NZ). If we let
GN ⊆ GL2(Z/NZ) denote the image of G under this reduction map and let a < b be
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divisors of N , then we can say that G ⊆ GL2(Ẑ) represents an (a, b)-entanglement
when GN represents an (a, b)-entanglement, and we can similarly define the no-
tions of primitive, explained, and unexplained entanglements. We avoid defining

these notions for open subgroups GL2(Ẑ) with surjective determinant in order to
emphasize that our analysis and computations occur at finite level.

4. Entanglements for images of Galois associated to elliptic curves

In this section, we explain how the definitions from Section 3 codify the entan-
glements mentioned in Section 1.

Notation. Let E/Q be an elliptic curve and for a positive integer n � 2, let
G = Im(ρE,n) ⊆ GL2(Z/nZ) denote the mod n image of Galois. Recall that

the n-division field Q(E[n]) is the fixed field of Q by the kernel of the mod n
representation, and so the Galois group of this number field is the image of the
mod n representation.

We now recall the notation established in Section 3. Let a < b be proper divisors
of n, and let d = gcd(a, b) and c = lcm(a, b). Let πc : GL2(Z/nZ) → GL2(Z/cZ),
and set Gc := πc(G). We have the following reduction maps and normal subgroups
of Gc

πa : GL2(Z/cZ) → GL2(Z/aZ), Na := ker(πa) ∩Gc,

πb : GL2(Z/cZ) → GL2(Z/bZ), Nb := ker(πb) ∩Gc,

πd : GL2(Z/cZ) → GL2(Z/dZ), Nd := ker(πd) ∩Gc.

Again, we will abuse notation and denote restrictions of the above maps to sub-
groups of GL2(Z/cZ) with πa, πb, and πd.

We summarize the Galois correspondence between the a, b, c, d-division fields and
the groups Na, Nb, Gc, Nd in Figure 4.1.

{I}
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��
��

��
�

Q(E[c])

��
��
��
��
�

��
��

��
��

�

Na Nb Q(E[a]) Q(E[b])

〈Na, Nb〉

�������

�������
Q(E[a]) ∩Q(E[b])

����������

���������

Nd Q(E[d])

Gc Q

Figure 4.1. Galois correspondence for various division fields

Recall our previous notion of entanglement from Definition 1.1. As a consequence
of the Galois correspondence and our definitions from Section 3, we have Lemma
4.1.
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Lemma 4.1. Let E/Q be an elliptic curve, and let a < b be positive integers. The
group Im(ρE,ab) represents an (a, b)-entanglement of type T if and only if E has an
(a, b)-entanglement of type T .

Using Lemma 4.1 and the notions from Section 3, we can define various type of
entanglements for elliptic curves.

Definition 4.2. We say that an elliptic curve E/Q has an (a, b)-entanglement of
type T if for some n � 2 and proper divisors a < b, the mod n image of Galois
Im(ρE,n) represents an (a, b)-entanglement of type T .

Definition 4.3. We say that an elliptic curve E/Q has an explained
(a, b)-entanglement of type T if for some n � 2 and proper divisors a < b, the mod
n image of Galois Im(ρE,n) represents an explained (a, b)-entanglement of type T .

Remark 4.4. We now explain how Definition 4.3 encapsulates the explained entan-
glements we discussed in Section 1. Let E/Q be an elliptic curve and let G be
the mod n image of Galois. Notice that the group N in Remark 3.10 corresponds
to groups with fixed field Q(ζc). Indeed, since det ◦ρE,c : Gal(Q/Q) → (Z/cZ)×,
we have that Q(ζc) is fixed by the elements with determinant 1. Therefore, if
G represents an explained (a, b)-entanglement, we have that the intersection of
Q(E[a]) ∩ Q(E[b]) is the compositum of Q(E[a]) ∩ Q(ζb) and Q(E[b]) ∩ Q(ζa). In
this case, the entanglement is explained by the Kronecker–Weber theorem and the
Weil pairing.

Definition 4.5. We say that an elliptic curve E/Q has an unexplained (a, b)-
entanglement of type T if for some n � 2 and proper divisors a < b, the mod n
image of Galois Im(ρE,n) represents an unexplained (a, b)-entanglement of type T .

To conclude this section, we discuss several examples of unexplained entangle-
ments.

Example 4.6. The elliptic curve from Example 1.2 has an unexplained (2, 3)-
entanglement of type Z/2Z. One could say that this elliptic curve has a “to-
tally” unexplained (2, 3)-entanglement of type (Z/2Z,Z/2Z) (cf. Remark 3.12) as
no part of the entanglement is lost when intersecting the mod 6 image of Galois
with SL2(Z/6Z). More precisely, the groups Im(ρE,6) and Im(ρE,6) ∩ SL2(Z/6Z)
both represent the same (2, 3)-entanglement of type Z/2Z.

Example 4.7. By the Hilbert irreducibility theorem, most of the members of
the family of elliptic curves from Brau–Jones [BJ16] have an unexplained (2, 3)-
entanglement of type (S3,Z/3Z). Indeed, the authors classify elliptic curves E/Q

satisfying Q(E[2]) ⊆ Q(ζ3,Δ
1/3
E ) ⊆ Q(E[3]). When 3 is not an exceptional prime

for E, there is only one quadratic subfield of Q(E[3]), namely Q(
√
−3), and when

2 is not exceptional for E and Q(E[2]) ⊆ Q(E[3]), it must be that ΔE = −3t2

for some t ∈ Q×. In this case, part of the (2, 3)-entanglement is “explained” by
Q(

√
−3), and so E has an unexplained (2, 3)-entanglement of type (S3,Z/3Z).

Example 4.8. The purpose of this example is to illustrate why we are considering
only the maximal groups (partially ordered by containment, up to conjugation)
representing a primitive entanglement of a given level and type. We will show
how these maximal groups capture all of the information that is essential to under-
standing the moduli space of elliptic curves with entanglements of this kind and
give anecdotal justification for Step 2 in our proof of Theorem A.
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To this end, we search for all the admissible groups G ⊆ GL2(Z/6Z) that repre-
sent a (2, 3)-entanglement of type (S3,Z/3Z). Our search yields four such groups

G1 =

〈(
5 1
4 3

)
,

(
4 1
1 0

)〉
, G2 =

〈(
4 1
5 3

)
,

(
2 3
1 4

)〉
,

G3 =

〈(
2 5
1 3

)
,

(
4 3
5 2

)〉
, G4 =

〈(
2 5
1 3

)
,

(
1 1
0 5

)〉
,

which have size 48, 12, 6, and 6 respectively. Further, for each i, the modular curve
XGi

is a P1.
Up to conjugation, G1 contains the other three groups; in fact, G2 = 〈−I,G3〉 =

〈−I,G4〉 andG2 = G1∩π−1
3 (3B), where π3 is the map π3 : GL2(Z/6Z)→GL2(Z/3Z).

In particular, we see that the rational points on XG2
correspond to elliptic curves

with mod 6 image representing a (2, 3)-entanglement of type (S3,Z/3Z) (since G2 ⊆
G1) and with a 3-isogeny (since G2 ⊆ π−1

3 (3B)). The groups G3 and G4 then occur

as particular twists inside each of the Q-isomorphism classes of elliptic curves with
image in G2.

On the other hand, the modular curve XG1
parametrizes Q-isomorphism classes

of elliptic curves with mod 6 image of Galois contained in G1, and so if E/Q is
an elliptic curve with a (2, 3)-entanglement of type (S3,Z/3Z), then E corresponds
to a rational point on XG1

regardless of whether or not the elliptic curve has any
additional algebraic structure. Therefore, the modular curve XG1

is the fundamen-
tal object as far as (2, 3)-entanglements of (S3,Z/3Z)-type are concerned. Once
XG1

is computed, to understand the finer question of what other structures can
occur along with an entanglement, one can use fibered products of modular curves
(cf. [Mor19, Section 8.4]).

Example 4.9. Before proceeding, we provide an example illustrating the way in
which we can obtain information about an entanglement group from knowing the
group Na,b(G).

Consider the two subgroups of GL2(Z/6Z) given by

G1 =

〈(
2 5
3 2

)
,

(
1 3
3 2

)〉
and G2 =

〈(
5 5
0 5

)
,

(
2 5
3 2

)
,

(
2 1
3 1

)〉
.

These are two of the five maximal groups in the set of all level 6 groups representing
an unexplained (2, 3)-entanglement of type Z/2Z. That is, they are not conjugate
and there are no level 6 groups that represent a (2, 3)-entanglement of type Z/2Z
that contain either of these groups, up to conjugation. Both of these groups also
have the property that their mod 2 image is full and their image mod 3 is conjugate
to 3B.1 For each group we compute

N2,3(G1)=

〈(
1 2
0 1

)
,

(
1 0
0 5

)
,

(
4 3
3 1

)〉
andN2,3(G2)=

〈(
1 2
0 1

)
,

(
5 0
0 1

)
,

(
1 3
3 4

)〉
.

Inspecting these groups, we see that

π3(N2,3(G1))=

〈(
1 0
0 2

)
,

(
1 1
0 1

)〉
and π3(N2,3(G2))=

〈(
2 0
0 1

)
,

(
1 1
0 1

)〉
.

1All of the remaining three maximal groups have full image mod 2. One of the groups has
image conjugate to 3Ns mod 3, and the remaining two groups have mod 3 image conjugate to 3Nn

and can be found in Example 6.1.
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Thus, if E is an elliptic curve with Im(ρE,6) = G1, we know that the intersection
between Q(E[2]) and Q(E[3]) is the fixed field of π3(N2,3(G1)), which is exactly
the field of definition of the 3-isogeny that E must have (since π3(N2,3(G1)) only
has 1’s in the upper left hand corner). On the other hand, if Im(ρE,6) = G2, then
the intersection occurs between the other quadratic field in Q(E[3]) that is not
Q(

√
−3). It is worth pointing out here that we know that neither of these groups

fix Q(ζ3) since det(π3(N2,3(Gi))) = (Z/3Z)× for i = 1, 2.

5. Computations of modular curves

In this section, we begin our classification of unexplained (p, q)-entanglements
which occur for infinitely many isomorphism classes of elliptic curves where p �= q
are primes. To begin, we show that there are only finitely many groups representing
such entanglements.

Lemma 5.1. Suppose that G ⊆ GL2(Z/pqZ) represents an unexplained (p, q)-
entanglement, and let H = G ∩ SL2(Z/pqZ). Then, there exists a congruence
subgroup Γ ⊆ SL2(Z) of level pq with πpq(Γ) = H.

Proof. Since the SL2-level of G (i.e., the level of H) divides the GL2-level, it suffices
to show that the SL2-level of G does not divide p or q. Since G represents an
unexplained entanglement, we have that H is not all of SL2(Z/pqZ), and hence the
SL2-level of G is not 1. Suppose for the sake of contradiction that the SL2-level of
G equals p. Then, H = S(p)×SL2(Z/qZ), and it follows that SL2(Z/qZ) ⊂ Nq (the
kernel of the restriction map coming from the q side in the fibered product implicit
in G ⊂ GL2(Z/pZ)× GL2(Z/qZ)). This implies that the entanglement field must
be a subfield of Q(ζq), which contradicts our initial assumption that G represents
an unexplained entanglement. A similar proof also shows that the SL2-level of G
cannot equal q, and therefore the SL2-level of G is equal to pq, as desired. �
Proposition 5.2. There are only finitely many admissible subgroups G ⊆
GL2(Z/pqZ) representing an unexplained (p, q)-entanglement that have genus � 1
as p and q vary over pairs of distinct primes.

Proof. Suppose that G is an admissible subgroup of GL2(Z/pqZ) which represents
an unexplained (p, q)-entanglement with genus less than or equal to 1. Since G
represents an unexplained entanglement, Lemma 5.1 tells us that there exists a
congruence subgroup Γ ⊆ SL2(Z) of level pq with πpq(Γ) = H such that the genus
of the modular curveXΓ is less than or equal to 1. By Cox–Parry [CP84], there is an
upper bound on the level of such groups H (i.e., the product pq is bounded) and by
Cummins–Pauli [CP03], we have a complete list of possible H. Since the possible
levels are bounded and at each level there are finitely many possible admissible
subgroups, the result follows. �

With Proposition 5.2 and [CP84,CP03], we now know that if G represents an
unexplained (p, q)-entanglement and the genus of XG is at most 1, then G has level
less than or equal to 39. Therefore, in order to prove Theorem A, we only need to
search the levels N = p · q where N � 39.

Remark 5.3. Of course, we could attempt to classify unexplained (pn, qm)-entangle-
ments, however many of the computational aspects become very complicated and
tedious (cf. Remark 5.6). One other subtlety with classifying unexplained (pn, qm)-
entanglements is that the group G ∩ SL2(Z/p

nqmZ) may be the preimage under
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the reduction map of a subgroup SL2(Z/aZ) where a | pnqm. We refer the reader
to [JM20, Section 3] for further discussion.

At this time, we also note that by Definitions 1.1 and 4.2 there cannot exist a
non-trivial (pn, pm)-entanglement where 1 � n � m. When investigating pn- and
pm-division fields, entanglements are not the correct relationship to study, rather
one should ask when Q(E[pn]) = Q(E[pm]). This question has been considered
by Rouse–Zureick-Brown [RZB15, Remark 1.6] and Lozano-Robledo and the first
author [DLR19, Theorem 1.4].

For the remainder of the section, we provide examples of computing genus 0
modular curves associated to groups representing an unexplained entanglement.
When the group contains −I, we use the Siegel functions method described in
Subsection 2.2, and for the curves whose groups do not have −I, we compute the
models for these curves by hand using interesting relationships between them.

5.1. A genus zero example via Siegel functions. The goal of this section is to
carefully compute the j-map of one genus 0 modular curve using Siegel functions.
Let G be the genus 0, admissible subgroup of GL2(Z/14Z) generated by

G :=

〈(
10 7
5 11

)
,

(
2 7
3 3

)
,

(
5 7
9 12

)〉
and let H = G ∩ SL2(Z/14Z).

The group G represents an unexplained (2, 7)-entanglement of type Z/3Z. By
computing the subgroup N2,7(G), we have that for a given elliptic curve E/Q with
ρE,14(GQ) conjugate to G, Q(E[2])∩Q(E[7]) = Q(x(P )) where 〈P 〉 is the kernel of
a 7-isogeny E → E′ and x(P ) corresponds to the x-coordinate of P . In other words,
we see that the entanglement field is contained inside of the kernel of a 7-isogeny.

Recall the notation established in Subsection 2.2. The first step is to compute
the orbits of H acting on A14. There are exactly 9 orbits that are represented by
a unique element in the set

S=

{(
1

14
, 0

)
,

(
1

7
, 0

)
,

(
3

14
, 0

)
,

(
5

14
, 0

)
,

(
1

2
, 0

)
,

(
0,

1

14

)
,

(
1

14
,
1

14

)
,

(
0,

1

7

)
,

(
0,

3

14

)}
.

Computing the divisors for the product of Siegel functions as in Lemma 2.6, we
see that if O is the orbit of A14 represented by

(
3
14 , 0

)
, then the function g12·14O (τ )

has divisor −12 · 14P1 + 12 · 14P2, where P1 is the point at infinity and P2 is the
cusp represented by the rational number 1. Therefore, by Lemma 2.7, we have that

h(τ ) = gO(τ )

is a hauptmodul for the modular curve corresponding to the congruence subgroup
associated to H. In this case, we have the following q-expansion

h = q−1/14 − 1− q1/7 + q2/7 + q5/14 − q5/7 − q11/14 + q6/7 + 2q13/14 +O(q),

where q = e2πiτ .
Next, we attempt to write the usual j-map’s q-expansion as a rational function

in the q-expansion of h using linear algebra. A Magma computation shows that if
j(τ ) is the usual modular j-function and

J1(t) =
(t2 + 3t+ 3)3(t6 + 7t5 + 22t4 + 47t3 + 76t2 + 75t+ 31)P1(t)

3

(t+ 1)14(t+ 2)14(t3 + 4t2 + 3t− 1)2
,
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where

P1(t) = (t12+16t11+113t10+466t9+1254t8+2334t7+3091t6+2886t5+1752t4

+ 532t3 + 11t2 + 24t+ 37),

then J1(h) = j(τ ) (i.e., J1 is the j-map for XH). Moreover, we have that an elliptic
curve E over Q(ζ14) has mod 14 image of Galois contained in H if and only if j(E)
is in J1(Q(ζ14)).

In order to recover the full group G, we need to calibrate our function h. To
do this, we compose h with a fractional linear transformation that takes the pre-
image of three known rational points to 0, 1, and ∞. For this example, we use the
j-invariants

51181724570498001

4
,
5841700537729

36
, and

16997034248155273645704721

141745549885174404

which we found by hand.
The result is a new hauptmodul, but its q-expansion and the corresponding new

j-map are too messy to reproduce here. Using the methods in [RZB15], we are able
to find a nicer parameterization, which yields the j-map

J(t) =
(t2 − t+ 1)3(t6 − 5t5 + 12t4 − 9t3 + 2t2 − t+ 1)P2(t)

3

(t− 1)2t2(t3 − 2t2 − t+ 1)

with

P2(t) = (t12 − 8t11 + 265t10 − 1474t9 + 5046t8 − 10050t7 + 11263t6 − 7206t5

+ 2880t4 − 956t3 + 243t2 − 4t+ 1).

Remark 5.4 (Reality checks). To check that the above j-map J(t) is correct, we
perform the following checks. Although J1(t) and J(t) parameterize different genus
0 curves over Q, we check that they give the same genus 0 curve when considered
over Q(ζ14). Second, we define the generic elliptic curve Et/Q(t) with j-invariant
J(t) and check that it has the correct entanglement.

5.2. Genus zero examples without −I. In this subsection, we will discuss some
of the genus zero examples without −I. To begin, we recall that in [RZB15, Section
5], the authors give a detailed discussion how to compute, for a genus zero subgroup
H without−I, a family of curves Et over an open subset U ⊆ P1 such that an elliptic
curve E/Q without CM has image of Galois contained in a subgroup conjugate to
H if and only if there exists t ∈ U(Q) such that Et � E. In general, performing this
computation boils down to finding the correct quadratic twist of the generic elliptic
curve over Q(t) with prescribed image of Galois, which can be quite computationally
expensive.

In our situation, we are able to use relationships between entanglements (cf. Ex-
amples 1.2 and 1.3) to form a constellation (see Figure 5.1) between these groups,
which greatly assists in determining their fine moduli spaces. By a constellation,
we mean that these unexplained entanglements can be connected through isogenies
and twisting, which we will illustrate by an example.

Consulting our search, we see that there are exactly 2 maximal groups of label
[GL2, 5B.4.1] and two maximal groups of label [GL2, 5B.4.2], and all four of
these groups represent an unexplained (2, 5)-entanglement of type Z/2Z. Of the
2 groups with label [GL2, 5B.4.1], we denote by G1 the one that represents an
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entanglement which is contained inside of the kernel of the 5-isogeny (i.e., given
an elliptic curve E/Q with ρE,10(GQ) conjugate to G1, we have that Q(E[2]) ∩
Q(E[5]) = Q(x(P )) where 〈P 〉 is the kernel of a 5-isogeny E → E′ and x(P ) denotes
the x-coordinate of P ) and the other group with label [GL2, 5B.4.1] by G4. We
see that there is exactly one group, call it G2, with label [GL2, 5B.4.2], which
is related to G1 by Lemma 2.4. The remaining group with label [GL2,5B.4.2] is
denoted by G3.

With this, we have that the 4 subgroups of GL2(Z/10Z) that are of interest are

G1 =

〈 (
6 5
7 1

)
,

(
7 0
9 9

)
,

(
4 5
5 4

)〉
, G2 =

〈 (
1 5
1 6

)
,

(
1 0
0 7

)
,

(
4 5
5 4

)〉
,

G3 =

〈 (
1 5
1 6

)
,

(
1 0
5 3

)
,

(
4 5
5 4

)〉
, G4 =

〈 (
6 5
7 1

)
,

(
8 5
7 6

)
,

(
9 5
0 9

)〉
.

We can find elliptic curves over Q whose mod 10 images of Galois correspond to
Gi for i = 1, . . . , 4. Let E1, E2, E3, and E4 be the elliptic curves with Cremona
labels 193600hc1, 193600hc2, 38720l2, and 38720l1, respectively. We start by ob-
serving from the Cremona labels that E1 and E2 (resp. E3 and E4) are 5-isogenous.
Looking closer, we see that E1 and E4 (resp. E2 and E3) are related through twist-
ing by 5. We also note that for each i ∈ {1, 2, 3, 4} the discriminant ΔEi

of Ei is
congruent to −110 modulo rational squares, and so Q(

√
−110) ⊆ Q(Ei[2]).

Next, we observe that E1 has a point of order 5 defined over Q(
√
−110), namely

the point P1 = (−1503, 4400
√
−110). From this and a Magma computation, we

see that E1 has a (2, 5)-entanglement of type Z/2Z, no other entanglements of
this level, and the common field between the 2- and 5-division fields is contained
inside the field of definition of the kernel of the 5-isogeny connecting E1 and E2.
Here we have that ρE1,5 has image contained in the group with Sutherland label
5B.4.1 while E2 has related image 5B.4.2. As such, E2 has a point P2 of order
5 defined over a Z/4Z-extension of Q that contains

√
5. Analyzing the 5-division

field of E2 further, we see that Q(
√
−110) is also in Q(E2[5]) and since once again

ΔE2
≡ −110 mod (Q×)2, E2 also has a non-trivial (2, 5)-entanglement of type

Z/2Z.
Twisting E2 by 5, we get the curve E3. A simple computation shows that

again Q(
√
−110) ⊆ Q(E3[5]), but this time it is playing the role of the other qua-

dratic subfield inside the division field. That is to say, if we fix bases for E2[5]
and E3[5] that are compatible with twisting by 5, then the two quadratic exten-

sions inside Q(E2[5]) and Q(E3[5]) that are not Q(
√
5), in this case Q(

√
−110)

and Q(
√
−550), are each identified with an index two subgroup of the common

group Im(ρE2,5) � Im(ρE3,5). Since we chose compatible bases, we can compare

which index two subgroup Q(
√
−110) corresponds to inside of the common group

Im(ρE2,5) � Im(ρE3,5). The point is, these two curves have the same 5-division
field, but the common subfields are identified with different subgroups of their
(common) mod 5 image; this is the difference between the (2, 5)-entanglements
that E2 and E3 have. The group theoretic approach is sensitive enough to detect
this and distinguish them.

The last curve to look at is E4. In this case, Im(ρE4,5) is the group 5B.4.1,

but the point of order 5 defined over a quadratic field is P4 = (−1181, 8800
√
−22).

Although we do not have that Q(
√
ΔE4

) is the same as the field of definition of

this point, we do still have that Q(
√
−110) ⊆ Q(

√
5,
√
−22) ⊆ Q(E[5]). Thus, this

https://www.lmfdb.org/EllipticCurve/Q/193600hc1/
https://www.lmfdb.org/EllipticCurve/Q/193600hc2/
https://www.lmfdb.org/EllipticCurve/Q/38720l2
https://www.lmfdb.org/EllipticCurve/Q/38720l1


A GROUP THEORETIC PERSPECTIVE ON ENTANGLEMENTS 847

curve still exhibits a (2, 5)-entanglement of type Z/2Z. Note that the mod 5 image
of E4 is the same as that of E1, but the entanglement occurs between structurally
different fields.

Bringing this together, we have that Im(ρEi,10) = Gi for each i ∈ {1, 2, 3, 4} and
Figure 5.1:

E1 E2 G1 G2

E4 E3 G4 G3

5−isogenous

Twisting by 5 Twisting by 5

5−isogenous

5−isogenous 5−isogenous

Figure 5.1. Constellation of entanglements

Each square commutes, and the two squares are connected by the map that takes
Ei to Im(ρEi,10). The vertical maps on the left are 5-twists and on the right are
isomorphisms that connect the groups. The horizontal arrows on the left square
are 5-isogenies. On the right, the horizontal arrows correspond to how Im(ρE1,10)
(resp. Im(ρE3,10)) transforms to Im(ρE2,10) (resp. Im(ρE4,10)) under the 5-isogeny
E1 → E2 (resp. E3 → E4). We refer the reader to Lemma 2.4 for a description of
how these images transform.

As mentioned at the start of this subsection, we want to compute the Weierstrass
equation for the universal family of non-CM elliptic curves over Q where each
member of the family has mod 10 image contained in Gi for each i = 1, 2, 3, 4. To
do so, it suffices to determine the Weierstrass equation for the universal elliptic
curve corresponding to G1. Indeed, the above discussion tells us that we can use
isogenies and twisting to determine the Weierstrass equation for the remaining
families. By studying properties of E1, we get a sense for how to compute the
Weierstrass equation for the universal elliptic curve over G1. The curve E1 is just
a twist of an elliptic curve with a point of order 5 by −110, which happens to be
the square-free part of ΔE1

. Motivated by this, we use work of Zywina [Zyw15] to
find a model for the generic elliptic curve with a point of order 5

Et : y2 = x3 + (−27t4 + 324t3 − 378t2 − 324t− 27)x

+ (54t6 − 972t5 + 4050t4 + 4050t2 + 972t+ 54),

and note that its discriminant is ΔEt
≡ t(t2 − 11t − 1) mod (Q(t)×)2. Let d :=

t(t2 − 11t− 1). Twisting Et by d we get

E(d)
t : y2 = x3 − 27t2(t2 − 11− 1)2(t4 − 12t3 + 14t2 + 12t+ 1)x

+ 54t3(t2 − 11− 1)3(t4 − 12t3 + 14t2 + 12t+ 1)(t2 + 1).

By construction, this is the Weierstrass equation for the universal family of non-
CM elliptic curves over Q where each member of the family has mod 10 image

contained in G1, and a quick check shows the specialization of E(d)
t to either t ∈

{10,−1/10} is exactly E1. By our above discussion, we also have that E(5d)
t is

the Weierstrass equation for the universal family of non-CM elliptic curves over Q
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where each member of the family has mod 10 image contained in G4. Furthermore,

the curve that is 5-isogenous to E(d)
t is exactly the Weierstrass equation for the

universal family of non-CM elliptic curves over Q where each member of the family
has mod 10 image contained in G2, and twisting this universal elliptic curve by 5,
we get the Weierstrass equation for the universal family of non-CM elliptic curves
over Q where each member of the family has mod 10 image contained in G3.

To summarize, we are able to compute all 4 of the Weierstrass equations for the
universal families using the constellation from Figure 5.1.

Remark 5.5. Keeping the above notation, we have that 〈G1,−I〉 = 〈G4,−I〉 and
〈G2,−I〉 = 〈G3,−I〉, and so there are just two modular curves in the above discus-
sion. We also note that if we intersect these groups with SL2(Z/10Z), then they are
all equal, and hence the two underlying modular curves are isomorphic over Q(ζ5).

Remark 5.6. It turns out that this approach to computing modular curves of en-
tanglement groups without −I extends to cover all the examples that we are inter-
ested in. The example worked out here is the most complicated situation that we
find when restricting to (p, q)-entanglement, but as soon as one considers (pn, qm)-
entanglements the situation can become much more complicated.

6. Unexplained entanglements — genus zero setting

In this section, we describe two examples of constructing genus zero modular
curves corresponding to an unexplained entanglement. These cases needed to be
done by hand as the Siegel functions method did not work because we are not able
to find a hauptmodul.

Example 6.1. Recall that 3Nn is the normalizer of the non-split Cartan subgroup
of GL2(Z/3Z). Our goal is to find the elliptic curves E/Q with Im(ρE,3) conjugate
to a subgroup of 3Nn with the property that Q(E[2]) ∩ Q(E[3]) is a quadratic
extension different from Q(

√
−3). If E/Q is an elliptic curve with Im(ρE,3) � 3Nn,

then Q(E[3]) has 3 different quadratic extensions, and hence there are only 2 ways
for E to have an unexplained (2, 3)-entanglement of type Z/2Z.

By [Zyw15], we know that elliptic curves over Q such that Im(ρE,3) is conjugate
to a subgroup of 3Nn are exactly the elliptic curves with j(E) = t3 for some t ∈ Q.
Let Et/Q(t) be the elliptic curve

Et : y2 + xy = x3 − 36

t3 − 1728
x− 1

t3 − 1728
,

which is the generic elliptic curve with j-invariant t3.
Letting f3(x) be the 3-division polynomial of Et, we see that

Gal(Q(t)(x(Et[3]))/Q(t)) � D4 so all of the quadratic extensions in Q(t)(Et[3])
are in fact contained in Q(t)(x(Et[3])). Using Magma, we see that these quadratic
extensions are exactly

Q(t)
(√

−3
)
, Q(t)

(√
t2 + 12t+ 144

)
, and Q(t)

(√
−3(t2 + 12t+ 144)

)
and that the unique quadratic extension in Q(t)(Et[2]) is exactly Q(t)

(√
ΔEt

)
.

Again, using Magma, we see that Q
(√

ΔEt

)
� Q

(√
(t− 12)(t2 + 12t+ 144)

)
, and

so in order to have an unexplained (2, 3)-entanglement of type Z/2Z, we need to
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have

(t− 12)(t2 + 12t+ 144) ≡
{

(t2 + 12t+ 144) mod (Q(t)×)
2
,

−3(t2 + 12t+ 144) mod (Q(t)×)
2
.

Solving these equations, we see that these cases correspond to when

j(E) =

⎧⎨⎩(s2 + 12)3 for some s ∈ Q,(
− s2

3 + 12
)3

for some s ∈ Q.

Our search for admissible subgroups of GL2(Z/6Z) that represent a non-trivial
entanglement found 2 groups representing a (2, 3)-entanglement of type Z/2Z whose
mod 3 image is conjugate to a subgroup of 3Nn. Those groups are

G1 =

〈(
0 1
1 3

)
,

(
3 5
1 0

)
,

(
5 4
5 5

)〉
and G2 =

〈(
5 1
4 1

)
,

(
5 1
5 2

)〉
.

To distinguish which j(E) corresponds to whichGi, we will evaluate each j-map at a
“generic point” and see if we can determine which elliptic curve over Q corresponds
to which group. Choosing s = 3 and evaluating the above j-maps, we get that
the curves of minimal conductor with the corresponding j-invariants are the curves
E1/Q and E2/Q whose Cremona labels are 25947d1 and 36963o1, respectively.
According to LMFDB, these curves have full mod 2 image and mod 3 image exactly
3Nn, and thus are generic.

For these curves, we have

Q(
√
ΔE1

) = Q(
√
93) and Q(

√
ΔE2

) = Q(
√
−111),

and

Q
(√

ΔE1

)
⊆ Q

(√
−3,

√
−31)

)
⊆ Q (x(E1[3]))

and

Q
(√

ΔE2

)
⊆ Q

(√
−3,

√
37
)
⊆ Q (x(E2[3])) .

Using Magma we confirm that

L1=Q(E1[2]) ∩Q(E1[3])=Q(
√
93) and L2=Q(E2[2]) ∩Q(E2[3])=Q(

√
−111).

Further, from the Galois correspondence, we know that Gal(Q(Ei[3])/Li)
� π3(N2,3(Gi)) for either i = 1 or 2. Checking Magma, we see that π3(N2,3(G1))
is not abelian while π3(N2,3(G2)) is abelian, and one last computation shows that
Gal(Q(E1[3])/L1) is not abelian, while Gal(Q(E2[3])/L2) is. From this we can see
that:

j1 : XG1
→ X(1), t �→

(
− t2

3
+ 12

)3

,

j2 : XG2
→ X(1), t �→

(
t2 + 12

)3
.

Remark 6.2. Since the intersections here occur between Q(Ei[2]) and Q
(
x(Ei[3])

)
and both of these fields are invariant under twisting, the entanglements are inde-
pendent of the choice of twist. So any twist of the curves E1 and E2 above will
have the exact same entanglement, even up to the particular quadratic extension
that is in both fields. One can see this on the group theoretic side by the fact that
−I ∈ Gi for i = 1 or 2.

https://www.lmfdb.org/EllipticCurve/Q/25947d1/
https://www.lmfdb.org/EllipticCurve/Q/36963o1/
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Remark 6.3 (Reality check). For G1 and G2, we have that G1 ∩ SL2(Z/6Z) =
G2 ∩ SL2(Z/6Z), and hence the modular curves XG1

and XG2
are isomorphic over

Q(ζ6). From the above j-maps, this is immediately clear.

Example 6.4. Another interesting group we encounter, which the Siegel functions
method could not handle, comes from the admissible subgroup G of GL2(Z/10Z)
with generators

G :=

〈(
2 9
7 1

)
,

(
6 3
1 7

)
,

(
4 9
9 6

)〉
.

The group G represents an unexplained (2, 5)-entanglement of type (S3,Z/3Z). We
know an elliptic curve with mod 10 image of Galois conjugate to a subgroup of G
has surjective mod 2 image and the mod 5 image is conjugate to a subgroup of the
unique maximal subgroup H of GL2(Z/5Z) which contains the normalizer of the
split Cartan at 5. In fact, the group H is an exceptional group whose projective
image is isomorphic to S4. These kinds of groups can only occur for primes less than
11. We know that XG is a degree 6 cover of XH and so if we could determine the
map XG → XH then we could determine the j-map for XG since work of Zywina
[Zyw15] tells us that the j-map XH → X(1) is given by j = x5 + 5x4 + 40x3.

The subgroup G has a unique index 3 subgroup. This index 3 subgroup must
correspond to both the field over which the elliptic curve on XG obtains a 2-torsion
point and the field over which you obtain a rational point on the modular curve
X+

s (5) associated to the normalizer of the split Cartan at 5. Now, an elliptic curve
with mod 5 image equal to H will have a degree 3 extension over which it attains
a point of order 2 and another degree 3 extension over which it corresponds to a
point on X+

s (5), and we want to know when these degree 3 extensions coincide.
First, we use the equation t3 − jt − 16j = 0 for X0(2), which was computed in

[RZB15]. Second, recent work of Rouse–Sutherland–Zureick-Brown [RSZB] deter-
mines that the morphism X+

s (5) → XH is given by x = ((5/3)t3−8t−8/3)/(t2+t−
1/5). Using the methods from [BGRW20, p. 19] and [vHN05], we can produce the
degree 6 cover of XH , which parametrizes when the above two degree 3 extensions
coincide. Moreover, this gives us our desired degree 6 cover XG → XH , which is
defined by

x = (8y6 + 8y5 − 20y4 − 50y3 + 80y2 − 12y + 3)/((y + 1)2(y2 − 3y + 1)2).

By composing the morphisms XG → XH → X(1), we have our desired j-map.

Remark 6.5. We note that our construction of the modular curve XG in Example
6.4 agrees with the construction from [JM20, Subsection 4.3].

7. Unexplained entanglements — genus one setting

In our search, we find that there are exactly 2 maximal groups of genus 1 with
positive rank that represent unexplained entanglements; in fact, both represent
(2, 7)-entanglements of type Z/2Z and both groups have surjective image under π2.
The difference between these groups is their image under π7: one of them has image
7Ns and the other has image 7Nn. We let these groups of level 14 be Gs and Gn
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respectively and provide generators for them below

Gs =

〈(
3 2
5 11

)
,

(
2 13
1 12

)
,

(
0 9
5 0

)
,

(
13 12
9 1

)〉
,

Gn =

〈(
12 11
11 3

)
,

(
0 9
9 13

)
,

(
8 9
1 6

)〉
.

At first these groups seem quite different, but we will prove that their modular
curves are isomorphic over Q.

Proposition 7.1 (= Proposition B). The genus one modular curves of positive
rank XGs

and XGn
are both isomorphic to the elliptic curve 196a1.

7.1. Computing XGs
. Let Et/Q(t) be the generic elliptic curve with mod 7 image

of Galois contained in 7Ns twisted to minimize its conductors and discriminant.
We do this by constructing the elliptic curve with j-invariant equal to the j-map
js : X

+
s (7) → X(1) using [Zyw15] and then twisting. We compute that

ΔEt
≡ (t3 − 4t2 + 3t+ 1)(t4 − 10t3 + 27t2 − 10t− 27) mod (Q(t)×)2

and the 7-division polynomial of Et, call it f7(x), factors into a degree 6 polynomial
times a degree 18 polynomial. Further, we see that the degree 6 polynomial factors
over the field

Ks = Q(t)
(√

t4 − 10t3 + 27t2 − 10t− 27
)
,

and now, we notice that Q(
√
ΔEt

) = Ks exactly when (t3−4t2+3t+1) is a square.
As we are considering unexplained (2, 7)-entanglements of type Z/2Z, we see

that the modular curve XGs
is isomorphic to the elliptic curve with Weierstrass

equation y2 = (x3 − 4x2 + 3x+ 1), which is the rank 1 elliptic curve 196a1. Using
Magma, we find that

XGs
(Q) = 〈(1, 1), (0, 0)〉 � Z⊕ Z/2Z

and the j-map XGs
→ X(1) is exactly the map P = (x, y) �→ js(x) where

js(t) =
t(t+ 1)3(t2 − 5t+ 1)3(t2 − 5t+ 8)3(t4 − 5t3 + 8t2 − 7t+ 7)2

(t3 − 4t2 + 3t+ 1)7

is the aforementioned j-map of X+
s (7) taken from [Zyw15].

7.2. Computing XGn
. We proceed the same way as before. This time we let Et

be the generic elliptic curve with mod 7 image of Galois contained in 7Nn twisted
to minimize its conductor and discriminant. In this case,

ΔEt
≡ (t− 3)(t3 − 7t2 + 7t+ 7)(2t4 − 14t3 + 21t2 + 28t+ 7) mod (Q(t)×)2.

If we let d2 = 7(2t4 − 14t3 + 21t2 + 28t + 7) we can see that the 7-division poly-
nomial of Et, call it f7(x), is irreducible over Q(t) but factors over Q(t)(

√
d2).

Thus Q(t)(
√
d2) ⊆ Q(t)(Et[7]). Since Q(t)(ζ7) ⊆ Q(t)(Et[7]), we also have that

Q(t)(
√
−7d2) ⊆ Q(t)(Et[7]). A simple inspection shows that Q(t)(

√
ΔEt

) =

Q(t)(
√
−7d2) exactly when −(t− 3)(t3 − 7t2 + 7t+ 7) is a square.

Therefore, we are looking for values of t ∈ Q such that there is a y ∈ Q with
y2 = −(t − 3)(t3 − 7t2 + 7t + 7). This again defines out a genus 1 curve and
miraculously it is Q-isomorphic to 196a1. That is to say, XGs

�Q XGn
, and the

only difference is their j-maps.

https://www.lmfdb.org/EllipticCurve/Q/196a1/
https://www.lmfdb.org/EllipticCurve/Q/196a1/
https://www.lmfdb.org/EllipticCurve/Q/196a1/
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Let E : y2 = x3 − 4x2 + 3x+ 1, let C/Q be the curve

C : y2 = −(x− 3)(x3 − 7x2 + 7x+ 7),

and let ψ : E � C be an isomorphism between them. We have that XGn
� E

and the j-map of XGn
is defined by taking a point P ∈ C(Q) and mapping it to

jn(ψ
−1(P )x) where ψ

−1(P )x is the x-coordinate of ψ−1(P ) and jn : X
+
n (7) → X(1)

is the j-map from Zywina [Zyw15] given by

jn(t) = 1600
t3(t2 − 7t+ 14)3(5t2 − 14t− 7)3(t2 + 7)3

(t3 − 7t2 + 7t+ 7)7
.

Appendix A. Tables

To conclude, we provide tables of the various modular curves we constructed
whose rational points parametrize elliptic curves with an unexplained (p, q)-entangle-
ment of type T for the pairs ((p, q), T ) mentioned in Theorem A.

There are three subsections: genus 0 groups with −I, genus 0 groups without
−I, and genus 1 groups (with −I). In each subsection, there is a table for each
pair ((p, q), T ) where (p, q) is the level of the entanglement and T is the type of
entanglement. In each table, we will provide the label (see our group conventions)
for the group G representing an unexplained (p, q)-entanglement of type T , the
generators for the group G, a parametrization for the modular curve XG, and
finally an example from LMFDB of an elliptic curve with an unexplained (p, q)-
entanglement of type T . These examples were chosen to minimize the conductor,
and when possible, we tried to find non-CM examples. When a CM example is
presented, this means that there were no non-CM examples in the entire LMFDB
database which had this prescribed composite level image of Galois.

A.1. Genus 0 groups with −I. In these tables, the parametrization of the mod-
ular curve comes as a rational function f(t).

(2, 3)-entanglements of type Z/2Z

Label Generators j-map Example

[GL2, 3Ns] 〈( 3 5
4 3 ) , (

5 3
3 2 ) , (

2 3
3 1 )〉

(t−3)3(t+3)3(t2+3)3

t6 6627e1

[GL2, 3Nn] 〈( 5 1
4 1 ) , (

5 1
5 2 )〉 (t2 + 12)3 1369e1

[GL2, 3Nn] 〈( 0 1
1 3 ) , (

3 5
1 0 ) , (

5 4
5 5 )〉 −33(t− 2)3(t+ 2)3 31046b2

(2, 3)-entanglements of type (S3,Z/3Z)

Label Generators j-map Example

[GL2, GL3] 〈( 5 1
4 3 ) , (

4 1
1 0 )〉 21033t3(4t3 − 1) 300a1

https://www.lmfdb.org/EllipticCurve/Q/6627e1/
https://www.lmfdb.org/EllipticCurve/Q/1369e1/
https://www.lmfdb.org/EllipticCurve/Q/31046b2/
https://www.lmfdb.org/EllipticCurve/Q/300a1/
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(2, 5)-entanglements of type Z/2Z

Label Generators j-map Example

[GL2, 5B] 〈( 9 5
1 2 ) , (

4 5
1 9 ) , (

8 5
1 8 )〉

(t4+10t2+5)3

t2
1369e1

[GL2, 5B] 〈( 9 5
9 4 ) , (

7 5
9 4 ) , (

2 5
7 2 )〉

(t4+50t2+125)3

55t2
1369e2

[GL2, 5Nn] 〈( 7 7
9 8 ) , (

4 3
3 8 )〉

21554t3(20t2−20t+1)(400t4+200t3+80t2+10t+1)3

(20t2−1)10
4900l1

[GL2, 5Nn] 〈( 7 2
9 3 ) , (

9 3
3 8 ) , (

4 3
3 3 )〉

(−5)3(t−1)(5t−1)(5t2−10t+1)3(5t2+3)3(15t2+1)3

(5t2−1)10
27a1

(2, 5)-entanglements of type (S3,Z/3Z)

Label Generators j-map Example

[GL2, 5S4] 〈( 2 9
7 1 ), (

6 3
1 7 ), (

4 9
9 6 )〉

(2t2−t+2)3P1(t)
3(18t6−12t5−70t4+25t3+130t2−52t+8)

(t+1)10(t2−3t+1)10
3240a1

P1(t) = (8t6 + 8t5 − 20t4 − 50t3 + 80t2 − 12t+ 3).

(2, 7)-entanglements of type Z/3Z

Label Generators j-map Example

[2Cn,7B] 〈( 9 7
3 10 ) , (

5 7
9 12 )〉

(t2+t+1)3(t6+5t5+12t4+9t3+2t2+t+1)P2(t)
3

t14(t+1)14(t3+2t2−t−1)2
1922e1

[2Cn,7B] 〈( 5 0
8 5 ) , (

3 0
8 11 ) , (

9 7
7 10 )〉

74(t2+t+1)3(9t6+39t5+64t4+23t3+4t2+15t+9)P3(t)
3

(t3+t2−2t−1)14(t3+8t2+5t−1)2
3969c2

[2Cn,7B] 〈( 10 7
5 11 ), (

2 7
3 3 ), (

5 7
9 12 )〉

(t2−t+1)3(t6−5t5+12t4−9t3+2t2−t+1)P4(t)
3

(t−1)2t2(t3−2t2−t+1)14
1922e2

P2(t) = t12 + 8t11 + 25t10 + 34t9 + 6t8 − 30t7 − 17t6 + 6t5 − 4t3 + 3t2 + 4t+ 1,

P3(t) = t12 + 18t11 + 131t10 + 480t9 + 1032t8 + 1242t7 + 805t6 + 306t5 + 132t4

+ 60t3 − t2 − 6t+ 1,

P4(t) = t12 − 8t11 + 265t10 − 1474t9 + 5046t8 − 10050t7 + 11263t6 − 7206t5

+ 2880t4 − 956t3 + 243t2 − 4t+ 1.

(2, 13)-entanglements of type Z/2Z

Label Generators j-map Example

[GL2,13B] 〈(21 6
21 17),(

5 23
22 7 ),(

12 15
25 17),(

11 11
12 13)〉

(13t4+5t2+1)(28561t8+15379t6+3380t4+247t2+1)3

7t2
9025j2

[GL2,13B] 〈( 5 18
12 9 ) , ( 17 20

5 21 ) , (
14 21
15 0 )〉 (t4+5t2+13)(t8+7t6+20t4+19t2+1)3

t2
9025j1

(3, 5)-entanglements of type Z/2Z

Label Generators j-map Example

[3Nn, 5B] 〈( 10 7
8 4 ) , (

10 8
4 4 ) , (

11 2
8 10 ) , (

13 5
1 7 ) , (

1 11
4 13 )〉

212P5(t)
3

(t−1)15(t+1)15(t2−4t−1)3
1369e1

[3Nn, 5B] 〈( 1 2
13 10 ), (

14 5
7 2 ), (

11 1
14 8 ), (

11 11
13 14 ), (

10 8
2 11 )〉

212P6(t)
3

(t−1)3(t+1)3(t2−4t−1)15
1369e2

https://www.lmfdb.org/EllipticCurve/Q/1369e1/
https://www.lmfdb.org/EllipticCurve/Q/1369e2/
https://www.lmfdb.org/EllipticCurve/Q/4900l1/
https://www.lmfdb.org/EllipticCurve/Q/27a1/
https://www.lmfdb.org/EllipticCurve/Q/3240a1/
https://www.lmfdb.org/EllipticCurve/Q/1922e1/
https://www.lmfdb.org/EllipticCurve/Q/3969c2/
https://www.lmfdb.org/EllipticCurve/Q/1922e2/
https://www.lmfdb.org/EllipticCurve/Q/9025j2/
https://www.lmfdb.org/EllipticCurve/Q/9025j1/
https://www.lmfdb.org/EllipticCurve/Q/1369e1/
https://www.lmfdb.org/EllipticCurve/Q/1369e2/
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P5(t) = t12 − 9t11 + 39t10 − 75t9 + 75t8 − 114t7 + 26t6 + 114t5 + 75t4 + 75t3

+ 39t2 + 9t+ 1,

P6(t) = 211t12 − 189t11 − 501t10 − 135t9 + 345t8 + 966t7 + 146t6 − 966t5 + 345t4

+ 135t3 − 501t2 + 189t+ 211.

Remark A.1. In the above tables, we note that the elliptic curves 1369e1 and
1369e2 both have an unexplained (2, 5)-entanglement of type Z/2Z and an unex-
plained (3, 5)-entanglement of type Z/2Z. In fact, one can show that for these curves

Q(E[2]) ∩ Q(E[3]) ∩ Q(E[5]) � Q(
√
37), and so they have a (2, 3, 5)-entanglement

of type Z/2Z. While it would be interesting to classify elliptic curves with this
entanglement, we do not attempt to do so here.

A.2. Genus 0 groups without −I. In these tables, the parametrization of the
modular curve comes in the form a-invariants for the generic elliptic curve with a
prescribed image of Galois.

(2, 3)-entanglements of type Z/2Z

Label Generators a-invariants Example

[GL2, 3B] 〈( 5 5
0 5 ) , (

2 5
3 2 ) , (

2 1
3 1 )〉 [Q1(t), R1(t)] 73926l2

[GL2, 3B] 〈( 2 5
3 2 ) , (

1 3
3 2 )〉

[
1
32Q1(t),

1
33R1(t)

]
73926x1

Q1(t) := −32t2(t+ 1)3(t+ 9)5

R1(t) := −2 · 33t3(t+ 1)4(t+ 9)6(t2 − 18t− 27)

(2, 5)-entanglements of type Z/2Z

Label Generators a-invariants Example

[GL2, 5B.4.2] 〈( 6 5
3 1 ) , (

6 5
7 3 ) , (

9 0
3 9 )〉 [Q2(t), R2(t)] 371522f1

[GL2, 5B.4.2] 〈( 9 5
5 8 ) , (

6 5
1 1 ) , (

9 0
3 9 )〉 [52Q2(t), 5

3R2(t)] 1225j2

[GL2, 5B.4.1] 〈( 6 5
3 1 ) , (

3 5
9 6 ) , (

9 0
3 9 )〉 [Q3(t), R3(t)] 371522f2

[GL2, 5B.4.1] 〈( 6 5
1 1 ) , (

2 5
5 9 ) , (

9 0
3 9 )〉 [52R3(t), 5

3Q3(t)] 1225j2

Q2(t) = 33t2(t2 − 11t− 1)2(t4 − 12t3 + 14t2 + 12t+ 1),

R2(t) = 233t3(t2 − 11t− 1)3(t2 + 1)(t4 − 18t3 + 74t2 + 18t+ 1),

Q3(t) = 33t2(t2 − 11t− 1)2(t4 + 228t3 + 494t2 − 228t+ 1),

R3(t) = 233t3(t2 − 11t− 1)3(t2 + 1)(t4 − 522t3 − 10006t2 + 522t+ 1).

(2, 7)-entanglements of type Z/2Z

Label Generators a-invariants Example

[GL2, 7B] 〈( 11 7
1 10 ) , (

10 7
1 10 ) , (

3 0
5 3 ) , (

5 7
6 11 )〉 [Q4(t), R4(t)] 19600db2

[GL2, 7B] 〈( 5 7
8 5 ) , (

10 7
5 1 ) , (

12 7
3 12 )〉

[
1
72Q4(t),

1
73R4(t)

]
19600by2

https://www.lmfdb.org/EllipticCurve/Q/1369e1/
https://www.lmfdb.org/EllipticCurve/Q/1369e2/
https://www.lmfdb.org/EllipticCurve/Q/73926l2/
https://www.lmfdb.org/EllipticCurve/Q/73926x1/
https://www.lmfdb.org/EllipticCurve/Q/371522f1/
https://www.lmfdb.org/EllipticCurve/Q/1225j2/
https://www.lmfdb.org/EllipticCurve/Q/371522f2/
https://www.lmfdb.org/EllipticCurve/Q/1225j2/
https://www.lmfdb.org/EllipticCurve/Q/19600db2/
https://www.lmfdb.org/EllipticCurve/Q/19600by2/
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Q4(t) = 3372t2(t2 + 13t+ 49)3(t2 + 245t+ 2401),

R4(t) = 23373t3(t2 + 13t+ 49)4(t4 − 490t3 − 21609t2 − 235298t− 823543).

(2, 13)-entanglements of type Z/2Z

Label Generators a-invariants Example

[GL2, 13B.4.1] 〈( 8 7
5 12 ), (

20 25
21 14 ), (

5 3
4 3 )〉 [Q5(t), R5(t)] 74529q1

[GL2, 13B.4.1] 〈( 0 23
21 25 ), (

15 15
20 5 ), ( 25 24

19 9 ), ( 5 16
9 5 )〉

[
1

132
Q5(t),

1
133

R5(t)
]

355008ej1

[GL2, 13B.4.2] 〈( 15 15
20 5 ), ( 22 23

9 24 ), (
7 10
25 5 ), ( 7 1

14 1 )〉 [Q6(t), R6(t)] 355008ej2

[GL2, 13B.4.2] 〈( 18 7
3 16 ), (

22 23
9 24 ), (

19 14
23 1 )〉 [132Q6(t), 13

3R6(t)] 74529q2

Q5(t) = 33132t2(t2 − 3t− 1)2(t4 − t3 + 5t2 + t+ 1)3(t8 − 5t7 + 7t6 − 5t5 + 5t3

+ 7t2 + 5t+ 1),

R5(t) = 233133t3(t2 − 3t− 1)3(t2 + 1)(t4 − t3 + 5t2 + t+ 1)4(t12 − 8t11 + 25t10

− 44t9 + 40t8 + 18t7 − 40t6 − 18t5 + 40t4 + 44t3 + 25t2 + 8t+ 1),

Q6(t) = 33t2(t2 − 3t− 1)2(t4 − t3 + 5t2 + t+ 1)3(t8 + 235t7 + 1207t6 + 955t5

+ 3840t4 − 955t3 + 1207t2 − 235t+ 1),

R6(t) = 233t3(t2 − 3t− 1)3(t2 + 1)(t4 − t3 + 5t2 + t+ 1)4(t12 − 512t11 − 13079t10

− 32300t9 − 104792t8 − 111870t7 − 419368t6 + 111870t5 − 104792t4

+ 32300t3 − 13079t2 + 512t+ 1).

A.3. Genus 1 groups. In this table, the parametrization of the modular curve
comes as a Weierstrass equation for the genus 1 modular curve and below we give
the j-map.

(2, 7)-entanglements of type Z/2Z

Label Generators Model for XG Example

[GL2,7Ns] 〈( 3 2
5 11 ) , (

2 13
1 2 ) , ( 0 9

5 0 ) , (
13 12
0 1 )〉 y2=x3 − 4x2 + 3x+ 1 361a1

[GL2,7Nn] 〈( 12 11
11 3 ) , ( 0 9

9 13 ) , (
8 9
1 6 )〉 y2=x3 − 4x2 + 3x+ 1 121b1

The j-map for the group with label [GL2,7Ns] is given by

js((x, y)) =
x(x+ 1)3(x2 − 5x+ 1)3(x2 − 5x+ 8)3(x4 − 5x3 + 8x2 − 7x+ 7)3

(x3 − 4x2 + 3x+ 1)7
,

while the j-map for the group with label [GL2,7Nn] is given by

jn((x, y)) =
8000

27
· x

3(x− 2)3(x− 4/3)3P (x)3

Q(x)7
,

https://www.lmfdb.org/EllipticCurve/Q/74529q1/
https://www.lmfdb.org/EllipticCurve/Q/355008ej1/
https://www.lmfdb.org/EllipticCurve/Q/355008ej2/
https://www.lmfdb.org/EllipticCurve/Q/74529q2/
https://www.lmfdb.org/EllipticCurve/Q/361a1/
https://www.lmfdb.org/EllipticCurve/Q/121b1/
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where

P (x) = (x6 − 20/3x5 + 148/9x4 − 181/9x3 + 134/9x2 − 56/9x+ 14/9)(x6 − 20/3x5

+ 148/9x4 − 160/9x3 + 64/9x2 + 7/9)(x6 − 20/3x5 + 148/9x4 − 842/45x3

+ 92/9x2 − 112/45x− 7/45),

Q(x) = x9 − 10x8 + 124/3x7 − 2503/27x6 + 1132/9x5 − 2956/27x4 + 551/9x3

− 518/27x2 + 56/27x+ 7/27.
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