Normal subgroups of big mapping class groups
HTML articles powered by AMS MathViewer
- by Danny Calegari and Lvzhou Chen HTML | PDF
- Trans. Amer. Math. Soc. Ser. B 9 (2022), 957-976
Abstract:
Let $S$ be a surface and let $\operatorname {Mod}(S,K)$ be the mapping class group of $S$ permuting a Cantor subset $K \subset S$. We prove two structure theorems for normal subgroups of $\operatorname {Mod}(S,K)$.
(Purity:) if $S$ has finite type, every normal subgroup of $\operatorname {Mod}(S,K)$ either contains the kernel of the forgetful map to the mapping class group of $S$, or it is ‘pure’ — i.e. it fixes the Cantor set pointwise.
(Inertia:) for any $n$ element subset $Q$ of the Cantor set, there is a forgetful map from the pure subgroup $\operatorname {PMod}(S,K)$ of $\operatorname {Mod}(S,K)$ to the mapping class group of $(S,Q)$ fixing $Q$ pointwise. If $N$ is a normal subgroup of $\operatorname {Mod}(S,K)$ contained in $\operatorname {PMod}(S,K)$, its image $N_Q$ is likewise normal. We characterize exactly which finite-type normal subgroups $N_Q$ arise this way.
Several applications and numerous examples are also given.
References
- Santana Afton, Danny Calegari, Lvzhou Chen, and Rylee Alanza Lyman, Nielsen realization for infinite-type surfaces, Proc. Amer. Math. Soc. 149 (2021), no. 4, 1791–1799. MR 4242332, DOI 10.1090/proc/15316
- R. D. Anderson, The algebraic simplicity of certain groups of homeomorphisms, Amer. J. Math. 80 (1958), 955–963. MR 98145, DOI 10.2307/2372842
- Javier Aramayona, Priyam Patel, and Nicholas G. Vlamis, The first integral cohomology of pure mapping class groups, Int. Math. Res. Not. IMRN 22 (2020), 8973–8996. MR 4216709, DOI 10.1093/imrn/rnaa229
- Javier Aramayona and Nicholas G. Vlamis, Big mapping class groups: an overview, In the tradition of Thurston—geometry and topology, Springer, Cham, [2020] ©2020, pp. 459–496. MR 4264585, DOI 10.1007/978-3-030-55928-1_{1}2
- Philip Boyland, Topological methods in surface dynamics, Topology Appl. 58 (1994), no. 3, 223–298. MR 1288300, DOI 10.1016/0166-8641(94)00147-2
- Danny Calegari and Lvzhou Chen, Big mapping class groups and rigidity of the simple circle, Ergodic Theory Dynam. Systems 41 (2021), no. 7, 1961–1987. MR 4266358, DOI 10.1017/etds.2020.43
- Thomas Church and Andrew Putman, Generating the Johnson filtration, Geom. Topol. 19 (2015), no. 4, 2217–2255. MR 3375526, DOI 10.2140/gt.2015.19.2217
- Benson Farb and Dan Margalit, A primer on mapping class groups, Princeton Mathematical Series, vol. 49, Princeton University Press, Princeton, NJ, 2012. MR 2850125
- Louis Funar, On power subgroups of mapping class groups, J. Gökova Geom. Topol. GGT 8 (2014), 14–34. MR 3310570
- B. von Kerékjártó, Über die periodischen Transformationen der Kreisscheibe und der Kugelfläche, Math. Ann. 80 (1919), no. 1, 36–38 (German). MR 1511945, DOI 10.1007/BF01463232
- Mustafa Korkmaz, Generating the surface mapping class group by two elements, Trans. Amer. Math. Soc. 357 (2005), no. 8, 3299–3310. MR 2135748, DOI 10.1090/S0002-9947-04-03605-0
- Justin Lanier and Dan Margalit, Normal generators for mapping class groups are abundant, Comment. Math. Helv. 97 (2022), no. 1, 1–59. MR 4410724, DOI 10.4171/cmh/526
- F. Luo, Torsion elements in the mapping class group of a surface, Preprint, arXiv:math/0004048, 2000.
- Justin Malestein and Jing Tao, Self-similar surfaces: involutions and perfection, Preprint, arXiv:2106.03681, 2021.
- Priyam Patel and Nicholas G. Vlamis, Algebraic and topological properties of big mapping class groups, Algebr. Geom. Topol. 18 (2018), no. 7, 4109–4142. MR 3892241, DOI 10.2140/agt.2018.18.4109
- Nicholas G. Vlamis, Three perfect mapping class groups, New York J. Math. 27 (2021), 468–474. MR 4226155
Additional Information
- Danny Calegari
- Affiliation: Department of Mathematics, University of Chicago, Chicago, Illinois, 60637
- MR Author ID: 605373
- Email: dannyc@math.uchicago.edu
- Lvzhou Chen
- Affiliation: Department of Mathematics, University of Texas at Austin, Austin, Texas, 78712; and Department of Mathematics, Purdue University, West Lafayette, Indiana, 47907
- MR Author ID: 1271475
- ORCID: 0000-0001-9039-9745
- Email: lvzhou.chen@math.utexas.edu
- Received by editor(s): November 1, 2021
- Received by editor(s) in revised form: January 3, 2022
- Published electronically: October 19, 2022
- © Copyright 2022 by the authors under Creative Commons Attribution-NonCommercial 3.0 License (CC BY NC 3.0)
- Journal: Trans. Amer. Math. Soc. Ser. B 9 (2022), 957-976
- MSC (2020): Primary 57K20, 20F05, 20E07; Secondary 37E30, 20J06
- DOI: https://doi.org/10.1090/btran/108
- MathSciNet review: 4498366