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CONGRUENCES LIKE ATKIN’S FOR THE PARTITION

FUNCTION

SCOTT AHLGREN, PATRICK B. ALLEN, AND SHIANG TANG

Abstract. Let p(n) be the ordinary partition function. In the 1960s Atkin
found a number of examples of congruences of the form p(Q3�n + β) ≡ 0

(mod �) where � and Q are prime and 5 ≤ � ≤ 31; these lie in two natural
families distinguished by the square class of 1−24β (mod �). In recent decades
much work has been done to understand congruences of the form p(Qm�n +
β) ≡ 0 (mod �). It is now known that there are many such congruences
when m ≥ 4, that such congruences are scarce (if they exist at all) when
m = 1, 2, and that for m = 0 such congruences exist only when � = 5, 7, 11.
For congruences like Atkin’s (when m = 3), more examples have been found
for 5 ≤ � ≤ 31 but little else seems to be known.

Here we use the theory of modular Galois representations to prove that
for every prime � ≥ 5, there are infinitely many congruences like Atkin’s in
the first natural family which he discovered and that for at least 17/24 of the
primes � there are infinitely many congruences in the second family.

1. Introduction

The partition function p(n) counts the number of ways to write the positive
integer n as the sum of a nonincreasing sequence of positive integers (by convention
we agree that p(0) = 1 and that p(n) = 0 if n �∈ {0, 1, 2, . . . }). The study of
the arithmetic properties of p(n) has a long and rich history; interest in this topic
stems not only from the fact that p(n) is a fundamental function in additive number
theory and combinatorics, but also from the fact that its generating function is a
modular form of weight − 1

2 on the full modular group.
The most famous examples of arithmetic phenomena for the partition function

are the Ramanujan congruences

p(�n+ β�) ≡ 0 (mod �) for � = 5, 7, 11,(1.1)

where β� :=
1
24 (mod �). Extensions of these results for arbitrary powers of 5, 7, 11

were conjectured and proved by Ramanujan, Watson and Atkin [Ram19,Ram20,
Ram21,Wat38,Atk67]. On the other hand, after the work of the first author and
Boylan [AB03] it is known that there are no congruences of the form (1.1) with
� ≥ 13.
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Further examples of congruences for primes � ≤ 31 were found by Newman,
Atkin, and O’Brien [New57,AO67,Atk68]. These examples take the form

p(Qm�n+ β) ≡ 0 (mod �),(1.2)

where Q is a prime distinct from �, and m = 3 or 4.
Many years later, Ono [Ono00] showed that for every � ≥ 5, there are infinitely

many primes Q for which we have a congruence (1.2) with m = 4. After the work
of the first author and Ono [AO01a], we have the following (see [AO01b, Thm. 1]).

Theorem 1.1. Suppose that � ≥ 5 is prime and that
(

1−24β
�

)
∈ {0,−1}. Then a

positive proportion of primes Q ≡ −1 (mod �) have the property that

p

(
Q3n+ 1

24

)
≡ 0 (mod �) if Q � n and n ≡ 1− 24β (mod �).(1.3)

For any such β, selecting n in one of Q − 1 residue classes modulo Q gives a
congruence of the form

p(Q4�n+ β′) ≡ 0 (mod �)(1.4)

with
(

1−24β′

�

)
=

(
1−24β

�

)
. Radu [Rad13] confirmed a conjecture of the first author

and Ono by proving that if there is a congruence

p(mn+ β) ≡ 0 (mod �) with � ≥ 5 prime,

then � | m and
(

1−24β
�

)
∈ {0,−1}.

After this discussion we know that there are many congruences of the form (1.2)
with m ≥ 4 and no congruences other than (1.1) with m = 0. It therefore becomes
natural to ask about the existence of such congruences when m = 1, 2, 3.

Recent work of the first author, Beckwith and Raum [ABR] has shown that for
m = 1 and m = 2, and for any prime � ≥ 5, congruences of this form (if they
exist at all) are extremely scarce in a precise sense. Since the main theorems of
that paper require some notation to state, we mention here only Corollary 1.2: If
17 ≤ � < 10000 is prime, and S is the set of primes Q for which there is a congruence

p(Q�n+ β) ≡ 0 (mod �),

then S has density zero.
This leaves open only the case m = 3, which is the focus of this paper. In this

case, Atkin [Atk68] discovered many congruences of the form

p
(
Q3�n+ β

)
≡ 0 (mod �)(1.5)

for small primes �. These arise from two families which we describe in detail.
Let 13 ≤ � ≤ 31 be prime. Atkin [Atk68, eq. (52)] gave examples of primes Q

such that

p

(
Q2�n+ 1

24

)
≡ 0 (mod �) if

(
n

Q

)
= εQ(1.6)

for some εQ ∈ {±1}. Fixing n in one of the allowable residue classes modulo Q
produces a congruence of the form (1.5). For these small values of �, the relevant
generating functions are eigenforms of the Hecke operators, and Atkin’s method
relies on finding what he calls “accidental” eigenvalues (Atkin works with modular
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functions rather than modular forms, but the effect is the same). We will say that
congruences (1.6) are of type “Atkin I.”

Later, Weaver [Wea01] found more accidental eigenvalues for these primes (as
well as more examples of congruences (1.3) with � | n). As an application of his
performant algorithm to compute large values of the partition function, Johansson
[Joh12] extended this list substantially; there are now more than 22 billion examples
for primes � ≤ 31.

For each of � = 5, 7 and 13, Atkin [Atk68, Thm. 1, 2] showed that if Q ≡ −2
(mod �) then

p

(
Q2n+ 1

24

)
≡ 0 (mod �) if

(
−n

�

)
= −1 and

(
−n

Q

)
= −1.(1.7)

We will say that congruences (1.7) are of type “Atkin II.” To the authors’ knowledge,
no examples of such congruences are known for � ≥ 13. After this discussion there
are two natural questions:

(1) Are there congruences of type Atkin I for primes � ≥ 31?
(2) Are there congruences of type Atkin II for primes � ≥ 13?

We will refer to these congruences simply as “Type I” and “Type II” in what follows.

Remark. Once � ≥ 37 the spaces of modular forms which are relevant for congru-
ences of Type I are no longer one-dimensional. However, one may still perform a
search for accidents in the sense of Atkin. For example, when � = 37, the relevant
space is two-dimensional. A computation of the Hecke eigenvalues of the two new-
forms in this space for Q < 10000 yields three “accidents”: there are three primes
Q for which the Qth eigenvalue of each newform lies in the required residue class
modulo a prime above � in the field generated by its coefficients. In particular we
have a congruence (1.6) when Q = 6599, 7541, and 9547. For example,

p

(
65992 · 37n+ 1

24

)
≡ 0 (mod 37) if

( n

6599

)
= −1,

which leads to 3299 congruences modulo 37 of the form (1.5) with m = 3. Similarly,
we have

p

(
75412 · 37n+ 1

24

)
≡ 0 (mod 37) if

( n

7541

)
= 1.

Our goal in this paper is to prove that there are many congruences of the types
which Atkin discovered. In particular we will prove the following theorems. (Note
that for � = 5, 7, 11, the statements about congruences of Type I are trivially true
in view of (1.1).)

The first result shows that congruences of Type I hold for every prime � (an
explicit description of what is meant by “positive proportion” is given at the end
of this section).

Theorem 1.2. Suppose that � ≥ 5 is prime. Then a positive proportion of the
primes Q ≡ 1 (mod �) have the property that

p

(
Q2�n+ 1

24

)
≡ 0 (mod �) if

(
n

Q

)
=

(
−1

Q

) �−3
2

.

The second result shows that for many primes � we have congruences of Types
I and II involving primes Q in a different residue class modulo �.
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Theorem 1.3. Suppose that � ≥ 5 is prime, and that

there exists an integer a with 2a ≡ −1 (mod �).(1.8)

Then

(1) A positive proportion of primes Q ≡ −2 (mod �) have the property that for
some εQ ∈ {±1}, we have

p

(
Q2�n+ 1

24

)
≡ 0 (mod �) if

(
n

Q

)
= εQ.

(2) A positive proportion of primes Q ≡ −2 (mod �) have the property that

p

(
Q2n+ 1

24

)
≡ 0 (mod �) if

(
−n

�

)
= −1 and

(
−n

Q

)
= −1.

Remark. By a result of Hasse [Has66], the proportion of primes � for which (1.8) is
satisfied is 17/24 ≈ .708.

Finally, we prove an analogous result under a similar assumption at the prime
3, although the situation here is slightly more complicated. We use the notation
Snew
k (6, ε2, ε3) to denote the new subspace of modular forms of integral weight k

on Γ0(6) with eigenvalues ε2 and ε3 under the Atkin-Lehner involutions W2 and
W3 (see the next section for details).

Theorem 1.4. Suppose that � ≥ 5 is prime, and that

there exists an integer a with 3a ≡ −2 (mod �).(1.9)

Suppose further that there is no congruence modulo any prime above � between

distinct newforms in Snew
�−3

(
6,−

(
8
−�

)
,−

(
12
−�

))
. Then a positive proportion of

primes Q ≡ −2 (mod �) have the property that for some εQ ∈ {±1}, we have

p

(
Q2�n+ 1

24

)
≡ 0 (mod �) if

(
n

Q

)
= εQ.

If (1.9) holds and there is no congruence modulo any prime above � between distinct
newforms in Snew

�2−3 (6,−1,−1) then a positive proportion of primes Q ≡ −2 (mod �)
have the property that

p

(
Q2n+ 1

24

)
≡ 0 (mod �) if

(
−n

�

)
= −1 and

(
−n

Q

)
= −1.

Remark. Approximately 82.8% of the primes � < 100000 satisfy either (1.8) or
(1.9). For those which satisfy (1.9) but not (1.8) the additional hypothesis that
there is no congruence between newforms is required due to a technical issue which
is described in the last section. One expects that this condition should almost
always be satisfied, and a computation shows that there is no congruence modulo

any prime above � between distinct newforms in Snew
�−3

(
6,−

(
8
−�

)
,−

(
12
−�

))
for any

� < 150.
However it seems very difficult to remove this condition. For example when �=71,

there is such a congruence between two newforms in the space Snew
�−3

(
6,
(

8
−�

)
,
(

12
−�

))
.

In particular, this space contains a Galois orbit consisting of three newforms defined
over a field which is ramified at 71, and this orbit gives rise to only two distinct
reductions modulo the prime above 71.
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To prove the existence of congruences (1.4), one must find primes Q for which
the Hecke operator of index Q annihilates a suitable space of modular forms modulo
some power of �; the existence of such primes is guaranteed by a result of Serre
[Ser76, ex. 6.4]. This approach extends to congruences modulo powers of � [Ahl00,
AO01a], and by work of Treneer [Tre06,Tre08] to a wide class of weakly holomorphic
modular forms. The current situation is more delicate; we need to find primes Q
for which the Hecke operator acts diagonally with a specified eigenvalue, which
entails a much more careful study of the Galois representations which arise. In
recent work, Raum [Rau21, Thm. E] has considered the converse question; given
the existence of such a congruence as (1.4) or (1.5) he deduces information about
the generalized Hecke eigenvalues λQ on a natural subspace of modular forms.

The Galois theoretic results which we prove may be of independent interest.
Theorem 1.5 is the main theoretical input in the proof of Theorem 1.2 (here Snew

k (6)
denotes the new subspace of cusp forms on Γ0(6) whose coefficients are integral at
all primes above �).

Theorem 1.5. Suppose that m is a positive integer and that � ≥ 5 is prime. Then
a positive proportion of primes Q ≡ 1 (mod �m) have the following property: for
every g ∈ Snew

�−3 (6) we have

g
∣∣T (Q) ≡ g (mod �m).

Above and in what follows, the positive proportion of primes appearing in our
theorems is {2, 3, �}-Frobenian in the sense of [Ser12, §3.3] (we do not prove that the
set of all primes satisfying the conclusions of our theorems is Frobenian, just that
it contains a Frobenian subset). This means that there is a finite Galois extension
E/Q unramified outside of {2, 3, �} and a subset C ⊆ Gal(E/Q) that is a union
of conjugacy classes such that the conclusion of the theorem holds for any prime
Q with FrobQ ∈ C. We have not attempted to give a lower bound on the size of
|C|/|G|, hence on the proportion of such primes Q, although in principle this is
possible. We note the following subtlety. We first prove Theorem 1.5 under the
further hypothesis that g is a newform, where the Frobenian set is more transparent,
but modulo some possibly higher power �m

′
depending on how the lattice spanned

by newforms sits inside of Snew
�−3 (6) (see §2.3). The density of our Frobenian set

depends on this m′, hence on the relationship between these two lattices.
In the next section we give some background on modular forms and Galois repre-

sentations. Section 3 is devoted to the proof of Theorem 1.5. The proof is technical,
and most of the difficulty arises in establishing the result in the case m = 1. In
Section 4 we use a different argument to prove two analogues of Theorem 1.5 in
arbitrary weight; these results are the main input for the proofs of Theorems 1.3
and 1.4. The last section contains the proofs of the three main theorems.

2. Background

2.1. Modular forms. If f is a function on the upper half-plane, k ∈ 1
2Z, and

γ =
(
a b
c d

)
∈ GL+

2 (Q), we define(
f
∣∣
k
γ
)
(τ ) := (det γ)

k
2 (cτ + d)−kf(γτ ).

Given k ∈ 1
2Z, a positive integer N , a multiplier system ν in weight k on Γ0(N),

and a subring A ⊆ C, we denote by Mk(N, ν,A), Sk(N, ν,A), and M !
k(N, ν,A) the

spaces of modular forms, cusp forms, and weakly holomorphic modular forms of
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weight k and multiplier ν on Γ0(N) whose Fourier coefficients lie in A. For basic
properties of multiplier systems and modular forms one may consult for example
[Kno70] and [DS05]. These forms satisfy the transformation law

f
∣∣
k
γ = ν(γ)f for γ =

(
a b
c d

)
∈ Γ0(N)

as well as the appropriate cusp conditions (weakly holomorphic forms are allowed
poles at the cusps). If ν = 1 we omit it from the notation. If in addition k is even,
we let Snew

k (N,C) ⊆ Sk(N,C) denote the new subspace, and define Snew
k (N,A) :=

Sk(N,A) ∩ Snew
k (N,C).

When N is square-free, there is an Atkin-Lehner involution Wp on Sk(N,C) for
every prime divisor p of N [AL70]. Given a tuple ε = (εp)p|N where each εp ∈ {±1},
let Snew

k (N,C, ε) be the subspace consisting of those forms f for which f
∣∣
k
Wp = εpf

for each prime p | N .
Throughout, � ≥ 5 will denote a fixed prime number. When A is the subring of

algebraic numbers that are integral at all primes above �, we omit it from the nota-
tion and simply write Mk(N, ν), Sk(N, ν), M !

k(N, ν), and Snew
k (N). If in addition

� � N , then we write Snew
k (N, ε) for the subspace of Snew

k (N) attached to the tuple
ε (this makes sense since for such �, each involution Wp acts on Snew

k (N)).
The Dedekind eta function is defined by

η(τ ) := q
1
24

∞∏
n=1

(1− qn), q := e2πiτ .

Then the eta-multiplier νη is given by

η(γτ ) = νη(γ)(cτ + d)
1
2 η(τ ), γ =

(
a b
c d

)
∈ SL2(Z).

We collect some facts about modular forms which transform with a power of the
eta-multiplier. Proofs for some of the nonobvious facts can be found in Section 2
of [ABR]. If f ∈ Mk

(
1, νrη

)
, then η−rf ∈ M !

k− r
2
(1). It follows that f has a Fourier

expansion of the form

f =
∑

n≡r (24)

a(n)q
n
24 .(2.1)

By (2.6) of [ABR] we have

Mk(1, ν
r
η) = {0} unless r ≡ 2k (mod 4).(2.2)

Let νθ be the multiplier on Γ0(4) attached to the theta function θ(τ ) =
∑

qn
2

and
define f(τ )

∣∣Vd := f(dτ ). By (2.7) of [ABR] and (2.2) we have

f ∈ Mk

(
1, νrη

)
=⇒ f

∣∣V24 ∈ Mk

(
576,

(
12

•

)
νrθ

)
= Mk

(
576,

(
12

•

)
ν2kθ

)
.(2.3)

In particular f
∣∣V24 is a modular form of half-integral weight in the sense of Shimura

[Shi73].
For each prime Q ≥ 5 we have the Hecke operator

T (Q2) : Sk

(
1, νrη

)
→ Sk

(
1, νrη

)
.
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If f ∈ Sk

(
1, νrη

)
with (r, 24) = 1 has Fourier expansion (2.1) then we have (see e.g.

[Yan14, Proposition 11])

f
∣∣T (Q2) =

∑(
a(Q2n) +Qk− 3

2

(
−1

Q

)k− 1
2
(
12n

Q

)
a(n) +Q2k−2a

(
n

Q2

))
q

n
24 .

(2.4)

For each squarefree t with (t, 6) = 1 there is a Shimura lift Sht on Sk

(
1, νrη

)
,

defined via (2.3) and the Shimura lift [Shi73] on Sk

(
576,

(
12
•
)
ν2kθ

)
. The action on

Fourier expansions is given by

Sht

(∑
a(n)q

n
24

)
=

∑
At(n)q

n,

where

At(n) =
∑
d|n

(
−1

d

)k− 1
2
(
12t

d

)
dk−

3
2 a

(
tn2

d2

)
.

Then we have (see [ABR, (2.13)])

f ≡ 0 (mod �) ⇐⇒ Sht(f) ≡ 0 (mod �) for all squarefree t.(2.5)

From work of Yang [Yan14] it follows that we have

Sht : Sk

(
1, νrη

)
−→ Snew

2k−1

(
6,−

(
8

r

)
,−

(
12

r

))
⊗
(
12

•

)
.

Moreover, for all primes Q ≥ 5 we have

Sht
(
f
∣∣T (Q2)

)
= (Sht f)

∣∣T (Q),

where T (Q) is the Hecke operator of index Q on the integral weight space.
The connection with partitions is given by the fundamental relationship

1

η(τ )
=

∑
p

(
n+ 1

24

)
q

n
24 .

For our applications there are two important modular forms for each � (see [ABR, §2]
for the construction). In particular, there is a modular form f� ∈ S �−2

2

(
1, ν−�

η ,Z
)

with

f� ≡
∑

p

(
�n+ 1

24

)
q

n
24 (mod �).(2.6)

There is also a form g� ∈ S �2−2
2

(
1, ν−1

η ,Z
)
with

g� ≡
∑

(−n
� )=−1

p

(
n+ 1

24

)
q

n
24 (mod �).(2.7)

From the discussion in Section 1, we have g� �≡ 0 (mod �), and

f� ≡ 0 (mod �) ⇐⇒ � = 5, 7, 11.

From the discussion above, each Shimura lift of f� is in the space

Snew
�−3

(
6,−

(
8

−�

)
,−

(
12

−�

))
⊗
(
12

•

)
,
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and each Shimura lift of g� is in the space

Snew
�2−3 (6,−1,−1)⊗

(
12

•

)
.(2.8)

2.2. Modular Galois representations. Let k and N be positive integers with
k even and N coprime to �. We recall properties of the Galois representations
attached to eigenforms in Sk(N) that will be used in the next section. We recall
that � ≥ 5.

We let Q ⊆ C be the algebraic closure of Q in C. For each prime p, we fix
an algebraic closure Qp of Qp and an embedding ιp : Q ↪→ Qp. Via ιp, we view

Gp := Gal(Qp/Qp) as a subgroup of GQ := Gal(Q/Q). We let Ip ⊆ Gp denote the
inertia subgroup and let Frobp ∈ Gp/Ip denote the arithmetic Frobenius. We view

the coefficients of any f ∈ Sk(N) as elements of Q� via ι�.
We denote by χ : GQ → Z×

� (resp. ω : GQ → F×
� ) the �-adic (resp. the mod

�) cyclotomic character, and similarly with GQ replaced by GK for K/Q finite or
by Gp with p a prime, etc. We let ω2, ω

′
2 : I� → F×

�2 denote Serre’s fundamental

characters of level 2 [Ser87, §2.1]. These are characters of order �2−1 with ω�
2 = ω′

2,

ω′�
2 = ω2, and ω�+1

2 = ω′�+1
2 = ω.

Theorem 2.1 summarizes some important properties of modular Galois represen-
tations, and is due to many people, including Deligne, Fontaine, Langlands, Ribet,
and Shimura. See [Hid00, §3.2.2] and [Edi92, §2] for more details and references.

Theorem 2.1. Let f = q +
∑

n≥2 anq
n ∈ Sk(N) be a normalized Hecke eigen-

form. There is a continuous irreducible representation ρf : GQ → GL2(Q�) with

semisimple mod � reduction ρf : GQ → GL2(F�) satisfying the following properties.

(1) If p � �N , then ρf is unramified at p and the characteristic polynomial of
ρf (Frobp) is X2 − ι�(ap)X + pk−1. This uniquely characterizes ρf . In
particular, det ρf = χk−1.

(2) If q | N and q2 � N , then ρf |Iq is unipotent. In particular, the prime-to-�

Artin conductor N(ρf ) of ρf is not divisible by q2. If further f is q-new,

then ρf |Gq
is an extension of ψ by χψ where ψ : Gq → Q

×
� is the unramified

character with ψ(Frobq) = ι�(aq).
(3) Assume that 2 ≤ k ≤ �+ 1. Then

• If ι�(a�) is an �-adic unit, then ρf |G�
is reducible and ρf |I� is an ex-

tension of the trivial character by χk−1.
• If ι�(a�) is not an �-adic unit, then ρf |G�

is irreducible and ρf |I� ∼=
ωk−1
2 ⊕ ω

′(k−1)
2 .

Although we have suppressed it from the notation, we note that the representa-
tions ρf and ρf do depend on the choice of embedding ι� : Q ↪→ Q�, at least up to

the prime that it determines in the coefficient field Q({an}n≥1) ⊆ Q of f .

2.3. Congruences for non-eigenforms. We will ultimately be interested in con-
gruences for cusp forms which are not necessarily eigenforms. To do so, we record
two lemmas which allow us to bootstrap from the case of newforms to the general
case.



1052 SCOTT AHLGREN, PATRICK B. ALLEN, AND SHIANG TANG

Let k andN be positive integers with k even andN coprime to �. Let f1, . . . , fn ∈
Snew
k (N) and write

fj =

d∑
i=1

ci,jgi,

with newforms g1, . . . , gd ∈ Snew
k (N) and ci,j ∈ Q. Let E be a number field which

contains the coefficients of each gi as well as all of the coefficients ci,j . Fix a prime
λ of E over � and let e be its ramification index. Define

m(f1, . . . , fn) := max(0,−min(ordλ(ci,j))).(2.9)

With this notation we have the following.

Lemma 2.2. Let the notation be as above and let m ≥ 1 be an integer. Assume
that there is a prime Q � N�, an integer a, and an integer r ≥ 1 such that gi

∣∣T (Q) ≡
agi mod λr for each 1 ≤ i ≤ d. If r ≥ m + m(f1, . . . , fn), then for 1 ≤ j ≤ n we
have

fj
∣∣T (Q) ≡ afj mod λm.

If further f1, . . . , fn ∈ Snew
k (N,Z) and r ≥ em +m(f1, . . . , fn) then for 1 ≤ j ≤ n

we have

fj
∣∣T (Q) ≡ afj (mod �m).

Proof. This follows immediately from the definitions of m(f1, . . . , fn) and ramifi-
cation index. �

Lemma 2.3. Let m ≥ 1 be an integer. Let Q � N� be prime, let a be an integer,
and let r ≥ 1 be an integer such that gi

∣∣T (Q) ≡ agi mod λr for every newform
g ∈ Snew

k (N). There is an integer c ≥ 0, depending on �, k, and N but not on Q,
a, or m, such that if r ≥ em+ c, then

f
∣∣T (Q) ≡ af (mod �m)

for all f ∈ Snew
k (N).

Proof. Let A ⊂ Q be the subring of elements that are integral at all primes above
� (so Snew

k (N) = Snew
k (N,A)). Let h1, . . . , hd generate Snew

k (N) over A and let
f1, . . . , fn be a basis for Snew

k (N,Z) (in fact we can take n = d). Since Snew
k (N,Z)

generates Snew
k (N,Q) over Q, we can write

hj =

n∑
i=1

di,jfi,

with di,j ∈ Q. Choose c0 ≥ 0 such that �c0di,j ∈ A for each i, j. To show that
f
∣∣T (Q) ≡ af (mod �m) for all f ∈ Snew

k (N), it suffices to show that fi
∣∣T (Q) ≡ afi

(mod �m+c0) for each 1 ≤ i ≤ n. Setting c = ec0+m(f1, . . . , fn) with m(f1, . . . , fn)
as in (2.9), the lemma now follows from Lemma 2.2. �

Remark. When N is squarefree, the same result as Lemma 2.3 holds, replacing
Snew
k (N) with Snew

k (N, ε).
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3. Congruences in low weight

In this section, we use Galois representations together with some group theoretic
arguments to prove Theorem 1.5, which implies Theorem 1.2. The proof is by induc-
tion with the bulk of the work devoted to proving the base case, which is essentially
the combination of Propositions 3.3 and 3.8. A key technical lemma is Lemma 3.7,
which roughly states that the mod � Galois representations associated to sufficiently
distinct normalized eigenforms cut out sufficiently disjoint field extensions. This
lemma and its proof are inspired by and similar to that of [ACC+, Lemma 7.1.5(3)].

We recall the standing assumption that � ≥ 5 is prime. We again let k and N
be positive integers with k even and N coprime to �, and further assume that N
is squarefree. Recall that we have a fixed embedding ι� : Q ↪→ Q� that allows us to
view Fourier coefficients of modular forms in Sk(N) as elements of Q�.

Lemmas 3.1 and 3.2 are consequences of Theorem 2.1 and give us information on
the image of the mod � Galois representation associated to a normalized eigenform
in Sk(N).

Lemma 3.1. Let f, g ∈ Sk(N) be normalized eigenforms such that ρg
∼= ρf ⊗ η for

some nontrivial continuous character η : GQ → F
×
� . Then

(1) η = ω
�−1
2 .

(2) Assume further that k ≤ �−1. Letting a� denote the �-th Fourier coefficient
of f , we have

• If ι�(a�) is an �-adic unit, then k = �+1
2 .

• If ι�(a�) is not an �-adic unit, then k = �+3
2 .

Proof. To prove that η = ωi for some 1 ≤ i ≤ � − 2, it suffices to show that η is
unramified outside of �. Take any prime p �= �. Since we are assuming that N is
squarefree, parts (1) and (2) of Theorem 2.1 imply that

ρf |Ip ∼=
(
1 ∗

1

)
,

and similarly for ρg|Ip . Since ρg
∼= ρf ⊗ η, we must have η|Ip = 1. To see that

i = �−1
2 , we use that

det ρf = ωk−1 = det ρg = η2 det ρf ,

so η = ωi is quadratic.
For part (2), we use part (3) of Theorem 2.1. If ι�(a�) is an �-adic unit, it implies

that ωk−1 = ω
�−1
2 , so k = �+1

2 . If ι�(a�) is not an �-adic unit, it implies that

ωk−1
2 = (ω′

2)
k−1ω

�−1
2 = ω

�(k−1)+ �2−1
2

2 .

Since ω2 has order �2 − 1, we obtain k = �+3
2 . �

Lemma 3.2. Let f = q+
∑

n≥2 anq
n ∈ Sk(N) be a normalized eigenform. Assume

that 2 ≤ k ≤ � − 1 and that there is a prime q | N such that f is q-new and
qk−1 �≡ q±1 (mod �). Then the following are true.

(1) ρf is irreducible.
(2) Assume there is a quadratic extension K/Q such that ρf |GK

is reducible.

Then ρf
∼= ρf ⊗ ω

�−1
2 and

• If ι�(a�) is an �-adic unit, then k = �+1
2 .
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• If ι�(a�) is not an �-adic unit, then k = �+3
2 .

Proof. To establish part (1), assume that ρf
∼= ψ1⊕ψ2 for characters ψi : GQ → F

×
� .

Since N is squarefree, N(ρf ) | N is also squarefree and for every prime p �= �, at
most one of ψ1, ψ2 is ramified at p (see [Car89, §1.1], for example). On the other
hand, det ρf = ωk−1, so ψ1ψ2 is unramified at all primes p �= �. It follows that

ψ1 = ωa and ψ2 = ωb for some 0 ≤ a, b ≤ � − 2. Reordering if necessary, part (3)
of Theorem 2.1 implies that ψ1 = ωk−1 and ψ2 = 1. This together with our
assumption on q contradicts part (2) of Theorem 2.1.

We turn to part (2). Since ρf is irreducible we must have ρf |GK
∼= ψ1 ⊕ ψ2

for nontrivial characters ψ1, ψ2 : GK → F
×
� which are permuted by Gal(K/Q). It

follows that ρf is the induction of a character ψ : GK → F
×
� and letting η be

the quadratic character of K/Q, that ρf
∼= ρf ⊗ η. We then apply part (2) of

Lemma 3.1. �

We apply Lemmas 3.1 and 3.2 to our particular space of interest Snew
�−3 (6).

Proposition 3.3. Recall that � ≥ 5. For any newform f ∈ Snew
�−3 (6), the image of

ρf contains a conjugate of SL2(F�).

Proof. We first note that S2(6) = {0}, so we may assume that � ≥ 7.
By [DDT97, Theorem 2.47(b)], there are four possibilities for the image of ρf :

(1) ρf is reducible.
(2) ρf is dihedral, i.e. ρf is irreducible but ρf |GK

is reducible for some quadratic
K/Q.

(3) ρf is exceptional, i.e. the projective image of ρf is conjugate to one of A4,
S4, or A5.

(4) The image of ρf contains a conjugate of SL2(F�).

We rule out each of the first three possibilities in turn.
First, 2�−4 �≡ 2±1 (mod �) for any � ≥ 7, so part (1) of Lemma 3.2 shows that

ρf is irreducible. If further � ≥ 11, then �− 3 �= �+1
2 , �+3

2 , so part (2) of Lemma 3.2
shows that ρf is not dihedral. For � = 7, the space Snew

4 (6) is one-dimensional and
spanned by the newform

f = q − 2q2 − 3q3 + 4q4 + 6q5 + 6q6 − 16q7 + · · ·(3.1)

by [LMF20]. If ρf were dihedral, then part (2) of Lemma 3.2 would imply that

ρf
∼= ρf ⊗ ω3. Since ω3(Frob5) = −1, this would imply that tr ρf (Frob5) = 0. But

a5 = 6 �≡ 0 (mod 7), a contradiction.
It remains to rule out the exceptional case, and for this it suffices to show that

the projective image contains an element of order ≥ 6. Since the characters ω
and (ω2/ω

′
2) have orders � − 1 and � + 1, respectively, the description of ρf |I� in

part (3) of Theorem 2.1 implies that the projective image of ρf contains an element

of order �−1
gcd{�−1,�−4} if ι�(a�) is a unit, and an element of order �+1

gcd{�+1,�−4} if

ι�(a�) is not a unit. These are both ≥ 6 if � = 11, 17, or � ≥ 23. When � = 19,
there are three newforms in Snew

16 (6) with LMFDB labels 6.16.a.a, 6.16.a.b, and
6.16.a.c. The values of a� for these three newforms are 2163188180, 4934015444,
and −5895116260, respectively. In each case a� �≡ 0 (mod 19) and 18

gcd{18,15} = 6,

so part (3) of Theorem 2.1 again shows that ρf cannot be exceptional when � = 19.
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For � = 7, 13, we can rule out the possibility of exceptional image as follows. Say
we have a newform f = q +

∑
n≥2 anq

n in Snew
�−3 (6) and a prime p � 6� such that

ap ∈ Z. Setting u(p) := a2p/p
9, if the projective image of ρf is A4, S4, or A5, then

we have

u(p) ≡ 4, 0, 1, 2 (mod �) or u(p)2 − 3u(p) + 1 ≡ 0 (mod �),(3.2)

depending on whether the image of ρf (Frobp) in PGL2(F�) has order 1, 2, 3, 4,
or 5 (see for example [Rib85, p. 189]). When � = 7, one can check directly that
(3.2) is not satisfied when p = 5 for the unique newform f ∈ Snew

4 (6) with Fourier
expansion (3.1) above. When � = 13, there is again a unique newform f ∈ Snew

10 (6)
and it has Fourier expansion

f = q − 16q2 + 81q3 + 256q4 + 2694q5 + · · ·

by [LMF20]. We can again check directly that (3.2) is not satisfied when p = 5. �

Remark. The conclusion of Proposition 3.3 does not hold in general for the spaces
Snew
�2−3(6); this is the main reason that we are able to say more about Type I con-

gruences than those of Type II.

Next we will prove a few group theoretic lemmas (Lemmas 3.5, 3.6 and 3.7)
leading to Proposition 3.8. Before continuing we need to introduce some notation.

Notation. Let G be a group and let τ ∈ Gal(F�/F�).

• For a homomorphism ρ : G → GL2(F�), we write τρ : G → GL2(F�) for the
composite of ρ with the automorphism GL2(F�) → GL2(F�) induced by
τ : F� → F�.

• Similarly, for a homomorphism r : G → PGL2(F�), we write τr : G →
PGL2(F�) for the composite of r with the automorphism PGL2(F�) →
PGL2(F�) induced by τ : F� → F�.

• For two homomorphisms r1, r2 : G → PGL2(F�), we write r1 ∼= r2 if they
are conjugate by an element of PGL2(F�).

• For a normalized eigenform f ∈ Sk(N), we let rf : GQ → PGL2(F�) be the

composite of ρf : GQ → GL2(F�) with the projection GL2(F�) → PGL2(F�).

Lemma 3.4. Let f, g ∈ Sk(N) be normalized eigenforms. If rf ∼= rg and ρf �∼= ρg,

then ρf
∼= ρg ⊗ ω

�−1
2 .

Proof. Conjugating if necessary, we can assume that rf = rg. Then we can define

a character η : GQ → F
×
� by η(σ) = ρf (σ)ρg(σ)

−1, and we have ρf
∼= ρg ⊗ η. The

lemma now follows from Lemma 3.1. �

Lemma 3.5. For i = 1, 2, let Fqi/F� be the field of cardinality qi in F�, with qi
some power of �, and let ri : GQ → PGL2(F�) be a continuous homomorphism with
image containing PSL2(Fqi) and contained in PGL2(Fqi). Let Li be the subfield of

Q fixed by ker(ri) and let Ki/Q be the subextension of Li/Q such that Gal(Li/Ki) ∼=
PSL2(Fqi). Then the following are equivalent:

(1) L1 ∩ L2 �⊆ K1K2.
(2) L1 = L2.
(3) There is τ ∈ Gal(F�/F�) such that r1 ∼= τr2.
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Proof. First note that for each i = 1, 2, PSL2(Fqi) is simple since |Fqi | ≥ 4 (recall
that � ≥ 5).

Clearly, (2) implies (1). On the other hand, since PSL2(Fqi) is simple and is the
unique nontrivial proper normal subgroup of PGL2(Fqi), if L1 ∩ L2 �⊆ K1K2, then
L1 ⊆ L2 or L2 ⊆ L1, and K1 = K2. In either case, by comparing Jordan–Holder
factors, we must have L1 = L2.

It is immediate that (3) implies (2). Conversely, if L1 = L2, then there is an
isomorphism of groups ϕ : r1(GQ) ∼= r2(GQ). In particular, this implies that q1 = q2.
So letting Fq = Fq1 = Fq2 , we have either that r1(GQ) = r2(GQ) = PSL2(Fq) and
ϕ is an automorphism of PSL2(Fq), or that r1(GQ) = r2(GQ) = PGL2(Fq) and ϕ
is an automorphism of PGL2(Fq). The automorphism group of both PSL2(Fq) and
PGL2(Fq) is PGL2(Fq)�Gal(Fq/F�) (see [Ste16, Theorem 30]), which implies that
r1 is conjugate to τr2 for some τ ∈ Gal(Fq/F�). �
Lemma 3.6. Let G1, . . . , Gs and H be simple nonabelian groups. Any surjective
homomorphism f :

∏s
i=1 Gi → H factors through some projection pj :

∏s
i=1 Gi →

Gj.

Proof. For each 1 ≤ n ≤ s, let ιn : Gn →
∏s

i=1 Gi be the canonical injection.
Assume that f does not factor through any pj . Then there are indices 1 ≤ m �=
n ≤ s such that f ◦ ιm : Gm → H and f ◦ ιn : Gn → H are nontrivial. Since Gn

and Gm are simple, f ◦ ιm and f ◦ ιn are injective. Since ιm(Gm) and ιn(Gn) are
normal subgroups of

∏s
i=1 Gi and f is surjective, f ◦ ιm(Gm) and f ◦ ιn(Gn) are

normal subgroups of H. We see that f ◦ ιm and f ◦ ιn are isomorphisms. Since
H is nonabelian, we can then choose x ∈ Gm and y ∈ Gn such that f ◦ ιm(x) and
f ◦ ιn(y) do not commute. But ιm(x) and ιn(y) commute in

∏s
i=1 Gi, which gives

a contradiction. �
Lemma 3.7. Let f1, . . . , fs ∈ Sk(N) be normalized eigenforms. For each 1 ≤ i ≤ s,
assume that ρfi(GQ) contains a conjugate of SL2(F�), and let Mi be the subfield of

Q fixed by ker(ρfi). Then we have the following.

(1) For each 1 ≤ i ≤ s, there is an extension Ki/Q of degree at most 2 contained
in Mi and a finite extension Fqi/F� such that ρfi(GKi(ζ�)) is conjugate to
SL2(Fqi).

(2) Assume moreover that for each 1 ≤ i �= j ≤ s, there is no τ ∈ Gal(F�/F�)
such that rfi

∼= τrfj . Let Ki and Fqi be as in part (1), and set M =

M1 · · ·Ms and K = K1 · · ·Ks. Then Gal(M(ζ�)/K(ζ�)) ∼=
∏s

i=1 SL2(Fqi).

Proof. For each 1 ≤ i ≤ s, since ρfi(GQ) contains a conjugate of SL2(F�), [DDT97,
Theorem 2.47(b)] implies that the image of rfi is conjugate to either PSL2(Fqi)
or PGL2(Fqi) for some finite extension Fqi/F�. Replacing ρfi by a conjugate if
necessary, we assume that rfi has image either PSL2(Fqi) or PGL2(Fqi). We then
let Ki/Q be the extension of degree at most 2 such that rfi(GKi

) = PSL2(Fqi),
which is a simple group since � ≥ 5. Then rfi(GKi

(ζ�)) = PSL2(Fqi) as well, so

ρfi(GKi(ζ�)) is a subgroup of F
×
� SL2(Fqi) which contains SL2(Fqi) and has trivial

determinant. It follows that ρfi(GKi(ζ�)) = SL2(Fqi).
To prove part (2), we first establish some preliminaries. For each 1 ≤ i ≤ s, let

Li be the subfield of Mi fixed by ker(rfi). We claim the following.

(a) Gal(LiK(ζ�)/K(ζ�)) ∼= PSL2(Fqi).
(b) Gal(MiK(ζ�)/K(ζ�)) ∼= SL2(Fqi).
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(c) For 1 ≤ i �= j ≤ s, the fields LiK(ζ�) and LjK(ζ�) are disjoint over K(ζ�).

Since Gal(Li/Ki) ∼= PSL2(Fqi) is nonabelian and simple and K(ζ�)/Ki is abelian,
these extensions are disjoint and Gal(LiK(ζ�)/K(ζ�)) ∼= PSL2(Fqi), which gives
claim (a). Further, since the unique nontrivial proper quotient of

Gal(MiKi(ζ�)/Ki(ζ�)) ∼= SL2(Fqi)

is Gal(LiKi(ζ�)/Ki(ζ�)) ∼= PSL2(Fqi), we have

MiKi(ζ�) ∩K(ζ�) �= Ki(ζ�) ⇔ LiKi(ζ�) ∩K(ζ�) �= Ki(ζ�).

So MiKi(ζ�) and K(ζ�) are also disjoint over Ki(ζ�), which proves claim (b). We
now prove claim (c). If this were not the case, we would have Li ⊆ LjK(ζ�)
or Lj ⊆ LiK(ζ�). Without loss of generality, assume that Li ⊆ LjK(ζ�). But
Gal(LjK(ζ�)/Q) ↪→ Gal(Lj/Q) ×Gal(K(ζ�)/Q) has a unique nonabelian Jordan–
Holder factor, namely the one isomorphic to Gal(Lj/Kj). So Li ⊆ LjK(ζ�) implies
that Gal(LiLj/Q) also has a unique nonabelian Jordan–Holder factor, which implies
that Li ∩ Lj �⊆ KiKj . By Lemma 3.5, this contradicts our hypotheses on rfi and
rfj .

To conclude, we prove by induction on 1 ≤ j ≤ s that

Gal(M1 · · ·MjK(ζ�)/K(ζ�)) ∼=
j∏

i=1

Gal(MiK(ζ�)/K(ζ�)) ∼=
j∏

i=1

SL2(Fqi).

The j = 1 case follows from claim (b) of the previous paragraph. Now take 1 ≤
j − 1 ≤ s, and assume that

Gal(M1 · · ·Mj−1K(ζ�)/K(ζ�)) ∼=
j−1∏
i=1

Gal(MiK(ζ�)/K(ζ�)) ∼=
j−1∏
i=1

SL2(Fqi).

We want to show that M1 · · ·Mj−1K(ζ�) and MjK(ζ�) are disjoint over K(ζ�).
Assume otherwise. Since Gal(LjK(ζ�)) ∼= PSL2(Fqj ) is the unique nontrivial
proper quotient of Gal(MjK(ζ�)/K(ζ�)) ∼= SL2(Fqj ), we must then have LjK(ζ�) ⊆
M1 · · ·Mj−1K(ζ�). Since Gal(LjK(ζ�)/K(ζ�)) is nonabelian simple, the centre of∏j−1

i=1 SL2(Fqi) maps trivially under the surjective morphism

j−1∏
i=1

SL2(Fqi)
∼= Gal(M1 · · ·Mj−1K(ζ�)/K(ζ�)) → Gal(LjK(ζ�)/K(ζ�)),

and this map factors through

j−1∏
i=1

PSL2(Fqi)
∼=

j−1∏
i=1

Gal(LiK(ζ�)/K(ζ�)).

By Lemma 3.6, this map further factors through some Gal(LiK(ζ�)/K(ζ�)) with
1 ≤ i ≤ j − 1. But this implies that LjK(ζ�) ⊆ LiK(ζ�), contradicting claim (c)
from the previous paragraph. This concludes the proof. �

Proposition 3.8. Let f1, . . . , fs ∈ Sk(N) be normalized eigenforms such that for
each 1 ≤ i ≤ s, ρfi(GQ) contains a conjugate of SL2(F�). Then for any γ ∈ SL2(F�),

there is an element σ ∈ Gal(Q/Q(ζ�)) such that ρfi(σ) is conjugate to γ for each
1 ≤ i ≤ s.
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Proof. Say rfi
∼= τrfj for some i �= j and τ ∈ Gal(F�/F�). Then by Lemma 3.4,

ρfi(σ) is conjugate to τρfj (σ) for any σ ∈ Gal(Q/Q(ζ�)). If further ρfj (σ) is

conjugate to γ ∈ SL2(F�), then
τρfj (σ) is conjugate to γ as well. We can thus

assume that for each 1 ≤ i �= j ≤ s, there is no τ ∈ Gal(F�/F�) such that rfi
∼= τrfj .

The result now follows from Lemma 3.7. �

We can now prove Theorem 1.5, using Propositions 3.3 and 3.8 as a base case
for induction.

Proof of Theorem 1.5. Choose a number field E containing all Fourier coefficients
of all the newforms in Snew

�−3 (6). Let λ be the prime of E induced by our fixed

embedding ι� : Q ↪→ Q�. Let Eλ be the completion of E at λ, let Oλ be its ring of
integers, and let F = Oλ/λ be the residue field. Then for any newform f ∈ Snew

�−3 (6),
the Galois representations ρf and ρf of Theorem 2.1 can be defined over Oλ and
F, respectively. By Lemma 2.3, there is an integer r ≥ m such that it suffices to
show that there is a positive density set of primes Q with Q ≡ 1 (mod �m) and
f
∣∣T (Q) ≡ f (mod λr) for all newforms f ∈ Snew

�−3 (6).

By Propositions 3.3 and 3.8, we can find an element σ ∈ Gal(Q/Q(ζ�)) such

that ρf (σ) is conjugate to

(
1 1
−1 0

)
for any newform f ∈ Snew

�−3 (6). In particular,

ρf (σ) has characteristic polynomial congruent to x2 − x + 1 (mod λ). Enlarging
E if necessary, we can assume that x2 − x + 1 factors in F and its roots are the
two primitive 6-th roots of unity, which we denote by ξ and ξ′. Since ξ and ξ′ are
distinct, we can factor the characteristic polynomial of ρf (σ) over Oλ by Hensel’s
lemma, and ρf (σ) is conjugate to a diagonal matrix with entries α, β such that
α ≡ ξ (mod λ) and β ≡ ξ′ (mod λ). Letting ξ and ξ′ again denote the primitive 6-
th roots of unity in Oλ, we write α = ξγ and β = ξ′δ with γ, δ ≡ 1 (mod λ). Now

ρf (σ
�r−1

) is conjugate to a diagonal matrix with entries α�r−1

= ξ�
r−1

γ�r−1

and

β�r−1

= ξ′�
r−1

δ�
r−1

. Observe that both γ�r−1

and δ�
r−1

are congruent to 1 modulo

λr (recall that λ|�), and that {ξ�r−1

, ξ′�
r−1} = {ξ, ξ′}. Thus the characteristic

polynomial of ρf (σ
�r−1

) is congruent to (x − ξ)(x − ξ′) = x2 − x + 1 modulo λr.

Also, σ�r−1 ∈ Gal(Q/Q(ζ�m)) since Gal(Q(ζ�m)/Q(ζ�)) has order �
m−1 and r ≥ m.

Chebotarev’s density theorem implies that for a positive density set of primes Q,

FrobQ is conjugate to σ�r−1

. For such Q, we have Q ≡ 1 (mod �m) and for any
newform f ∈ Snew

�−3 (6), we have

f
∣∣T (Q) = (tr ρf (FrobQ))f ≡ f (mod λr).

The theorem is now proven. �

4. Congruences in arbitrary weight

In this section, we use a different argument to prove two variants of Theorem
1.5 in arbitrary integral weight k ≥ 2 with additional hypotheses on the prime �. It
will be convenient for us to fix a number field E containing all Fourier coefficients
of all newforms in Snew

k (6, ε2, ε3). Let λ be the prime of E induced by our fixed

embedding ι� : Q ↪→ Q� and let e be the ramification index.
We begin with an elementary lemma.
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Lemma 4.1. If a is an integer with 2a ≡ −2 (mod �), then 2�
m−1(a−1)+1 ≡ −2

(mod �m) for any m ≥ 1.

Proof. We induct on m. Suppose that 2b ≡ −1 (mod �m), and write

2�b + 1 = (2b + 1)
(
(2b)�−1 − (2b)�−2 + · · · − 2b + 1

)
.

Each summand in the second factor is 1 modulo �, and there are � summands, so
the second term is divisible by �. �

Theorem 4.2. Suppose that � ≥ 5 is prime and that there exists an integer a for
which 2a ≡ −2 (mod �). Let m be a natural number and let ε2, ε3 ∈ {±1}. Then
a positive proportion of primes Q ≡ −2 (mod �m) have the following property: for

every f ∈ Snew
k (6, ε2, ε3), we have f

∣∣T (Q) ≡ −(−ε2)
aQ

k−2
2 f (mod �m).

Proof. Let Eλ be the completion of E at λ, let Oλ be its ring of integers, and
let F = Oλ/λ be the residue field. Then for any newform f ∈ Snew

k (6, ε2, ε3), the
Galois representations ρf and ρf of Theorem 2.1 can be defined over Oλ and F,
respectively. By Lemma 2.3 and the remark that follows it, there is an integer
r ≥ m such that it suffices to show there is a positive proportion of primes Q ≡ −2
(mod �m) with the property that for every newform f ∈ Snew

k (6, ε2, ε3), we have

f
∣∣T (Q) ≡ −(−ε2)

aQ
k−2
2 f (mod λr). By Lemma 4.1, 2�

r−1(a−1)+1 ≡ −2 (mod �r).

Since a and �r−1(a−1)+1 have the same parity, we can replace a with �r−1(a−1)+1
and assume that 2a ≡ −2 (mod �r).

We have (ρf |G2
)ss ∼= χψ ⊕ ψ for the unramified character ψ : G2 → O×

λ with

ψ(Frob2) = ι�(a2). By [AL70, Theorem 3], a2 = −ε22
k−2
2 . Let K be the fixed

field of the kernel of ρf mod λr. By Chebotarev’s density theorem, a positive
proportion of primes Q have FrobQ conjugate to Froba2 in Gal(K(ζ�r)/Q). For such
Q, we have

Q ≡ χ(FrobQ) ≡ χ(Froba2) ≡ 2a ≡ −2 (mod �r).

We also have

aQ=tr ρf (FrobQ)≡tr ρf (Frob
a
2) ≡ (−ε22

k−2
2 )a2a + (−ε22

k−2
2 )a

≡ (−ε2)
a2a

k−2
2 (2a + 1)≡−(−ε2)

aQ
k−2
2 mod λr.

The theorem is now proven. �

A similar argument establishes Theorem 4.3, albeit with a stronger hypothesis
and slightly weaker conclusion (due to the lack of an analogue of Lemma 4.1).

Theorem 4.3. Suppose that � ≥ 5 is prime, that m is a natural number, and that
there exists an integer a such that 3a ≡ −2 (mod �m). Then a positive proportion
of primes Q ≡ −2 (mod �m) have the following property: for every newform f ∈
Snew
k (6, ε2, ε3), we have f

∣∣T (Q) ≡ −(−ε3)
aQ

k−2
2 f (mod λem).

Proof. We proceed as in Theorem 4.2 with 2 replaced by 3 and r = em. �

5. The application to partitions

We use the results of the last two sections to prove Theorems 1.2 – 1.4 from
Section 1. We begin with Lemmas 5.1 and 5.2.
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Lemma 5.1. Let � ≥ 5 be prime, and suppose that f ∈ Sk

(
1, νrη ,Z

)
where (r, 24) =

1 and k ∈ 1
2Z \ Z. Suppose that Q ≥ 5 is a prime and that λQ is an integer with

g
∣∣T (Q) ≡ λQg (mod �) for all g ∈ Snew

2k−1

(
6,−

(
8

r

)
,−

(
12

r

)
,Z

)
.

Then

f
∣∣T (Q2) ≡

(
12

Q

)
λQf (mod �).

Proof. For each squarefree t let

Ft ∈ Snew
2k−1

(
6,−

(
8

r

)
,−

(
12

r

)
,Z

)
be the form with

Sht f = Ft ⊗
(
12

•

)
.

For each t we have(
Ft ⊗

(
12

•

)) ∣∣T (Q)=

(
12

Q

)(
Ft

∣∣T (Q)
)
⊗
(
12

•

)
≡
(
12

Q

)
λQFt ⊗

(
12

•

)
(mod �).

In other words, for each squarefree t we have

Sht(f
∣∣T (Q2)) = (Sht f)

∣∣T (Q) ≡
(
12

Q

)
λQ Sht f (mod �).

The lemma now follows from (2.5). �

Lemma 5.2 describes the consequence of finding a “good” eigenvalue.

Lemma 5.2. Let � ≥ 5 be prime, and suppose that f ∈ Sk

(
1, νrη ,Z

)
where (r, 24) =

1 and k ∈ 1
2Z \ Z. Suppose that Q ≥ 5 is prime and that there exists αQ ∈ {±1}

with

f
∣∣T (Q2) ≡ αQQ

k− 3
2 f (mod �).

Then we have

a(Q2n) ≡ 0 (mod �) if

(
n

Q

)
= αQ

(
12

Q

)(
−1

Q

)k− 1
2

.

Proof. This follows from (2.4). For such n, the middle term in the definition of

the Hecke operator cancels against the same term in αQQ
k− 3

2 f , and the third term
does not contribute. �

Proof of Theorem 1.2. For � ≥ 13, let f� =
∑

a(n)q
n
24 ∈ S �−2

2

(
1, ν−�

η ,Z
)
be the

modular form in (2.6). By Theorem 1.5, a positive proportion of primes Q ≡ 1

(mod �) have the property that for all g ∈ Snew
�−3

(
6,−

(
8
−�

)
,−

(
12
−�

))
we have

g
∣∣T (Q) ≡ g (mod �).

For such primes it follows from Lemma 5.1 that

f�
∣∣T (Q2) ≡

(
12

Q

)
f� (mod �).
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Since a(n) ≡ p
(
�n+1
24

)
(mod �), it follows from Lemma 5.2 that

p

(
Q2�n+ 1

24

)
≡ 0 (mod �) if

(
n

Q

)
=

(
−1

Q

) �−3
2

.

�

Proof of Theorem 1.3. Suppose that � ≥ 13 is a prime such that 2a ≡ −2 (mod �)
for some a. Theorem 4.2 guarantees that there exist β ∈ {±1} and a positive
proportion of primes Q ≡ −2 (mod �) such that

g
∣∣T (Q) ≡ βQ

�−5
2 g (mod �) for all g ∈ Snew

�−3

(
6,−

(
8

−�

)
,−

(
12

−�

)
,Z

)
.

(5.1)

It follows from Lemma 5.1 that

f�
∣∣T (Q2) ≡

(
12

Q

)
βQ

�−5
2 f� (mod �).

From Lemma 5.2 we conclude that there are Type I congruences for such primes
Q.

To prove the existence of Type II congruences for � ≥ 5 we argue in a similar
way, starting with the modular form g� =

∑
b(n)q

n
24 ∈ S �2−2

2

(
1, ν−1

η ,Z
)
defined in

(2.7). In this case we have

b(n) ≡ p

(
n+ 1

24

)
(mod �) when

(
−n

�

)
= −1.

By (2.8) we have ε2 = −1 in Theorem 4.2; we conclude using that result and
Lemma 5.1 that for a positive proportion of primes Q ≡ −2 (mod �) we have

g�
∣∣T (Q2) ≡ −

(
12

Q

)
Q

�2−5
2 g� (mod �).

By Lemma 5.2 we conclude that

b(Q2n) ≡ 0 (mod �) if

(
n

Q

)
= −

(
−1

Q

) �2−3
2

= −
(
−1

Q

)
,

which gives a congruence of the form (1.7). �

Finally, we turn to the proof of Theorem 1.4. Here the situation is complicated
by the lack of an analogue of Lemma 4.1 for the prime 3; this necessitates the added
assumption that there are no congruences between newforms in the relevant spaces.
We first need a straightforward lemma.

Lemma 5.3. Suppose that the space Snew
k (6, ε2, ε3) (where k is even) is spanned by

newforms g1, . . . , gd. Let E be a number field containing the coefficients of g1, . . . gd,
let O be the ring of integers and let λ be a prime of E over the rational prime �.
Suppose that there is no congruence gi ≡ gj (mod λ) with i �= j. Then if a nonzero
modular form F ∈ Snew

k (6, ε2, ε3,O) is expressed as a linear combination

F =

d∑
i=1

cigi with ci ∈ E,(5.2)

we have ordλ(ci) ≥ 0 for all i.
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Proof. If the conclusion were false, then clearing denominators in (5.2) would show
that the set {g1, . . . , gd} is linearly dependent over O/λ. Let j < d be the maximal
index for which {g1, . . . , gj} is linearly independent over O/λ. Then there is a
relation

gj+1 ≡
j∑

i=1

αigi (mod λ).(5.3)

Write gi =
∑

bi(n)q
n, and assume without loss of generality that α1 �≡ 0 (mod λ).

By assumption we can find a prime p ≥ 5 for which

bj+1(p) �≡ b1(p) (mod λ).

Applying the Hecke operator T (p) to (5.3) gives

bj+1(p)

j∑
i=1

αigi ≡
j∑

i=1

bi(p)αigi.

Since α1(bj+1(p)− b1(p)) �≡ 0 (mod λ), this gives a contradiction. �

Proof of Theorem 1.4. Suppose that � ≥ 13 is a prime such that 3a ≡ −2 (mod �)
for some a. Applying Theorem 4.3 with m = 1 shows that there exist β ∈ {±1}
and a positive proportion of primes Q ≡ −2 (mod �) such that for every newform

g ∈ Snew
�−3

(
6,−

(
8
−�

)
,−

(
12
−�

))
we have

g
∣∣T (Q) ≡ βQ

�−5
2 g (mod λ).

By Lemma 5.3 it follows that (5.1) holds, and we argue as before to obtain the first
conclusion of Theorem 1.4. The second conclusion follows in similar fashion. �
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[Has66] Helmut Hasse, Über die Dichte der Primzahlen p, für die eine vorgegebene ganzrationale
Zahl a �= 0 von gerader bzw. ungerader Ordnung mod.p ist (German), Math. Ann. 166
(1966), 19–23, DOI 10.1007/BF01361432. MR205975

[Hid00] Haruzo Hida, Modular forms and Galois cohomology, Cambridge Studies in Ad-
vanced Mathematics, vol. 69, Cambridge University Press, Cambridge, 2000, DOI
10.1017/CBO9780511526046. MR1779182

[Joh12] Fredrik Johansson, Efficient implementation of the Hardy-Ramanujan-Rademacher for-
mula, LMS J. Comput. Math. 15 (2012), 341–359, DOI 10.1112/S1461157012001088.
MR2988821

[Kno70] Marvin I. Knopp, Modular functions in analytic number theory, Markham Publishing
Co., Chicago, Ill., 1970. MR0265287

[LMF20] The LMFDB Collaboration, The L-functions and modular forms database, 2020,
http://www.lmfdb.org.

[New57] Morris Newman, Congruences for the coefficients of modular forms and some new
congruences for the partition function, Canadian J. Math. 9 (1957), 549–552, DOI
10.4153/CJM-1957-062-1. MR92801

[Ono00] Ken Ono, Distribution of the partition function modulo m, Ann. of Math. (2) 151
(2000), no. 1, 293–307, DOI 10.2307/121118. MR1745012

[Rad13] Cristian-Silviu Radu, Proof of a conjecture by Ahlgren and Ono on the non-existence of
certain partition congruences, Trans. Amer. Math. Soc. 365 (2013), no. 9, 4881–4894,
DOI 10.1090/S0002-9947-2013-05777-7. MR3066773

[Ram19] S. Ramanujan, Some properties of p(n), the number of partitions of n, Proc. Cambridge
Philos. Soc. 19 (1919), 207–210. MR2280868

[Ram20] S. Ramanujan, Congruence properties of partitions, Proc. London Math. Soc (Records
for 13 March 1919) (1920). MR2280871

[Ram21] S. Ramanujan, Congruence properties of partitions, Math. Z. 9 (1921), no. 1-2, 147–153,
DOI 10.1007/BF01378341. MR1544457

[Rau21] Martin Raum, Relations among Ramanujan-type congruences II, arXiv:2105.13170,
2021.

[Rib85] Kenneth A. Ribet, On l-adic representations attached to modular forms. II, Glasgow
Math. J. 27 (1985), 185–194, DOI 10.1017/S0017089500006170. MR819838
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Duke Math. J. 54 (1987), no. 1, 179–230, DOI 10.1215/S0012-7094-87-05413-5.
MR885783

[Ser12] Jean-Pierre Serre, Lectures on NX(p), Chapman & Hall/CRC Research Notes in Math-
ematics, vol. 11, CRC Press, Boca Raton, FL, 2012. MR2920749

[Shi73] Goro Shimura, On modular forms of half integral weight, Ann. of Math. (2) 97 (1973),
440–481, DOI 10.2307/1970831. MR332663

[Ste16] Robert Steinberg, Lectures on Chevalley groups, University Lecture Series, vol. 66,
American Mathematical Society, Providence, RI, 2016. Notes prepared by John Faulkner
and Robert Wilson; Revised and corrected edition of the 1968 original [MR0466335];
With a foreword by Robert R. Snapp, DOI 10.1090/ulect/066. MR3616493

https://www.ams.org/mathscinet-getitem?mr=205958
https://www.ams.org/mathscinet-getitem?mr=227105
https://www.ams.org/mathscinet-getitem?mr=1046750
https://www.ams.org/mathscinet-getitem?mr=1605752
https://www.ams.org/mathscinet-getitem?mr=2112196
https://www.ams.org/mathscinet-getitem?mr=1176206
https://www.ams.org/mathscinet-getitem?mr=205975
https://www.ams.org/mathscinet-getitem?mr=1779182
https://www.ams.org/mathscinet-getitem?mr=2988821
https://www.ams.org/mathscinet-getitem?mr=0265287
http://www.lmfdb.org
https://www.ams.org/mathscinet-getitem?mr=92801
https://www.ams.org/mathscinet-getitem?mr=1745012
https://www.ams.org/mathscinet-getitem?mr=3066773
https://www.ams.org/mathscinet-getitem?mr=2280868
https://www.ams.org/mathscinet-getitem?mr=2280871
https://www.ams.org/mathscinet-getitem?mr=1544457
https://arxiv.org/abs/2105.13170
https://www.ams.org/mathscinet-getitem?mr=819838
https://www.ams.org/mathscinet-getitem?mr=434996
https://www.ams.org/mathscinet-getitem?mr=885783
https://www.ams.org/mathscinet-getitem?mr=2920749
https://www.ams.org/mathscinet-getitem?mr=332663
https://www.ams.org/mathscinet-getitem?mr=3616493


1064 SCOTT AHLGREN, PATRICK B. ALLEN, AND SHIANG TANG

[Tre06] Stephanie Treneer, Congruences for the coefficients of weakly holomorphic mod-
ular forms, Proc. London Math. Soc. (3) 93 (2006), no. 2, 304–324, DOI
10.1112/S0024611506015814. MR2251155

[Tre08] Stephanie Treneer, Quadratic twists and the coefficients of weakly holomorphic modular
forms, J. Ramanujan Math. Soc. 23 (2008), no. 3, 283–309. MR2446602

[Wat38] G. N. Watson, Ramanujans Vermutung über Zerfällungszahlen (German), J. Reine
Angew. Math. 179 (1938), 97–128, DOI 10.1515/crll.1938.179.97. MR1581588

[Wea01] Rhiannon L. Weaver, New congruences for the partition function, Ramanujan J. 5
(2001), no. 1, 53–63, DOI 10.1023/A:1011493128408. MR1829808

[Yan14] Yifan Yang, Modular forms of half-integral weights on SL(2,Z), Nagoya Math. J. 215
(2014), 1–66, DOI 10.1215/00277630-2684452. MR3263525

Department of Mathematics, University of Illinois, Urbana, Illinois 61801

Email address: sahlgren@illinois.edu

Department of Mathematics and Statistics, McGill University, Montreal, Quebec

H3A 0B9, Canada

Email address: patrick.allen@mcgill.ca

Department of Mathematics, Purdue University, West Lafayette, Indiana 47907

Email address: tang573@purdue.edu

https://www.ams.org/mathscinet-getitem?mr=2251155
https://www.ams.org/mathscinet-getitem?mr=2446602
https://www.ams.org/mathscinet-getitem?mr=1581588
https://www.ams.org/mathscinet-getitem?mr=1829808
https://www.ams.org/mathscinet-getitem?mr=3263525

	1. Introduction
	2. Background
	2.1. Modular forms
	2.2. Modular Galois representations
	2.3. Congruences for non-eigenforms

	3. Congruences in low weight
	4. Congruences in arbitrary weight
	5. The application to partitions
	Acknowledgments
	References

