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COHOMOLOGY RING OF TREE BRAID GROUPS AND
EXTERIOR FACE RINGS

JESÚS GONZÁLEZ AND TERESA HOEKSTRA-MENDOZA

Abstract. For a tree T and a positive integer n, let BnT denote the n-strand
braid group on T . We use discrete Morse theory techniques to show that
the cohomology ring H∗(BnT ) is encoded by an explicit abstract simplicial
complex KnT that measures n-local interactions among essential vertices of
T . We show that, in many cases (for instance when T is a binary tree),
H∗(BnT ) is the exterior face ring determined by KnT .

1. Main results

For a finite graph Γ and a positive integer n, let Confn Γ denote the configuration
space of n ordered points on Γ,

Confn Γ := {(x1, . . . , xn) ∈ Γn : xi �= xj for i �= j} .
The usual right action of the n-symmetric group Σn on Confn Γ is given by (x1, . . .,
xn) ·σ = (xσ(1), . . . , xσ(n)), and UConfn Γ stands for the corresponding orbit space,
the configuration space of n unlabelled points on Γ. Both Confn Γ and UConfn Γ
are known to be aspherical [1, 10]; their corresponding fundamental groups are
denoted by PnΓ (the pure n-braid group on Γ) and BnΓ (the full n-braid group or,
simply, the n-braid group on Γ). We focus on the case of a tree Γ = T .

Besides its central role in geometric group theory, graph braid groups have ap-
plications in areas outside pure mathematics such as robotics, topological quantum
computing and data science. Yet, there is a relatively limited knowledge of the
algebraic topology properties of a graph braid group (or, for that matter, of a tree
braid group), particularly concerning its cohomology ring structure.

Using discrete Morse theory techniques on Abrams’ cubical model UDnT for
UConfn T (reviewed below), D. Farley gave in [4] an efficient description of the
additive structure of the cohomology of BnT . Later, and in order to get at the
multiplicative structure, the Morse theoretic methods were replaced in [5] by the
use of a Salvetti complex S obtained by identifying opposite faces of cells in UDnT .
Being a union of tori, S has a well understood cohomology ring. Yet more im-
portantly, the projection map q : UDnT → S induces a surjection in cohomology.
Farley’s main result in [5] is a description of a set of generators for Ker(q∗), which
yields a presentation for the cohomology ring of BnT .

Although [5] includes an algorithm for performing computations mod Ker(q∗),
the price of not working at the Morse theoretic level is that Farley’s presentation
includes many non-essential generators. As a result, calculations are hard to work
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with, in concrete examples, as well as in theoretical developments (cf. Remark 1.9).
In particular, Farley-Sabalka’s conjecture [7, Conjecture 5.7] that H∗(BnT ;Z2) is
an exterior face ring, suggested on the basis of extensive concrete calculations, was
left open.

In this paper we combine Farley-Sabalka’s original Morse theoretic approach
with Forman’s Morse-theoretic description of cup products to prove the integral
version of Farley-Sabalka’s conjecture for a large family of trees. The statement
in Theorem 1.1, which focuses on binary trees, i.e., on trees all of whose essential
vertices have degree three, disproves Conjecture 5.17 in [15] by exhibiting an infinite
family of non-linear trees T all of whose braid group cohomology rings are exterior
face rings.
Theorem 1.1. Assume T is a binary tree. For a commutative ring R with 1, the
cohomology ring H∗(BnT ;R) is the exterior face ring ΛR(KnT ) determined by a
simplicial complex KnT . Explicitly, H∗(BnT ;R) is the quotient Λ/I, where Λ is
the exterior graded R-algebra generated by the vertex set of KnT , and I is the
ideal generated by monomials corresponding to non-faces of KnT .

As noted in [7, p. 68], the isomorphism type of a complex KnT as the one in
Theorem 1.1 is well determined. We refer to KnT as the n-interaction complex of T .
A description of KnT as an abstract simplicial complex is given in Definition 1.3.
The explicit definition allows us, for instance, to easily deduce a concrete right-
angled Artin group presentation for BnT when T is a linear binary tree (Example
1.6). This complements the inductive method in [3] proving that linearity is a
sufficient1 condition for a tree to have right-angled Artin braid groups.

The definition of KnT applies for any tree and we show that the resulting com-
binatorial object encodes much of the ring structure of H∗(BnT ;R), whether T is
binary or not. Indeed, we generalize Theorem 1.1 in two directions. On the one
hand, the ring-isomorphism assertion H∗(BnT ;R) ∼= ΛR(KnT ) holds as long as T
is a tree with binary core (Theorem 6.4). Furthermore, we show that, for any tree
T , the vertices of KnT can be thought of as giving an R-basis of H1(BnT ;R), while
the cup-product-based rule {v1, . . . , vm} �→ v1 · · · vm sets a 1-1 correspondence be-
tween the family of (m − 1)-simplices of KnT and an R-basis of Hm(BnT ;R).
More importantly, while cup squares are known to vanish in H∗(BnT ;R), certain
(square-free) products v1 · · · vm are non-zero even when {v1, . . . , vm} fails to be a
face of KnT (this can happen only if T is not a tree with binary core). In any such
case, we give a closed formula (Theorem 5.1) to write any such product v1 · · · vm
as an R-linear combination of basis elements, thus completing a full description of
the cup-product structure in the cohomology of BnT for any tree T . Details are
summarized in Theorem 1.7.

The techniques used in this work (discrete Morse theoretic approach to cup prod-
ucts) should be a valuable tool in understanding the algebraic topology properties
of discrete models for other spaces, such as non-particle configuration spaces, as
well as generalized (e.g., no-k-equal) configuration spaces.
Remark 1.2. Ghrist’s pioneering work led to conjecture that any pure braid group
PnΓ on a graph Γ would be a right-angled Artin group. In the case of full braid
groups BnΓ, [13, 14] give two characterizations (one combinatorial and another
cohomological) of the right-angled-Artin condition. For instance, for Γ = T a tree,

1The condition is known to be necessary and sufficient.
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BnT is a right-angled Artin group if and only if H∗(BnT ) is the exterior face ring of
a flag complex. Theorem 1.1 and its generalized version in Theorem 6.4 assert that,
in the full braid group setting and for trees with binary core, Ghrist’s conjecture is
true after removal of the flag requirement.

The description of the complex KnT , as well as an explicit statement of Theo-
rem 1.7, and a couple of explicit illustrations (Examples 1.5 and 1.6) of Theorem 1.1
require a few preparatory constructions. Unless otherwise noted, throughout the
rest of the section T stands for an arbitrary tree.

Fix once and for all a planar embedding together with a root (a vertex of degree 1)
for T . Order the vertices of T as they are first encountered through the walk along
the tree that (a) starts at the root vertex, which is assigned the ordinal 0, and
that (b) takes the left-most branch at each intersection given by an essential vertex
(turning around when reaching a vertex of degree 1). Vertices of T will be denoted
by the assigned non-negative integer. An edge of T , say with endpoints r and s,
will be denoted by the ordered pair (r, s), where r < s. Furthermore, the ordering
of vertices will be transferred to an ordering of edges by declaring that the ordinal
of (r, s) is s. The resulting ordering of vertices and edges will be referred to as the
T -order.2

0 x
0-direction 1 x-direction 0

x-
di
re
ct
io
n
1

x-direct
ion 2

x-direction d(x)−1

Figure 1. The d(x) x-directions from an essential vertex x

Let d(x) stand for the degree of a vertex x of T , so there are d(x) “directions”
from x. For a vertex x different from the root, the direction from x that leads to
the root is defined to be the x-direction 0; x-directions 1, 2, . . . , d(x)−1 (if any) are
then chosen following the positive orientation coming from the planar embedding.
See Figure 1. For instance, if x is not the root and the vertex y incident to x in
x-direction 0 is not essential (i.e. d(y) ≤ 2), then y = x − 1. Likewise, if d(x) ≥ 2,
then x+1 is the vertex incident to x in x-direction 1. It will be convenient to think
of the only direction from the root vertex 0 as 0-direction 1, in particular there is
no 0-direction 0.

Fix essential vertices x1 < · · · < xm of T. The complement in T of the set
{x1, . . . , xm} decomposes into 1 +

∑m
i=1 (d(xi) − 1) components

Ci,�i = Ci,�i(x1, . . . , xm),
where 0 ≤ i ≤ m, �0 = 1, and 1 ≤ �i ≤ d(xi) − 1 for i > 0. The closure of each
Ci,�i is a subtree of T . C0,1 is the component containing the root 0, while Ci,�i (for
i > 0) is the component whose closure contains xi and is located on the xi-direction
�i. The set B(Ci,�i) of “bounding” vertices of a component Ci,�i is defined to be
the intersection of the closure of Ci,�i with {x1, . . . , xm}. Note that xi ∈ B(Ci,�i)
for i > 0, however the root 0 is not considered to be a bounding vertex of C0,1, just

2This of course depends on the embedding and root chosen.
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as no leave of T (i.e., a vertex of degree 1 other than the root) is considered to be
a bounding vertex of any Ci,�i .

Definition 1.3 (The n-interaction complex of T , KnT ).
(a) The vertex set VnT of KnT is the collection of all 4-tuples ν = 〈k, x, p, q〉,

where k is a non-negative integer number, x is an essential vertex of T ,
and p = (p1, . . . , pr) and q = (q1, . . . , qs) are tuples of non-negative integer
numbers satisfying the three conditions

• r + s = d(x) − 1, with r > 0 < s;
• k + |p| + |q| = n− 1, where |p| :=

∑r
j=1 pj and |q| :=

∑s
j=1 qj ;

• pj > 0 for at least one j ∈ {1, . . . , r}.
We stress that r (i.e., the length of p) is one of the parameters determining
the 4-tuple ν. For instance, if d(x) = 6 and n = 4, then 〈1, x, (0, 1, 0), (1, 0)〉
and 〈1, x, (0, 1), (0, 1, 0)〉 are two different elements in VnT . The length s of
q, on the other hand, is determined by r and d(x).

(b) For ν1, . . . , νm ∈ VnT with νi = 〈ki, xi, pi, qi〉, pi = (pi,1, . . . , pi,ri), qi =
(qi,1, . . . , qi,si) and so that x1 < · · · < xm, consider the components C0,1
and Ci,�i (1 ≤ i ≤ m and 1 ≤ �i ≤ d(xi)− 1) of T \ {x1, . . . , xm} as defined
above. Then, for C ∈ {C0,1, Ci,�i}, the C-local information of νj , denoted
by �C(νj), is defined by

�C0,1(νj) =

{
kj , if xj ∈ B(C0,1);
0, otherwise,

and, for i > 0,

(1) �Ci,�i
(νj) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
pi,�i , if j = i and �i ≤ ri;
qi,�i−ri , if j = i and �i > ri;
kj , if j �= i and xj ∈ B(Ci,�i);
0, in any other case.

Note that �C(νj) = 0 whenever xj �∈ B(C).
(c) The n-interaction complex of T is the abstract simplicial complex KnT

whose vertex set is VnT and whose (m− 1)-simplices are given by families
of vertices ν1, . . . , νm as in item (b) satisfying

(2)
m∑
j=1

�Ci,�i
(νj) ≥ n

(
card(B(Ci,�i)) − 1

)
,

for all i ∈ {0, 1, . . . ,m} and all relevant �i, and in such a way that, for every
i > 0, (2) is a strict inequality for at least one �i ∈ {1, . . . , ri}.

It is an easy arithmetic exercise (whose verification is left to the reader) to check
that KnT is indeed a simplicial complex.

Definition 1.3 is dictated by discrete Morse theoretic considerations —reviewed
in later sections. Our choice for using angle brackets instead of parentheses for 4-
tuples in VnT will be justified later in the paper (Remark 6.2). More important at
this point is to explain the role of KnT as an object measuring “local interactions”
between systems of “local informations” around essential vertices of T . For starters,
we refer to a vertex ν = 〈k, x, (p1, . . . , pr), (q1, . . . , qs)〉 ∈ VnT as a system of local
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Figure 2. The local information given by a vertex
〈k, x, (p1, . . . , pr), (q1, . . . , qs)〉 of KnT

informations around the essential vertex x of T . Indeed, as illustrated in Figure 2,
we think of:

(i) k as the local information of ν in x-direction 0,
(ii) pj (1 ≤ j ≤ r) as the local information of ν in x-direction j, and

(iii) qj (1 ≤ j ≤ s) as the local information of ν in x-direction j + r.

In these terms, (1) gives a systematic way to spell out the information ingredients on
a given family of systems of local informations. Likewise, item (c) in Definition 1.3
asserts that a family {ν1, . . . , νm} of systems of local informations around essential
vertices x1 < · · · < xm of T assembles a simplex of KnT if, for each component C
of T \ {x1, . . . , xm}, the sum of the C-local informations of vertices xj bounding C
is suitably large, depending on n and on the number of bounding vertices of C.

Definition 1.4. Let ν1, ν2, . . . , νm ∈ VnT be a family of systems of local informa-
tions around essential vertices x1 < x2 < · · · < xm of T . We say that ν1, . . . , νm
interact strongly provided {ν1, . . . , νm} is a simplex of KnT . We say that ν1, . . . , νm
interact weakly provided (2) holds for all relevant i and �i but {ν1, . . . , νm} fails to
be a simplex of KnT —so that, in fact, (2) is an equality for some i > 0 and all
�i ∈ {1, . . . , ri}. In all other cases, we say that ν1, . . . , νm do not interact.

root
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Figure 3. Three different aspects of the minimal non-linear tree T0

Example 1.5. Figure 3 shows three aspects of the smallest possible non-linear tree
T0. The four essential vertices are labelled (following the T0-order) in the central
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picture. The fact that the 4-fold product

(3) 〈0, x1, (1), (7)〉〈2, x2, (4), (2)〉〈6, x3, (1), (1)〉〈7, x4, (1), (0)〉 ∈ H4(B9T0;R)

is a basis element follows from Theorem 1.1, as inspection in the picture on the right
of Figure 3 reveals that the factors in (3) interact strongly. Note that r = s = 1 for
each factor in (3), and that the cases with a strict inequality in (2) hold as required
in the last clause of item (c) of Definition 1.3. Likewise, interaction analysis in the
picture on the left exhibits the well known fact that K4T0 is not flag (i.e., B4T is not
a right-angled Artin group): the three basis elements 〈0, x1, (1), (2)〉, 〈2, x3, (1), (0)〉
and 〈2, x4, (1), (0)〉 in H1(B4T0;R) have pairwise strong interactions (so their three
double products are part of a basis of H2(B4T0)), but the three basis elements do
not interact (so their triple product vanishes).

root

Figure 4. A planar embedding of a binary linear tree

Example 1.6. Let T be a binary tree whose essential vertices lie along a single
embedded arc. Choosing the planar embedding shown in Figure 4, we see that
BnT has a right-angled Artin group presentation with generators 〈k, x, p, q〉, where
x is an essential vertex of T and k, p, q are non-negative integer numbers3 satisfying
p > 0 and k + p + q = n − 1. In these terms, BnT has a commutativity relation
〈k, x, p, q〉〈k′, x′, p′, q′〉 = 〈k′, x′, p′, q′〉〈k, x, p, q〉 whenever x < x′ and q + k′ ≥ n,
where the former inequality refers to the T -order resulting from the embedding.
Note that the chosen planar embedding of T rules out weak interactions.

Theorem 1.7. For any tree T , any non-negative integer n and any commutative
ring R with unit 1, there is a set-theoretic inclusion VnT ↪→ H1(BnT ;R) so
that the faces of KnT yield, via cup-product of their vertices, a graded basis of
H∗(BnT ;R). For instance, the empty face ∅ ∈ KnT corresponds to the unit
1 ∈ H0(BnT ;R) = R. Furthermore, any product 〈k, x, p, q〉 · 〈k′, x′, p′, q′〉 with
x = x′ vanishes (in particular cup-squares vanish), as do cup-products of non-
interacting elements in VnT .

The only piece of multiplicative information missing in Theorem 1.7, namely
a description of cup-products of weak-interacting basis elements in VnT , is fully
addressed in Section 5 (see Theorem 5.1) through the concept of “interaction pa-
rameters” introduced in Section 4 (Definition 4.3).

Remark 1.8. The only obstructions for realizing H∗(BnT ;R) in Theorem 1.7 as
the exterior face ring determined by KnT are the non-vanishing products whose
factors interact weakly. For trees with binary core, such weak-interacting non-trivial
products are effectively ruled out in the final section of this paper (Theorem 6.4) by
means of a suitable change of basis that adjusts the inclusion VnT ↪→ H1(BnT ;R)
in Theorem 1.7.

3Instead of writing the 1-tuples (p) and (q), we have simply written p and q.
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Remark 1.9. The results in this paper allow us to recover and generalize Scheirer’s
main technical tool [16, Lemma 3.6] for studying Farber’s topological complexity
of BnT . Extensions of Scheirer’s results will be the topic of a future publication.

In the rest of the paper we shall omit writing the coefficient ring R in cohomology
groups and associated (co)chain complexes.

2. Preliminaries

We start by collecting the ingredients and facts we need: cup-products in the
cubical setting [11, 12], reviewed in Section 2.1, Forman’s discrete Morse theory
[8, 9], reviewed in Subsection 2.2, and Farley-Sabalka’s gradient field on Abrams’
discrete model for (ordered and unordered) graph configuration spaces [1, 2, 6, 13],
reviewed in Subsection 2.3. This will set the notation we use in the rest of the
paper.

2.1. Cup products in cubical sets. An elementary cube in R
k is a cartesian

product c = I1×· · ·×Ik of intervals Ii = [mi,mi+εi], where mi ∈ Z and εi ∈ {0, 1}.
For simplicity, we write [m] := [m,m] for a degenerate interval. We say that c is an
�-cube if there are � non-degenerate intervals among the cartesian factors Ij of c,
say Ii1 , . . . , Ii� with 1 ≤ i1 < · · · < i� ≤ k. In such a case, the product orientation
of c is determined by (a) the orientation (from smaller to larger endpoints) of the
non-degenerate intervals Ii1 , . . . , Ii� , and (b) the order i1 < · · · < i�, i.e., the order
of factors in the cartesian product. Under these conditions, and for 1 ≤ r ≤ �, set

(4)
δ2r(c) = I1 × · · · × Iir−1 × [mir + 1] × Iir+1 × · · · × Ik,

δ2r−1(c) = I1 × · · · × Iir−1 × [mir ] × Iir+1 × · · · × Ik.

Then, for a cubical set X ⊂ R
k, i.e., a union of elementary cubes in R

k, the
boundary map ∂ : C�(X) → C�−1(X) in the oriented cubical chain complex C∗(X)
is determined by

(5) ∂ (c) =
�∑

r=1
(−1)r−1

(
δ2r(c) − δ2r−1(c)

)
.

For instance, the oriented cubical boundary of the square [0, 1] × [0, 1] can be de-
picted as

+ [0, 1] × [0]

+ [1] × [0, 1]

− [0, 1] × [1]

− [0] × [0, 1]

(0, 0)

(0, 1) (1, 1)

(1, 0)

Example 2.1. Let T be a tree whose vertices and edges have been ordered as
described in the previous section. Think of T as cubical set. In fact, orient the
edges of T from the smaller to the larger endpoints and fix an orientation-preserving
embedding T ⊂ R

t of cubical sets, where elementary cubes in R
t have product

orientation. Thus, a vertex of T becomes a 0-cube [k1] × · · · × [kt] in R
t, while an
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oriented edge in T corresponds in R
t to an oriented 1-cube I1 × · · · × It, i.e., an

elementary cube whose factors are degenerate, except for one of them.

Cup products in cubical cohomology are fairly similar to their classic simplicial
counterparts. At the oriented cubical cochain level, there is a cup product graded
map C∗(X) × C∗(X) → C∗(X) that is associative, R-bilinear and is described on
basis elements as follows. Firstly, for intervals [a, b] and [a′, b′], let

[a, b] · [a′, b′] :=

{
[a, b′], if b = a′ and either a = b or a′ = b′ (or both);
0, otherwise.

Then, for elementary cubes c = I1×· · ·× Ik and d = J1×· · ·×Jk in X, the cubical
cup product c·d of the corresponding basis elements4 c, d ∈ C∗(X) vanishes if either
Ii · Ji = 0 for some i ∈ {1, . . . , k} or if (I1 · J1) × · · · × (Ik · Jk) is not a cube in X;
otherwise c ·d is up to a sign εc,d, the dual of the cube (I1 ·J1)×· · ·×(Ik ·Jk). Given
our product-orientation settings, the sign is given by the usual algebraic-topology
convention:

εc,d =
k−1∑
j=1

⎛⎝dim Jj

k∑
i=j+1

dim Ii

⎞⎠ .

Remark 2.2. Particularly agreeable is the fact that a finite cartesian product of
cubical sets comes equipped for free with the obvious structure of a cubical set. For
instance, in the situation of Example 2.1, the cartesian power Tn is a (product-
oriented) cubical set in R

nt. In such a setting, an oriented cube c = c1 × · · · × cn
in Tn (where each ci is either a vertex or an edge of T ) corresponds in R

nt to an
oriented cube (I1,1 × · · · × I1,t)×· · ·×(In,1 × · · · × In,t) where, for each i = 1, . . . , n,
at most one of the intervals Ii,1, . . . , Ii,t is non-degenerate. These considerations,
coupled with the fact that cubes of a single factor T are at most one-dimensional,
yield the next explicit description of cubical cup-products associated to T and Tn.

Proposition 2.3. The cup product in C∗(T ) of the duals of a pair of (oriented)
cubes c and d in T is given by the dual of

c · d =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(x, y), if c = (x, y), an edge of T , and d = y, a vertex of T ;
(x, y), if c = x, a vertex of T , and d = (x, y), an edge of T ;

x, if c = d = x, a vertex of T ;
0, otherwise.

More generally, let D be a (product-oriented) cubical subset of Tn. The cup
product in C∗(D) of the duals of a pair of cubes c = c1×· · ·×cn and d = d1×· · ·×dn
in D vanishes provided ci · di = 0 for some i ∈ {1, . . . , n} or, else, provided the
cube c · d := (c1 · d1) × · · · × (cn · dn) is not contained in D. Otherwise, the cup
product is the multiple (−1)εc,d of the dual of c · d, where

εc,d =
n−1∑
j=1

⎛⎝dim(dj)
n∑

i=j+1
dim(ci)

⎞⎠ .

4We shall omit the use of an asterisk for dual elements. The intended meaning will be clear
from the context.
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2.2. Discrete Morse theory. Let X denote a finite regular cell complex with
face poset (F ,⊂), i.e., F is the set of (closed) cells of X partially ordered by
inclusion. For a cell a ∈ F , we write a(p) to indicate that a is p-dimensional. We
think of the Hasse diagram HF of F as a directed graph: it has vertex set F ,
while directed edges (called also “arrows”) are given by the family of ordered pairs
(a(p+1), b(p)) with b ⊂ a. Such an arrow will be denoted as a(p+1) ↘ b(p). Let
W be a partial matching on HF , i.e., a directed subgraph of HF whose vertices
have degree precisely 1. The modified Hasse diagram HF (W ) is the directed graph
obtained from HF by reversing all arrows of W . A reversed edge is denoted as
b(p) ↗ a(p+1), in which case a is said to be W -collapsible and b is said to be
W -redundant.

Discrete Morse theory focuses on gradient paths, i.e., directed paths in HF (W )
given by an alternate chain of up-going and down-going arrows,

(6) a0 ↗ b1 ↘ a1 ↗ · · · ↗ bk ↘ ak and c0 ↘ d1 ↗ c1 ↘ · · · ↘ dk ↗ ck.

A gradient path as the one on the left (right) hand-side of (6) is called an upper
(respectively, lower) path, and the gradient path is called elementary when k = 1,
or constant when k = 0. The sets of upper and lower paths that start on a p-cell a
and end on a p-cell b are denoted by Γ(a, b) and Γ(a, b), respectively. Concatenation
of upper/lower paths Γ(a, b) × Γ(b, c) → Γ(a, c) and Γ(a, b) × Γ(b, c) → Γ(a, c) is
defined in the obvious way; for instance, any upper/lower path is a concatenation of
corresponding elementary paths. An upper/lower path is called a cycle if a0 = ak
in the upper case of (6), or c0 = ck in the lower case. (By construction, the cycle
condition can only hold with k > 1.) The matching W is said to be a gradient
field on X if HF (W ) has no cycles. In such a case, cells of X that are neither
W -redundant nor W -collapsible are said to be W -critical or, simply, critical when
W is clear from the context. We follow Forman’s convention to use capital letters
to denote critical cells.

It is well known that a gradient field on X carries all the homotopy informa-
tion of X. For our purposes, we only need to recall how gradient paths recover
(co)homological information. In the rest of the section we assume W is a gradient
field on X.

Start by fixing an orientation on each cell of X and, for cells a(p) ⊂ b(p+1),
consider the incidence number ιa,b of a and b, i.e., the coefficient (±1, since X is
regular) of a in the expression of ∂(b). Here ∂ is the boundary operator in the
cellular chain complex C∗(X). The Morse cochain complex M∗(X) is then defined
to be the graded R-free5 module generated in dimension p ≥ 0 by the duals6 of the
oriented critical cells A(p) of X. The definition of the Morse coboundary map in
M∗(X) requires the concept of multiplicity of upper/lower paths. In the elementary
case, multiplicity is given by

(7) μ(a0 ↗ b1 ↘ a1) = −ιa0,b1 · ιa1,b1 and μ(c0 ↘ d1 ↗ c1) = −ιd1,c0 · ιd1,c1 ,

5Cochain coefficients are taken in a ground ring R, as we are interested in cup-products.
6Recall we omit the use of an asterisk for dual elements.
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and, in the general case, it is defined to be a multiplicative function with respect
to concatenation of elementary paths. The Morse coboundary is then defined by

(8) ∂(A(p)) =
∑

B(p+1)

⎛⎝ ∑
b(p)⊂B

⎛⎝ιb,B
∑

γ∈Γ(b,A)

μ(γ)

⎞⎠⎞⎠ ·B.

In other words, the Morse theoretic incidence number of A and B is given by the
number of “mixed” gradient paths γ from B to A given as the concatenation of an
arrow B ↘ b and a path γ ∈ Γ(b, A), counted with multiplicity μ(γ) := ιb,B · μ(γ).

Gradient paths yield, in addition, a homotopy equivalence between M∗(X) and
the usual cellular cochain complex C∗(X). Indeed, the formulae
(9)

Φ(A(p)) =
∑
a(p)

⎛⎝ ∑
γ∈Γ(a,A)

μ(γ)

⎞⎠ a and Φ(a(p)) =
∑
A(p)

⎛⎝ ∑
γ∈Γ(A,a)

μ(γ)

⎞⎠A

define (on generators) cochain maps Φ: M∗(X)→C∗(X) and Φ: C∗(X)→M∗(X)
inducing cohomology isomorphisms Φ∗ and Φ∗ with (Φ∗)−1 = Φ∗.

2.3. Abrams discrete model and Farley-Sabalka’s gradient field. For a tree
T , think of Tn as the cubical set described in Remark 2.2. Abrams discrete model
for Confn T is the largest cubical subset DnT of Tn inside Confn T . In other
words, DnT is obtained by removing open cubes from Tn whose closures intersect
the fat diagonal. As usual, the symmetric group Σn acts on the right of DnT by
permuting factors. The action permutes in fact cubes, and the quotient complex
is denoted by UDnT . Following Farley-Sabalka’s lead, from now on we use the
notation (a1, . . . , an), and even (a), for a cube a1 × · · · × an in Tn (so each ai is
either a vertex or an edge of T ), and the notation {a1, . . . , an}, and even {a}, for
the corresponding Σn-orbit. Beware not to confuse the parenthesis notation with
a point of Tn, or the braces notation with a set of elements of T —even if all the
ai’s are vertices. The “coordinates” ai in a cube (a) or in its Σn-orbit {a} are
referred to as the ingredients of the cube. Closures of ingredients of cubes in DnT
and UDnT are therefore pairwise disjoint.

In his Ph.D. thesis, Abrams showed that DnT is a Σn-equivariant strong defor-
mation retract of Confn T provided T is n-sufficiently subdivided in the sense that
each path in T between distinct vertices of degree not equal to 2 passes through at
least n− 1 edges. Such a condition will be in force throughout the paper, although
it is not a real restriction because T can be subdivided as needed without altering
the homeomorphism type of its configuration spaces. The Σn-equivariance of the
strong deformation retraction above implies that UDnT is a strong deformation
retract of UConfn T . Consequently, we will switch attention from Confn T and
UConfn T to their homotopy equivalent discrete models DnT and UDnT .

For a vertex x of T different from the root 0, let ex be the unique edge of T of the
form (y, x) —recall this requires y < x. Let c be a cube either in DnT or UDnT .
A vertex-ingredient x of c is said to be blocked in c if x = 0 or, else, if replacing
in c the ingredient x by the edge ex fails to render a cube in the corresponding
discrete model; x is said to be unblocked in c otherwise. An edge-ingredient e of
a cube c is said to be order-disrespectful in c provided e is of the form (x, y) and
there is a vertex ingredient z in c with x < z < y and z adjacent to x (in particular
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x must be an essential vertex); e is said to be order-respecting in c otherwise.
Blocked vertex-ingredients and order-disrespectful edge ingredients in c are said
to be critical. Farley-Sabalka’s gradient field (on DnT and UDnT ) then works as
follows. Order the ingredients of a cube c by their T -ordering (as described in
Section 1), and look for non-critical ingredients:

(i) If the first such ingredient is an unblocked vertex y in c, then c is redundant,
and one sets c ↗ c′, where c′ is the cube obtained from c by replacing y by
ey. We say that the pairing c ↗ c′ creates the edge ey. In this case ey is
an order-respecting edge in c′, and all ingredients of c′ smaller than ey are
critical.

(ii) If the first such ingredient is an order-respecting edge (w, z) in c, then c
is collapsible, and one sets c′′ ↗ c, where c′′ is the cube obtained from c
by replacing (w, z) by z. Again, we say that the edge (w, z) is created by
the pairing c′′ ↗ c. In this case z is an unblocked vertex in c′′, and all
ingredients of c′′ smaller than ez are critical.

(iii) If all ingredients of c are critical, then c is critical.

Definition 2.4. For a vertex x and a non-negative integer t, let Sx(t) stand for
the family of vertices x, x + 1, . . . , x + t − 1. We think of Sx(t) as a size-t stack
of vertices supported by x. Whenever we use such a stack of vertices, the n-
sufficiently subdivided condition on T will assure the existence of the required
t vertices. Furthermore, for � ∈ {0, 1, . . . , d(x) − 1}, let x[� ] denote the vertex
adjacent to x that lies in x-direction �. For instance x[0] = x− 1 and x[1] = x+ 1,
if x is essential.

0 xi

Figure 5. Critical ingredients blocked by the root (k = 2) and
by an order-disrespectful edge (xi, xi[3]) (ri = 2, ti,1 = 1, ti,2 = 3,
ti,3 = 2 and ti,4 = 1)

0

x3

x2

x1

Figure 6. A critical 3-cell {2 |x1, (2), (0) |x2, (1, 0), (1) |x3, (1), (1, 1)}

As illustrated in Figures 5 and 6, ingredients of a critical m-cube are spelled out
through
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(a) a stack S0(k) of k vertices supported by the root (here k ≥ 0, i.e., S0(k)
can be empty);

(b) m pairwise different essential vertices x1, . . . , xm of T and, for each i =
1, 2, . . . ,m, an order-disrespectful edge (xi, xi[ri + 1]) with 1 ≤ ri < d(xi)−
1;

(c) for each i = 1, 2, . . . ,m and each � = 1, 2, . . . , d(xi) − 1, a stack Si,� =
Syi,�

(ti,�) of ti,� vertices supported by the vertex

yi,� :=

{
xi[� ], if � �= ri + 1;
xi[�] + 1, if � = ri + 1,

subject to the requirements
(d) some stacks Si,� might be empty, i.e., ti,� ≥ 0 for all i and �. Yet, for each i,

there must exist an � ∈ {1, 2, . . . , ri} with ti,� > 0 (recall that (xi, xi[ri+1])
is order-disrespectful);

(e) k + m +
∑

i,� ti,� = n, i.e., the total number of ingredients is n.
The critical cube in the unordered discrete model UDnT determined by the above

information will be denoted as

(10)
{
k |x1, p1, q1 | · · · |xm, pm, qm

}
,

where pi = (ti,1, . . . , ti,ri) and qi = (ti,ri+1, . . . , ti,d(xi)−1). Vertical bars are meant
to stress the fact that each pair of parameters pi and qi is ordered and attached to
xi. Other than that, (10) is indeed a set formed by the triples (xi, pi, qi) and the
singleton k. Figure 6 illustrates a typical critical cube.

Remark 2.5. In any arrow d ↗ c of Farley-Sabalka’s modified Hasse diagram, d is an
even face of c, i.e., in the notation of (4), d = δ2r(c) for some r ∈ {1, 2, . . . ,dim(c)}.

Remark 2.6. By construction, Farley-Sabalka’s gradient field in DnT is Σn-equi-
variant and, by passing to the quotient, it yields the corresponding gradient field
in UDnT . Consequently, gradient paths can equivalently be analyzed in either the
ordered or unordered settings. Indeed, a gradient path in UDnT corresponds to
a “Σn-orbit” of gradient paths in DnT . Due to the cup-product descriptions in
Subsection 2.1, we find it more convenient to perform the gradient-path analysis at
the level of the cubical set DnT .

3. Gradient-path dynamics

Recall from Subsection 2.1 that the product orientation of a p-dimensional cube
(c1, . . . , cn) in DnT depends on (the orientation of edges —from the smaller to the
larger vertex— in T and on) the coordinate order ci1 , . . . , cip , i.e. where i1 < · · · <
ip, of the edge-ingredients. In particular, the quotient cube {c1, . . . , cn} in UDnT
inherits no well defined orientation. Definition 3.1 avoids the problem and is well
suited for the analysis of gradient paths in DnT .

Definition 3.1 (Gradient orientation, cf. Subsection 2.3 of [5]). The listing (x1, y1),
. . ., (xp, yp) of edge-ingredients of a p-cube c in DnT or in UDnT is said to be in
gradient order if x1 < · · · < xp, where the latter is the T -ordering of vertices
discussed in Section 1. The gradient orientation of c is defined just as the product
orientation, except that the gradient order of the edge-ingredients is used (rather
than the coordinate order).
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In the rest of the paper, and unless explicitly noted otherwise, we use gradient
orientations. In doing so, the definitions of the cubes δ2r(c) and δ2r−1(c) in (4)
require a corresponding adjustment. Namely, if the edge-ingredients of a p-cube c
are listed in gradient order as (x1, y1), . . . , (xp, yp), then replacing the edge (xr, yr)
by the vertex yr or xr yields δ2r(c) or δ2r−1(c), respectively. Remark 2.5 and the
expression in (5) for cubical boundaries then remain unaltered. A first advantage of
gradient orientations is that the map induced at the cochain level by the projection
π : DnT → UDnT involves no signs,

(11) π∗({c}) =
∑
σ∈Σn

(c) · σ.

(Recall we omit asterisks for duals.) In view of Remark 2.6, the homotopy equiva-
lences in (9) satisfy:

Lemma 3.2. The following diagram is commutative:

M∗(DnT ) ��Φ �� C∗(DnT ) ��Φ �� M∗(DnT )

M∗(UDnT ) ��

π∗

��

Φ
�� C∗(UDnT ) ��

π∗

��

Φ
�� M∗(UDnT ).

π∗

��

Remark 3.3. The Morse differential in UDnT is trivial (see [4] or Proposition 3.10).
Therefore, for each m ≥ 0, a graded basis of Hm(UDnT ) is given by the cohomology
classes of the Φ-images of the duals of the critical cubes (10). By abuse of notation,7
the π∗-image8 of the cohomology class so determined will also be denoted by the
corresponding expression (10). There is no loss of information because vertical maps
in the previous diagram are injective and, more importantly, they induce injections
in cohomology (the latter assertion follows from a standard transfer argument and
the torsion-freeness of H∗(UDnT )).

This section’s goal is the description of a cocycle in C∗(DnT ) that represents a
given cohomology class {k |x, p, q} ∈ Im(π∗) (Proposition 3.9). This requires the
following discussion of dynamics for upper-paths that end at critical cubes.

Definition 3.4. An edge-ingredient (x, y) of a cube c of DnT is said to be
• edge order-respecting in c, written as “(x, y) is eor(c)”, if there are no

edge-ingredients (a, b) in c with x < a < b < y.
• strongly order-respecting in c, written as “(x, y) is sor(c)”, if (x, y) is eor(c)

and there is no vertex-ingredient v in c with x < v < y.
A Farley-Sabalka pairing δ2i(c) ↗ c that creates an edge-ingredient that is sor(c)
is said to be of sor type; otherwise, it is said to be of branch type. Likewise,
δ2i(c) ↗ c is said to be of eor type if the edge-ingredient it creates is eor(c). An
upper elementary path δ2i(c) ↗ c ↘ δj(c) is said to be of falling-vertex type (sor
type, branch type, respectively) provided j = 2i − 1 (δ2i(c) ↗ c is of sor type,
δ2i(c) ↗ c is of branch type, respectively).

7The context clarifies the meaning.
8We prefer to compute products in the ordered setting in view of the explicit descriptions in

Subsection 2.1.
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Note that if y is the vertex-ingredient in δ2i(c) that is responsible for a pairing
δ2i(c) ↗ c, say creating the edge-ingredient (x, y) of c, then δ2i−1(c) is obtained
from δ2i(c) by replacing the vertex y by x. In other words, in the falling-vertex
type path δ2i(c) ↗ c ↘ δ2i−1(c), the vertex-ingredient y “falls” to its predecessor
x. In particular, elementary paths of falling-vertex type have multiplicity 1.

Example 3.5. Any edge-ingredient (x, x+1) of c is sor(c). On the other hand, for
an essential vertex x and a positive direction � ∈ {1, 2, . . . , d(x)−1} from x, an edge-
ingredient (x, x[�]) of c is sor(c) if and only if c has no ingredient, neither vertex
nor edge, in any of the components of T \ {x} lying in x-directions 1, 2, . . . , �− 1.
Furthermore, if (x, y) is an edge-ingredient of a face δj(c) of some cube c of DnT ,
then (x, y) is sor(δj(c)) if and only if (x, y) is sor(c).

The final observation in Example 3.5 is freely used in the proof of:

Proposition 3.6. Let (x1, y1), . . . , (xp, yp) be the gradient-order listing of the
edge-ingredients of a p-cube c in DnT .

(1) If an arrow δ2i(c) ↗ c in the modified Hasse diagram for DnT is of eor
type, then (xi, yi) is sor(c) and, for any k > 2i, δk(c) is collapsible.

(2) If the edge (xi, yi) is sor(c), then there is no upper path starting at a face
δj(c) with j < 2i− 1 and ending at a critical cube.

Proof. (1) By definition, δ2i(c) ↗ c creates the edge-ingredient (xi, yi), which is
assumed to be eor(c). Since ingredients of δ2i(c) smaller than yi are critical, (xi, yi)
is in fact sor(c). Thus, for k �= 2i, 2i− 1, (xi, yi) is sor(δk(x)) and, therefore, order-
respecting in δk(x). On the other hand, for k > 2i, δk(c) and c have the same
ingredients smaller than yi, so that all ingredients in δk(c) smaller than (xi, yi) are
critical. Thus, by definition, δk(x) is collapsible for k > 2i.

(2) Under the stated hypothesis, assume (for a contradiction) there is a gradient
path
(12) c ↘ δj(c) =: c0 ↗ d1 ↘ c1 ↗ · · · ↗ dm ↘ cm

with j < 2i− 1, m ≥ 0 and cm critical. Then (xi, yi) is sor(c0) and, in particular,
(xi, yi) is order-respecting in c0, which forces m > 0. Recursively, if (xi, yi) is an
edge-ingredient of both c�−1 and c� (and so of d�), and (xi, yi) is sor(c�−1), then
(xi, yi) is forced to be (sor(d�) and, thus,) sor(c�). It is not possible that (xi, yi)
is an edge-ingredient of all the c�’s, for then (xi, yi) would be sor(cm), which is
impossible as cm is critical. Let k be the first integer (1 ≤ k ≤ m) for which (xi, yi)
is not an ingredient of ck —so that (xi, yi) is sor(c�) for 0 ≤ � < k. In particular,
(xi, yi) is order-respecting in ck−1. Thus, the vertex-ingredient v of ck−1 responsible
for the pairing ck−1 ↗ dk in (12) satisfies v < yi and, in fact, v < xi, since (xi, yi) is
sor(ck−1). On the other hand, since the edge (u, v) created by ck−1 ↗ dk is order-
respecting in dk, and since ck is obtained from dk by replacing the edge (xi, yi) by
either xi or yi, the inequalities u < v < xi < yi yield that
(13) (u, v) is order-respecting in ck too.
In particular, ck is not critical, so k < m. Let w be the vertex-ingredient of ck
responsible for the pairing ck ↗ dk+1. By (13), we get the first inequality in
w < v < xi < yi, so

• (w is an ingredient of ck) ⇒ (w is an ingredient of dk and, therefore, of
ck−1);
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• (w is unblocked in ck) ⇒ (w is unblocked in dk and, therefore, in ck−1).
But, by definition, v is the minimal unblocked vertex in ck−1, so v ≤ w, a contra-
diction. �

Proposition 3.6 implies that upper paths ending at critical cubes have a forced
behavior most of the time:

Corollary 3.7. Let γ be an upper path in DnT that ends at a critical cube. Any
upper elementary factor of γ of sor type is of falling-vertex type.

Example 3.8. Let us be specific about the dynamics of an upper path γ : c0 ↗
d1 ↘ c1 ↗ · · · ↘ cm that ends at a critical 1-cube cm. By the Σn-equivariance of
the gradient field, we can assume c0 = (u1, . . . , ui, v1, . . . , vj , (y, y[d ]), w1, . . . , wk)
with d ∈ {1, 2, . . . , d(y) − 1} and

u1 < · · · < ui < y < v1 < · · · < vj < y[d ] < w1 < · · · < wk,

i.e., c0 is the Σn-orbit representative whose ingredients appear in the T -ordering.
By Corollary 3.7, the start of γ is forced to consist of falling-vertex elementary
paths, where the vertices u1, . . . , ui fall, each at a time, until they form the stack
S0(i) of i vertices supported (and blocked) by the root. At that point γ arrives
at the 1-cube (S0(i), v1, . . . , vj , (y, y[d ]), w1, . . . , wk), and we see that j must be
positive, for otherwise γ would have reached a collapsible 1-cube. In particular y
must be an essential vertex and d > 1. Then, again by Corollary 3.7, it is the turn
of vertices v1, . . . , vj that are forced to fall, each at a time, until they form stacks
Sy[� ](t�) of vertices blocked by y in y-directions � = 1, . . . , d − 1. At that point γ
arrives at a 1-cube of the form
(14)

(
S0(i), Sy[1](t1), . . . , Sy[d−1](td−1), (y, y[d ]), w1, . . . , wk

)
.

Not all of the stacks Sy[� ](t�) are empty, so (14) has (y, y[d ]) as a critical edge-
ingredient. The falling-vertex process is also forced by Corollary 3.7 on those ver-
tices w1, . . . , wk that are located in positive y-directions (if any), and this takes γ
to a 1-cube of the form

(S0(i), Sy[1](t1), . . . , Sy[d−1](td−1), (y, y[d ]), Sy[d ]+1(td), Sy[d+1](td+1),
. . . , Sy[d(y)−1](td(y)−1), wρ, . . . , wk),

with wρ, . . . , wk all lying in y-direction 0. Branching starts from this point on, with
explicit options discussed in the next paragraph.

y

x

x[d′ ]0

Figure 7. A portion of the 1-cube dλ+1 with its recently created
edge (x, x[d′ ])

If no vertices wρ, . . . , wk are left, then γ would have reached its final critical
destination cm. Otherwise, wρ is forced to fall until γ reaches, via some branch
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type pairing cλ ↗ dλ+1, the 2-cube dλ+1 depicted in Figure 7. At this point there
are two options for dλ+1 ↘ cλ+1. In the first option, cλ+1 is obtained from dλ+1 by
replacing the recently created edge (x, x[d′ ]) by x, i.e., with an upper elementary
path cλ ↗ dλ+1 ↘ cλ+1 of falling-vertex type. In such a case, γ is forced to
continue with the vertex x falling until it is added to the stack of vertices blocked
by the root 0. This leaves us at a situation similar to the one at the start of this
paragraph. In the second option, cλ+1 is obtained from dλ+1 by replacing the edge
(y, y[d]) by either of its end points. In such a case, γ is forced to continue:

(1) with the falling of the vertices that are now unblocked in the neighborhood
of y (see Figure 7), until they form a stack of vertices blocked by x —thus
starting a critical situation around the edge (x, x[d′])— and, then,

(2) with the falling of the vertices (if any) in x-directions from d′ to d(x) − 1,
which form (possibly empty) stacks of vertices blocked either by x or x[d′ ]
—thus completing the critical situation around the edge (x, x[d′]).

Again, this leaves us at a situation similar to the one at the start of this paragraph,
but now with the edge (x, x[d′ ]) playing the role of the edge (y, y[d]). The branching
process in this paragraph then repeats, necessarily a finite number of times, until
all vertices wρ, . . . , wk have been considered, when γ reaches its critical destination
cm.

Proposition 3.9. A cocycle in C∗(DnT ) representing a 1-dimensional cohomol-
ogy class {k |x, p, q} in Im(π∗), with p = (p1, . . . , pr) and q = (q1, . . . , qs), is given
by

(15)
∑(

u1, . . . , uk, v1, . . . , v|p|, (x, x[r + 1]), w1, . . . , w|q|
)
· σ,

where the summation runs over
• all permutations σ ∈ Σn,
• all possible vertices u1 < · · ·<uk in the component of T \{x} in x-direction

0,
• all possible vertices v1 < · · · < v|p| in the components of T \ {x} in x-

directions from 1 to r so that, for i ∈ {1, . . . , r}, pi of the vertices v1 <
· · ·< v|p| lie in x-direction i,

• all possible vertices w1 < · · · < w|q| in the components of T \ {x} in x-
directions greater than r so that, for j ∈ {r + 1, . . . , d(x)− 1}, qj−r of the
vertices w1 < · · ·<w|q| lie in x-direction j.

Proof. By construction, the representing cocycle z we need is obtained by chasing,
on the left square of the diagram in Lemma 3.2, the dual of the unordered critical
cube {c} whose ordered critical representative is

(c) := (S0(k), Sx[1](p1), . . . , Sx[r](pr), (x, x[r + 1]), Sx[r+1]+1(q1), Sx[r+2](q2),
. . . , Sx[d(x)−1](qs)).

By (9) and (11),

(16) z = Φ ◦ π∗ ({c}) =
∑
γ∈G

μ(γ) · Sγ ,

where G is the set of upper paths γ that start at a 1-cube Sγ and finish at a 1-cube
of the form c · σ with σ ∈ Σn. Let G′ be the set of paths γ ∈ G all of whose upper
elementary factors are of falling-vertex type. Since μ(γ) = 1 for γ ∈ G′, the analysis
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in Example 3.8 shows that the summands in (15) arise from the summands in (16)
with γ ∈ G′. It thus suffices to show

(17)
∑

γ∈G\G′

μ(γ) · Sγ = 0,

which will be done by constructing an involution ι : G \ G′ → G \G′ such that every
pair of paths γ and ι(γ) has the same origin but opposite multiplicities, i.e.,

(18) Sι(γ) = Sγ and μ(ι(γ)) = −μ(γ)

—thus their contributions to (17) cancel each other out. For a path γ ∈ G \ G′,
let γlast = (c ↗ d ↘ e) denote the last elementary factor of γ that is not of falling-
vertex type. In the notation of Example 3.8, e is obtained from d by replacing
an edge (y, y[d]) by either y or y[d], and both options are possible. Then ι(γ) is
defined so to start with the same factorization of γ into elementary paths, except
for the elementary factor γlast, for which the other end-point of (y, y[d]) is taken,
and after which the rest of the elementary factors are of falling-vertex type —just
like for γ. Note that the ending 1-cubes of γ and ι(γ) lie in the same Σn-orbit, so
ι(γ) ∈ G \G′. The required properties (18) follow from (the construction and from)
the fact that elementary paths of falling-vertex type have multiplicity 1. �

The cancelation phenomenon in the previous proof allows us to give an easy
gradient-path explanation of the main result in [4]: the vanishing of the Morse
differential in UDnT . A variant of the cancellation phenomenon will also play
an important role in our evaluation of cup products (Theorem 5.1). Thus, in
preparation for that argument, we spell out the gradient proof of:

Proposition 3.10. The Morse differential in UDnT vanishes.

Proof. By Remark 2.6, it suffices to do the gradient path analysis directly at the
level of UDnT . For a pair of unordered critical cubes c(k) and d(k−1), let Γ(c, d)
be the set of mixed gradient paths γ : c ↘ • ↗ • ↘ · · · ↘ d. By (8), we only
need to construct an involution ι : Γ(c, d) → Γ(c, d) so that, for every γ ∈ Γ(c, d),
μ(ι(γ)) = −μ(γ). (Recall that the multiplicity of γ ∈ Γ(c, d) is the incidence
number for c ↘ • multiplied by the multiplicity of the remaining upper path
• ↗ • ↘ · · · ↘ d.) Let Γ(c, d)fall consist of the paths in Γ(c, d) all of whose
upper elementary factors are of falling-vertex type. The definition of the restricted
ιfall : Γ(c, d)fall → Γ(c, d)fall uses the two forms of replacing by a vertex the edge-
ingredient at the start of the path. Likewise, for Γ(c, d)branch := Γ(c, d)−Γ(c, d)fall,
the definition of the restricted ιbranch : Γ(c, d)branch → Γ(c, d)branch uses the two
forms of replacing by a vertex the edge ingredient at the last upper elementary
factor that is not of falling-vertex type. �

Propositions 2.3 and 3.9 immediately yield:

Corollary 3.11. The product of two basis elements {k, x, p, q}, {k′, x′, p′, q′} ∈
Im(π∗) vanishes provided x = x′. In particular, squares of 1-dimensional elements
in Im(π∗) are trivial.
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4. Cup products I: Upper gradient paths

The goal for this section and the next one is to get at a workable description of
products

(19)
{
k1

∣∣∣x1, (p1,1, . . . , p1,r1), (q1,1, . . . , q1,s1)
}
· · ·{

km

∣∣∣xm, (pm,1, . . . , pm,rm), (qm,1, . . . , qm,sm)
}

in Im(π∗). Associated to such a product, from now on we set pi := (pi,1, . . . , pi,ri),
qi := (qi,1, . . . , qi,si), |pi| :=

∑ri
�=1 pi,�, |qi| :=

∑si
�=1 qi,�, and make free use of (i)

the order-disrespectful edge (xi, xi[ri +1]) encoded in the i-th factor of (19), of (ii)
the conditions ki +

∑
j pi,j +

∑
j′ qi,j′ = n − 1, ri + si = d(xi) − 1 and ri, si ≥ 1,

and of (iii) the fact that, for each i, ki and all of the pi,� and qi,� are non-negative,
with not all of the pi,� being zero. Additionally, in view of Corollary 3.11, we can
safely assume x1 < · · · < xm. Last, we use the shorthand

di := d(xi) − 1 and xi := xi[ri + 1].

We start by tuning up the definition in Section 1 of the components Ci,�i of T \
{x1, . . . , xm}.

Definition 4.1 (Leaves and pruned trees). Set T0,1 := C0,1 and, for 1 ≤ i ≤ m
and 1 ≤ �i ≤ d(xi) − 1,

Ti,�i :=

{
Ci,�i ∪ {xi}, if �i �= ri + 1;
Ci,�i \ Int(xi, xi), if �i = ri + 1,

where Int(xi, xi) stands for the interior of the edge (xi, xi). We think of each Ti,�i

(0 ≤ i ≤ m) as a rooted but possibly pruned tree. Namely, in the notation of
Section 1 and setting x0 := 0, the root of Ti,�i is xi, if i = 0 or if i > 0 with
�i �= ri + 1, whereas the root of Ti,ri+1 is xi. Furthermore, the set of pruned leaves
of Ti,�i is Li,�i := B(Ci,�i) \ {xi}.

Remark 4.2. Just as the sets Li,�i give a partition of {x1, . . . , xm}, the union of the
trees Ti,�i agrees with the difference T \

⋃m
i=1 Int(xi, xi). Actually, each vertex of T

other than xi for 1 ≤ i ≤ m, as well as each semi-open edge (x, y) \ {y} of T not of
the form (xi, xi) \ {xi} with 1 ≤ i ≤ m, belongs to a tree Ti,�i for a unique �i.

Definition 1.4 is recast by the second part of:

Definition 4.3.

(1) For a τ -tuple of integers t = (t1, . . . , tτ ), we write t ≥ 0 to mean that tj ≥ 0
for all j ∈ {1, . . . , τ}, reserving the expression t > 0 to mean that t ≥ 0
with tj > 0 for at least one j ∈ {1, . . . , τ}. Also, when t ≥ 0, we write t to
denote a generic tuple of integers (t′1, . . . , t′τ ) ≥ 0 satisfying t′j ≤ tj for all
j ∈ {1, . . . , τ} with in fact t′j < tj for at least one j ∈ {1, . . . , τ}. We make
no distinction between 1-tuples (t1) and integer numbers t1 so, accordingly,
we use t1 instead of (t1).
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(2) The interaction parameters R0, Pi := (Pi,1, . . . ,Pi,ri) and Qi :=
(Qi,1, . . . ,Qi,si) of the factors in (19) are given by

R0 := n +
∑

xj∈L0,1

(kj − n),

Pi,�i := pi,�i +
∑

xj∈Li,�i

(kj − n), for i ∈ {1, . . . ,m} and �i ∈ {1, . . . , ri}, and

Qi,�i := qi,�i +
∑

xj∈Li,�i+ri

(kj − n), for i ∈ {1, . . . ,m} and �i ∈ {1, . . . , si}.

If R0 ≥ 0, Pi ≥ 0 and Qi ≥ 0 for all i = 1, . . . ,m, we say that the factors
in (19) interact weakly and, if in addition Pi > 0 for some i, we say that the
factors in (19) interact strongly. Otherwise, we say that the factors in (19)
do not interact.

Although not reflected in the notation, pruned trees and leaves depend on the
essential vertices xi, while interaction parameters depend on the complete informa-
tion encoded by the factors in (19). Latter in the paper we will need to use pruned
trees, their pruned leaves, as well as interaction parameters of subproducts of (19).
In such a case, we will use a notation of the type Ti,�i(x1, . . . , xm), Li,�i(x1, . . . , xm),
R0(x1, . . . , xm), Pi,�i(x1, . . . , xm), Qi,�i(x1, . . . , xm), as well as Pi(x1, . . . , xm) and
Qi(x1, . . . , xm) in order to clarify the factors under consideration.

Next we adapt the expression in (15) for usage within the Ti,�i -notation. In
terms of the cocycle representative
(20)∑(

Ui, Vi, (xi, xi),Wi

)
·σ :=

∑(
u1, . . . , uki

, v1, . . . , v|pi|, (xi, xi), w1, . . . , w|qi|
)
· σ

in Proposition 3.9 for {ki |xi, pi, qi}, (19) is represented by the sum of all possible
products

(21) · · ·
(
(Ui, Vi, (xi, xi),Wi) · σi

)
· · ·
(
(Uj , Vj , (xj , xj),Wj) · σj

)
· · · .

A number of vanishing such products can be ruled out as follows. Fix integers
1 ≤ i < j ≤ m. Proposition 2.3 implies that if a product (21) is non-zero, then
(Ui, Vi, (xi, xi),Wi) must have xj , but cannot have xj , as one of its vertex ingredi-
ents. Likewise, (Uj , Vj , (xj , xj),Wj) must have xi, but cannot have xi, as one of its
vertex ingredients. Actually, together with Remark 4.2, this shows that non-zero
products (21) are best organized (and easily evaluated —see below) by replacing
each Σn-representative

(22) (u1, . . . , uki
, v1, . . . , v|pi|, (xi, xi), w1, . . . , w|qi|)

in (20) by the one written in a “block” form (Bi
0, B

i
1, . . . , B

i
m). Here each tuple

of ingredients Bi
j starts with the relevant xj- or xj-information (if j > 0), and

continues with a repacking of the vertex ingredients of (22) that lie in the trees Tj,�

for all relevant �. In detail, for the i-th factor in (19) and each of the corresponding
summands in (22), let

(a) Bi
0 := Bi

0,1 be the tuple of vertex ingredients of (22) that lie in T0,1, written
in T -order;
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(b) Bi
i :=

(
(xi, xi), Bi

i,1, . . . , B
i
i,di

)
, where Bi

i,� is the tuple of vertex ingredients
of (22) that lie in Ti,�, written in T -order;

(c) If i < j, Bi
j := (xj , B

i
j,1, . . . , B

i
j,dj

), where Bi
j,� is the tuple of vertex ingre-

dients of (22) that lie in Tj,�, written in T -order;
(d) If j < i, Bi

j := (xj , B
i
j,1, . . . , B

i
j,dj

), where Bi
j,� is the tuple of vertex ingre-

dients of (22) that lie in Tj,�, written in T -order.
Thus, summands in (20) that have a chance to contribute with non-vanishing prod-
ucts (21) to a cocycle representative of (19) can be written as(

Bi
0,1

∣∣∣ · · · ∣∣∣xi′ , B
i
i′,1, . . . , B

i
i′,di′

∣∣∣ · · · ∣∣∣(xi, xi), Bi
i,1, . . . , B

i
i,di

∣∣∣ . . .∣∣∣xi′′ , B
i
i′′,1, . . . , B

i
i′′,di′′

∣∣∣ · · ·) · σ,
where vertical bars are used interchangeably by commas, and are intended to make
reading easier. Proposition 2.3 then implies that a product (21), written as((

B1
0,1

∣∣∣(x1, x1), B1
1,1, . . . , B

1
1,d1

∣∣∣· · ·∣∣∣xm, B1
m,1, . . . , B

1
m,dm

)
·σ1

)
· · ·
((

Bm
0,1

∣∣∣x1, B
m
1,1, . . . , B

m
1,d1

∣∣∣· · ·∣∣∣(xm, xm), Bm
m,1, . . . , B

m
m,dm

)
·σm

)
,

is non-zero if and only if σi = σj =: σ and Bi
t,� = Bj

t,� =: Bt,� for all relevant
i, j, t, �, in which case (21) becomes

(23) sign(σ̃)
(
B0,1 | (x1, x1), B1,1, · · · , B1,d1 | · · · | (xm, xm), Bm,1, · · · , Bm,dm

)
· σ,

where σ̃ is the permutation determined by the sequence of positions of the edges
(x1, x1), . . . , (xm, xm) in the tuple

(B0,1 | (x1, x1), B1,1, . . . , B1,d1 | · · · | (xm, xm), Bm,1, . . . , Bm,dm
)· σ.

Note that the cube in (23) is product-oriented (as required by Proposition 2.3), and
that (23) agrees with the gradient-oriented cube(

B0,1 | (x1, x1), B1,1, · · · , B1,d1 | · · · | (xm, xm), Bm,1, · · · , Bm,dm

)
· σ,

since x1 < · · · < xm. This proves the first half of the next generalization of
Proposition 3.9:

Proposition 4.4. The product (19) is represented in C∗(DnT ) by the gradient-
oriented cocycle

(24)
∑(

B0,1

∣∣∣(x1, x1), B1,1, . . . , B1,d1

∣∣∣ · · · ∣∣∣(xm, xm), Bm,1, . . . , Bm,dm

)
· σ,

where the summation runs over all permutations σ ∈ Σn and all possible tuples
Bt,� of vertices written in T -order, taken from the corresponding pruned trees Tt,�,
and having the following lengths: Any block B0,1 must have R0 ingredients, while
any block Bt,� with t > 0 must have Pt,� ingredients for 1 ≤ � ≤ rt, and Qt,�−rt

ingredients for rt < � ≤ dt. In particular, (19) vanishes provided its factors do
not interact.

Note that R0+
∑

i,� Pi,�+
∑

i,� Qi,� = n−m in Definition 4.3. This is compatible
with the fact that cubes in (24), if any, have n ingredients. See also Corollary 4.5.
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0 xt xm+1
xm+1

xt

Figure 8. The edge (xm+1, xm+1) belongs to Tt,3, so the path
from xt to xm+1 does not pass through an essential vertex xj

Proof. It remains to prove the assertions about the sizes of blocks Bt,�, and that
all possible such blocks appear in (24). As for the sizes, proceeding by induction on
m (with Proposition 3.9 grounding the argument), it suffices to consider a product
π1 · π2 with

π1 =
[(

B0,1

∣∣∣(x1, x1), B1,1, . . . , B1,d1

∣∣∣ · · · ∣∣∣(xm, xm), Bm,1, . . . , Bm,dm
)
)
· σ
]
,

π2 =
[(

U
∣∣∣(xm+1, xm+1), V1, . . . , Vdm+1

)
· σ′
]
,

(25)

where x1 < · · · < xm < xm+1, and where the structure of the blocks Bt,� is
as specified in the proposition. Here we are assuming (a) that U is a tuple of
km+1 vertex ingredients written in T -order and lying in xm+1-direction 0, (b) that
any tuple V� with 1 ≤ � ≤ rm+1 consists of pm+1,� vertex ingredients written
in T -order and lying in xm+1-direction �, and (c) that any tuple V�+rm+1 with
1 ≤ � ≤ sm+1 consists of qm+1,� vertex ingredients written in T -order and lying in
xm+1-direction �+rm+1. In addition, we make the conventions dm+1 := d(xm+1)−1
and xm+1 := xm+1[rm+1 + 1], and assume the relations dm+1 = rm+1 + sm+1,
rm+1 ≥ 1 ≤ sm+1 and km+1 +

∑rm+1
�=1 pm+1,� +

∑sm+1
�=1 qm+1,� = n−1. Furthermore,

signs and orientations will be ignored in the rest of the proof, as they have been
carefully addressed in the discussion previous to this proposition. In particular, we
can safely work at the unordered-cube level, thus ignoring the permutations σ and
σ′ in (25) and, instead, thinking of tuples of ingredients as sets of ingredients.

Consider the pruned trees Tt,� := Tt,�(x1, . . . , xm) and T ′
t,� := Tt,�(x1, . . . , xm+1),

as well as the pruned leaves Lt,� := Lt,�(x1, . . . , xm) and L′
t,� := Lt,�(x1, . . . , xm+1).

There are three cases, depending on whether the edge (xm+1, xm+1) belongs to
T0,1, or to Tt,� with 1 ≤ t ≤ m and 1 ≤ � ≤ rt, or to Tt,� with 1 ≤ t ≤ m and
rt < � ≤ dt, and the argument is virtually identical in each. We consider only the
situation depicted in Figure 8, where the edge (xm+1, xm+1) belongs to Tt,� for
some t ∈ {1, 2, . . . ,m} and some � ∈ {1, 2, . . . , rt}. In such a case we have

(i) Tτ,λ = T ′
τ,λ and Lτ,λ = L′

τ,λ, for 1 ≤ τ ≤ m as long as τ �= t or λ �= �;

(ii) Tt,� \ Int(xm+1, xm+1) = T ′
t,�

⊔(dm+1⋃
λ=1

T ′
m+1,λ

)
;

(iii) L′
t,� = Lt,� ∪ {xm+1} and L′

m+1,λ = ∅ for λ ∈ {1, . . . , dm+1}.
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By Proposition 2.3, the product π1 · π2 of the elements in (25) vanishes unless⎛⎜⎜⎝{x1, . . . , xm} �B0,1 �

⎛⎜⎜⎝ ⊔
1≤τ≤m
1≤λ≤dτ

Bτ,λ

⎞⎟⎟⎠
⎞⎟⎟⎠ \Bt,� ⊆ U,

{xm+1} �

⎛⎝dm+1⊔
λ=1

Vλ

⎞⎠ ⊆ Bt,�

and

U \

⎛⎜⎜⎝
⎛⎜⎜⎝{x1, . . . , xm} �B0,1 �

⎛⎜⎜⎝ ⊔
1≤τ≤m
1≤λ≤dτ

Bτ,λ

⎞⎟⎟⎠
⎞⎟⎟⎠ \Bt,�

⎞⎟⎟⎠
= Bt,� \

⎛⎝{xm+1} �

⎛⎝dm+1⊔
λ=1

Vλ

⎞⎠⎞⎠ =: B′
t,�,

in which case

π1 · π2 = (B0,1 | (x1, x1),B1 | · · · | (xm, xm),Bm | (xm+1, xm+1), V1, . . . , Vdm+1),

where Bτ is a shorthand for the sequence Bτ,1, . . . , Bτ,dτ
provided τ �= t, whereas

Bt stands for the sequence

Bt,1, . . . , Bt,�−1, B
′
t,�, Bt,�+1, . . . , Bt,dt

.

The induction is complete in view of items (i)–(iii) above and

|B′
t,� | = |Bt,� | −

(
1 +

rm+1∑
λ=1

pm+1,λ +
sm+1∑
λ=1

qm+1,λ

)
= pt,� +

∑
xλ∈Lt,�

(kλ − n) − (n− km+1) = pt,� +
∑

xλ∈L′
t,�

(kλ − n),

which shows that B′
t,� has the prescribed cardinality. The inductive analysis makes

it clear also that all blocks Bt,� with the structure indicated in the proposition
indeed appear in (24). �

Corollary 4.5. The product (19) agrees with the basis element {R0 |x1,P1,Q1 |
· · · |xm,Pm,Qm} provided the factors of (19) interact strongly. Recall Pi =
(Pi,1,Pi,2, . . . ,Pi,ri) and Qi = (Qi,1,Qi,2, . . . ,Qi,si).

Proof. By the strong interaction hypothesis, a summand in (24) that is the target
of a lower gradient path γ must actually be critical (and γ must be constant) with
ingredients equal to those associated to {R0 |x1,P1,Q1 | · · · |xm,Pm,Qm}. The
conclusion then follows from (9) and (11). �

Lemma 4.6. Fix essential vertices x1 < · · · < xm and take positive integer
numbers ri and si with ri + si = d(xi) − 1 for 1 ≤ i ≤ m. Let R0, Pi,�, Qi,k,
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with 1 ≤ i ≤ m, 1 ≤ � ≤ ri and 1 ≤ k ≤ si, be non-negative integers satisfying
n−m = R0 +

∑m
i=1 (

∑ri
�=1 Pi,� +

∑si
k=1 Qi,k ). Then the system

n +
∑

xj∈L0,1

(kj − n) = R0,

pi,� +
∑

xj∈Li,�

(kj − n) = Pi,� (i = 1, . . . ,m, � = 1, . . . , ri),

qi,k +
∑

xj∈Li,k+ri

(kj − n) = Qi,k (i = 1, . . . ,m, k = 1, . . . , si)

has a unique solution of non-negative integer numbers {ki, pi,1, . . . , pi,ri , qi,1, . . . ,
qi,si}mi=1 satisfying the condition n− 1 = ki +

∑ri
�=1 pi,� +

∑si
k=1 qi,k for each i ∈

{1, . . . ,m}. If, in addition, for each i ∈ {1, . . . ,m} there exists � ∈ {1, . . . , ri}
with Pi,� > 0, then the unique solution satisfies that, for each i ∈ {1, . . . ,m},
there exists � ∈ {1, . . . ri} with pi,� > 0.

Proof. The two sets of equations with i = m reduce to pm,� = Pm,� (� = 1, 2, . . . , rm)
and qm,k = Qm,k (k = 1, 2, . . . , sm). This also determines

(26) km := n−
rm∑
�=1

Pm,�−
sm∑
k=1

Qm,k−1 = R0 +
m−1∑
j=1

(
rj∑
�=1

Pj,� +
sj∑
k=1

Qj,k + 1

)
≥ 0.

The rest of the equations can be written as

n +
∑

xj∈L0,1\{xm}
(kj − n) = R′

0 := R0 +

{
n− km, if xm ∈ L0,1

0, otherwise

}
,

pi,� +
∑

xj∈Li,�\{xm}
(kj − n) = P ′

i,� := Pi,� +

{
n− km, if xm ∈ Li,�

0, otherwise

}
,

qi,k +
∑

xj∈Li,k+ri
\{xm}

(kj − n) = Q′
i,k := Qi,k +

{
n− km, if xm ∈ Li,k+ri

0, otherwise

}
,

for i = 1, . . . ,m − 1, � = 1, . . . , ri and k = 1, . . . , si. The result then follows by
induction since

R′
0+

m−1∑
j=1

( rj∑
�=1

P ′
j,� +

sj∑
k=1

Q′
j,k + 1

)
= R0+

m−1∑
j=1

( rj∑
�=1

Pj,� +
sj∑

k=1

Qj,k + 1

)
+ n−km

= R0 +
m∑
j=1

( rj∑
�=1

Pj,� +
sj∑

k=1

Qj,k + 1

)
= n,

where the second equality uses (26). �

Proof of Theorem 1.7. Corollary 4.5 and Lemma 4.6 yield a set theoretic identi-
fication Sm = Bm, where Sm is the set of products (19) whose factors interact
strongly, and Bm is the m-dimensional basis of Im(π∗) with basis elements

{R0 |x1, (P1,1, . . . , P1,r1), (Q1,1, . . . , Q1,s1) | · · · |xm, (Pm,1, . . . , Pm,rm),
(Qm,1, . . . , Qm,sm)}.
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Together with Corollary 3.11 and Proposition 4.4, this completes the proof, where
〈k, x, p, q〉 ∈ VnT is identified with (the π∗-preimage of) {k |x, p, q} ∈ Im(π∗). �

Note that the cohomology ring H∗(UDnT ) is generated by 1-dimensional classes,
a fact already known from [7]. It is not true that a product (19) vanishes when its
factors interact but non-strongly. The description of such products relies on the
dynamics of lower gradient paths.

5. Cup products II: Lower gradient paths

Let Π1 stand for a product (19) whose factors interact strongly, so Corollary 4.5
applies. Choose an additional 1-dimensional basis element {kx |x, (px,1, . . . , px,rx),
(qx,1, . . . , qx,sx)} of Im(π∗) with x < x1 < · · · < xm and where the standard
conditions and conventions are assumed, namely,
(27) px := (px,1, . . . , px,rx) > 0 and qx := (qx,1, . . . , qx,sx) ≥ 0,
where rx ≥ 1 ≤ sx, rx + sx = dx := d(x) − 1, |px| :=

∑rx
�=1 px,�, |qx| :=∑sx

�=1 qx,�, kx + |px| + |qx| = n − 1 and x := x[rx + 1]. Consider the inter-
action parameters Pi := Pi(x1, . . . , xm) and Qi := Qi(x1, . . . , xm) of the fac-
tors of Π1 (i ∈ {1, . . . ,m}), as well as the first three interaction parameters
R0 := R0(x, x1, . . . , xm), Px := P1(x, x1, . . . , xm) and Qx := Q1(x, x1, . . . , xm)
of the factors of Π2 := {kx |x, px, qx} · Π1. This section is devoted to proving:

Theorem 5.1. In the situation above, if the factors of Π2 interact but non-
strongly, then

Π2 = −
∑
a

{
R0 − |a|

∣∣∣x, a,Qx

∣∣∣x1, P1, Q1

∣∣∣ · · · ∣∣∣xm, Pm, Qm

}(28)

+
sx−1∑
�=1

∑
a,b

{
R0 − |a| − b− 1

∣∣∣x,Q(�,a,b)
x , Q(�,+)

x

∣∣∣x1, P1, Q1

∣∣∣ · · · ∣∣∣xm, Pm, Qm

}(29)

−
sx−1∑
�=1

∑
a,b

{
R0 − |a| − b

∣∣∣x,Q(�,a,b)
x , Q(�,−)

x

∣∣∣x1, P1, Q1

∣∣∣ · · · ∣∣∣xm, Pm, Qm

}
.

(30)

In the above expression we set a := (a1, . . . , arx), |a| := a1 + · · · + arx , Q
(�,+)
x :=

(Qx,�+1, Qx,�+2, . . . , Qx,sx), Q(�,−)
x := (Qx,�+1−1, Qx,�+2, . . . , Qx,sx) and Q

(�,a,b)
x :=

(a1, . . . , arx , Qx,1 + b+1, Qx,2, . . . , Qx,�). The summation in (28) runs over all rx-
tuples a of non-negative integer numbers satisfying 1 ≤ |a| ≤ R0. The inner
summation in (29) runs over all rx-tuples a of non-negative integer numbers and
all non-negative integer numbers b satisfying |a|+ b < R0. The inner summation
in (30) is empty if Qx,�+1 = 0, otherwise it runs over all rx-tuples a of non-
negative integer numbers and all non-negative integer numbers b satisfying |a| +
b ≤ R0.

Since summands in (28)–(30) are basis elements, Theorem 5.1 and the results in
the previous section give a recursive method to effectively assess cup-products in
Im(π∗) ∼= H∗(BnT ).
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Figure 9. The four possible configurations with x < x1

Proof of Theorem 5.1 (Preparation). We have seen that Π2 is represented in
C∗(DnT ) by the gradient-oriented cocycle

(31)
∑(

B0,1

∣∣∣(x, x), Bx,1, . . . , Bx,dx

∣∣∣(x1, x1), B1,1, . . . , B1,d1

∣∣∣ · · ·∣∣∣(xm, xm), Bm,1, . . . , Bm,dm

)
· σ,

where the summation runs over all permutations σ ∈ Σn and over all possible
blocks B∗,∗ of vertices written in T -order, taken from the corresponding trees T∗,∗
determined by the factors of Π2, and having sizes as prescribed in Proposition 4.4
in terms of the relevant interaction parameters. The goal now is to identify the
Φ-image of (31) which, by (9), is the element in M∗(DnT )

(32)
∑
γ∈G

μ(γ) · Sγ .

Here G is the set of lower paths γ starting at an (m+1)-critical cube Sγ and finishing
at a summand of (31). We start by identifying (in the next two paragraphs) key
characteristics of ending cubes for paths in G.

Firstly, the condition x < x1 forces one of the four configurations depicted in Fig-
ure 9. In any of those configurations, vertices xi with i > 1 lie either on a component
of T \ {x1} in positive x1-direction or “below” the horizontal segment joining the
root and x1. As a result, the equalities Pi = Pi(x1, . . . , xm) = Pi+1(x, x1, . . . , xm)
and Qi = Qi(x1, . . . , xm) = Qi+1(x, x1, . . . , xm) hold for i = 1, . . . ,m. The inter-
action hypotheses then yield
(33) Px = 0,
the rx-tuple consisting of zeros. This and (27) rule out the two configurations on
the right of Figure 9, as well as the one on the bottom left, since the equality
Px = px is forced for those configurations. The only possible configuration, i.e., the
one on the top left of Figure 9, will be assumed in the rest of the section.

Secondly, redundant summands in (31) can be neglected, as none of those can be
the destination of a lower path. Furthermore, (33) shows that no summand in (31)
is critical. We thus focus on collapsible summands in (31) which (in addition to
their size and distribution properties summarized at the start of the proof) are
forced to satisfy the following two properties: For one, ingredients of each B0,1
that are smaller than x form a stack of vertices blocked by the root of T . In
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addition, for any i ∈ {1, 2, . . . ,m} with xi smaller than x, all ingredients of each
Bi,� (1 ≤ � ≤ di) are blocked (this uses the fact that Pi is not the zero tuple), so the
tuple ((xi, xi), Bi,1, . . . , Bi,di

) assembles a (unique, by block-size limitations) critical
situation around xi. It follows that each summand c · σ in (31) relevant for (32) is
collapsible by a branch-type pairing that creates the edge (x, x), as depicted in
(34)

0 x1 0

x x1

x

x1.

x

x1

Note that any (m+ 1)-cube c0 that has been identified on the right of (34) as a
potential destination of a path γ ∈ G supports a gradient path λ : c0 ↘ c1 ↗ · · · ↘
ct with ct a critical m-cube. For instance, start by replacing the edge (x1, x1) in
c0 by x1, and let the rest of the path consist of falling-vertex elementary factors.
It follows that the concatenation of γ and λ and, therefore, γ itself obey the rule
in Corollary 3.7: any upper elementary factor of sor type is of falling-vertex type.
Such a fact, together with cancellation phenomena similar to the one in the proof
of Proposition 3.9, is used in the rest of the argument in order to analyze paths
determining (32). As in the proof of Proposition 3.10, the analysis can equivalently
be done at the level of C∗(UDnT ), which means that an ordered cube c · σ can be
replaced by the corresponding orbit {c}. Following the lead in Proposition 3.9, we
first identify the actual sets of paths whose contributions in (32) give (28)–(30).

The summation in (28) arises from a set L−
0 ⊂ G of paths having a single “lock”

dynamics. Explicitly, each rx-tuple a of non-negative integer numbers satisfying
0 < |a| ≤ R0 determines a lower gradient path λ−

a,0 ∈ L−
0 that departs from the

critical (m + 1)-cube{
R0 − |a|

∣∣∣x, a,Qx

∣∣∣x1, P1, Q1

∣∣∣ . . . ∣∣∣xm, Pm, Qm

}
by replacing the edge (x, x) by x —this opens the lock. Then λ−

a,0 continues with
the falling of the |a| vertices that were blocked by x, after which λ−

a,0 ends with the
pairing that closes the lock by creating the edge (x, x) required in (34). Since both
opening and closing locks are associated to the same face (the gradient-orientated
δ2-face), and since falling-vertex elementary paths have multiplicity 1, we see from
(7) that μ(λ−

a,0) = −1. Thus, L−
0 ⊆ G yields (28).

The set of paths L−
0 is contained in a slightly larger subset L− ⊂ G which

consists of paths λ−
a,b, where a runs over rx-tuples of non-negative integer numbers

and b runs over non-negative integers numbers satisfying |a| > 0 and |a| + b ≤ R0.
Explicitly, λ−

a,b starts by taking face δ2 (lock opening) of the critical (m + 1)-cube{
R0 − |a| − b

∣∣∣x, a,Qx + (b, 0, . . . , 0)
∣∣∣x1, P1, Q1

∣∣∣ . . . ∣∣∣xm, Pm, Qm

}
.

Here and below we take the coordinate-wise sum of tuples. Then λ−
a,b continues

with the falling of the |a| vertices that were blocked by x, followed (if b > 0) by the
falling of the b vertices Sb(x), to finish with the falling of x + b until it creates the
required branch-type pairing (34) —which closes the lock. As in the case of L−

0 ,
paths in L− have multiplicity −1. Likewise, there is the family L+ ⊂ G consisting
of paths λ+

a,b, with a and b as above, except that the inequality |a| + b ≤ R0 is
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replaced by the strict inequality |a| + b < R0. Explicitly, λ+
a,b starts by taking face

δ1 (inverse lock opening) of the critical (m + 1)-cube{
R0 − |a| − b− 1

∣∣∣x, a,Qx + (b + 1, 0, . . . , 0)
∣∣∣x1, P1, Q1

∣∣∣ . . . ∣∣∣xm, Pm, Qm

}
.

Then λ+
a,b continues with the falling of x, followed by the falling of the |a| vertices

that were blocked by x, followed (if b > 0) by the falling of the b vertices Sx+1(b),
to finish with the falling of x+b+1 until it creates the required branch-type pairing
(34) —which closes the lock. Note that paths in L+ have multiplicity +1.

Figure 10 summarizes dynamics of paths in L− (top) and paths in L+ (bottom),
with lock opening/closing represented by arrows. Note the shifting on the b vertices
falling from x-direction rx + 1, as well as on the vertices that make up Bx,rx+1 at
the end of the path. The key point is that if b > 0, the paths λ−

a,b and λ+
a,b−1 share

origin, so their contributions in (32) cancel each other out. The only unmatched
paths are those in L− with parameter b = 0, i.e., paths in L−

0 , whose contribution
in (32) has been shown to yield (28).

−−−→
(x, x), x + 1, . . . , x + b− 1︸ ︷︷ ︸

b falling vertices

,

closing-lock vertex︷ ︸︸ ︷
x + b, x + b + 1, . . . , x + b + Qx,1︸ ︷︷ ︸

vertices in Bx,rx+1 at the end of λ−
a,b

←−−−
(x, x), x + 1, . . . , x + b︸ ︷︷ ︸

b falling vertices

,

closing-lock vertex︷ ︸︸ ︷
x + b + 1, x + b + 2, . . . , x + b + Qx,1 + 1︸ ︷︷ ︸

vertices in Bx,rx+1 at the end of λ+
a,b

Figure 10. Dynamics of paths in L− (top) and L+ (bottom)

By construction, L−∪L+ consists of those paths in G that start by taking a face
δi with i = 1, 2 of a critical (m + 1)-cube with edges

(x, x), (x1, x1), . . . , (xm, xm),

and that evolve exclusively though falling-vertex elementary paths before reaching
the required pairing (34). Next we describe similar sets of paths contributing in (32)
with (29) and (30). In such sets of paths, an edge

(35) (x, x[r + 1]) with r �= rx

plays the role of the edge (x, x) = (x, x[rx + 1]) in L±.

Paths K−
� with 1 ≤ � ≤ sx−1 (r = rx + �, in the notation of (35)): If Qx,�+1 = 0,

set K−
� = ∅, otherwise K−

� consists of paths κ−
�,a,b ∈ G, where a runs over rx-tuples

of non-negative integer numbers and b runs over non-negative integer numbers
satisfying |a| + b ≤ R0. Explicitly, if a = (a1, . . . , arx), then κ−

�,a,b starts by taking
face δ2 of the critical (m + 1)-cube{

R0 − |a| − b
∣∣∣x, (a1, . . . , arx , Qx,1 + b + 1, Qx,2, . . . , Qx,�),

(Qx,�+1 − 1, Qx,�+2, . . . , Qx,sx)
∣∣∣x1, P1, Q1

∣∣∣ . . . ∣∣∣xm, Pm, Qm

}
,
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and evolves through falling-vertex elementary paths as depicted by the chart9

−−−−−−−−→
(x, x[r + 1]), x, . . . , x + b− 1︸ ︷︷ ︸

b falling vertices

,

closing-lock vertex︷ ︸︸ ︷
x + b, x + b + 1, . . . , x + b + Qx,1︸ ︷︷ ︸

vertices in Bx,rx+1 at the end of κ−
�,a,b

before reaching the required pairing (34). Both opening and closing locks of κ−
�,a,b

are associated to a (gradient-oriented) δ2 face, so that μ(κ−
a,b) = −1. The con-

tribution in (32) of the paths in K−
1 ∪ · · · ∪ K−

sx−1 thus gives raise to (30). Note
that no path that starts from the origin of a given κ−

a,b by taking face δ1 —instead
of δ2— and that evolves through falling-vertex elementary paths can arrive at a
summand of (31). This is why the contribution to (32) of the set of paths in the
next paragraph does not cancel out terms in (30).
Paths K+

� with 1 ≤ � ≤ sx − 1 (r = rx + �, in the notation of (35)): K+
� consists

of paths κ+
�,a,b ∈ G, where a runs over rx-tuples of non-negative integer numbers

and b runs over non-negative integer numbers satisfying |a|+ b < R0. Explicitly, if
a = (a1, . . . , arx), then κ+

�,a,b starts by taking face δ1 of the critical (m + 1)-cube{
R0 − |a| − b− 1

∣∣∣x, (a1, . . . , arx , Qx,1 + b + 1, Qx,2, . . . , Qx,�),

(Qx,�+1, Qx,�+2, . . . , Qx,sx)
∣∣∣x1, P1, Q1

∣∣∣ . . . ∣∣∣xm, Pm, Qm

}
,

and evolves through falling-vertex elementary paths as depicted by the chart

←−−−−−−−−
(x, x[r + 1]), x, . . . , x + b− 1︸ ︷︷ ︸

b + 1 falling vertices

,

closing-lock vertex︷ ︸︸ ︷
x + b, x + b + 1, . . . , x + b + Qx,1︸ ︷︷ ︸

vertices in Bx,rx+1 at the end of κ+
�,a,b

before reaching the required pairing (34). Now μ(κ+
a,b) = 1, so the contribution

in (32) of the paths in K+
1 ∪· · ·∪K+

sx−1 gives raise to (29). Again, no path that starts
from the origin of a given κ+

a,b by taking face δ2 —instead of δ1— and that evolves
through falling-vertex elementary paths can arrive at a summand of (31). �
Remark 5.2. Since the closing-lock pairing (34) must come from x-direction rx +1,
paths corresponding to cases with r < rx in (35) have no contribution in (32).
Specifically, any path γ ∈ G that starts from a critical cell with edges (x, x[r +
1]), (x1, x1), . . . , (xm, xm), where r < rx, by taking a face δi with i = 1, 2, and that
reaches the pairing (34) through falling-vertex elementary paths, has a companion
path γ′ that starts from the same critical cell by taking the face δ3−i, and that
also evolves through falling-vertex elementary paths until it reaches the closing-
lock pairing (34) —so that μ(γ′) = −μ(γ) and (γ′)′ = γ. Note that, in the ordered
setting, γ and its companion path γ′ arrive at summands of (31) whose ingredients
differ only by a permutation (so γ′ ∈ G as well). The phenomenon noticed in this
remark is in fact the key to finishing the proof of the main result in this section.
Proof of Theorem 5.1 (Conclusion). Let J stand for the set of paths analyzed up
to this point, i.e., the paths in G that (I) depart from a critical (m + 1)-cube with
gradient-ordered edges (x, x[�]), (x1, x1), . . . , (xm, xm), (II) start by taking the face

9As in the case of L±, the |a| vertices falling from x-directions 1 through rx are not shown in
the chart.
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δ1 or δ2 and (III) reach the ending branch-type pairing (34) exclusively through
falling-vertex elementary paths. It suffices to construct an involution ι : G′ → G′,
with G′ := G \ J , such that each pair of paths γ and ι(γ) shares origin and has
opposite multiplicity. With this in mind, we first note that condition (II) is forced
by conditions (I) and (III). Indeed, in any gradient path e ↘ e′ ↗ · · · all of whose
upper elementary factors are of falling-vertex type,
(36) the edge ingredients of e′ are present in all steps of the path.
Therefore G′ is partitioned into two sets, G′

fall and G′
branch, where the former set

consists of the paths in G that satisfy (III) without satisfying (I), and the latter
set consists of the paths in G that do not satisfy (III). We construct involutions
ιfall : G′

fall → G′
fall and ιbranch : G′

branch → G′
branch with the required properties.

For a path γ = a0 ↘ b1 ↗ a1 ↘ · · · ↘ bk ↗ ak in G′
fall, the observation in (36)

and the form of the closing-lock pairing bk ↗ ak imply that all edges (xi, xi),
1 ≤ i ≤ m, must be ingredients of a0. The additional edge of the critical (m + 1)-
cube a0 must then have the form (y, y[d]), with y �∈ {x, x1, . . . , xm}, which is then
replaced by either y or y[d] at the beginning of γ. Given the form of bk ↗ ak,
y must lie in x-direction rx + 1. Then, as in the proof of Proposition 3.10, the
definition of ιfall is based on the two options for a0 ↘ b1, as both lead to summands
of (31) —unlike the situation in Remark 5.2, the ending cube of ιfall(γ) might fail
to be in the Σn-orbit of the ending cube of γ. Likewise, the definition of ιbranch
is based on the two forms of replacing by a vertex the edge ingredient at the last
upper elementary factor that is not of falling-vertex type.

6. Exterior-face basis for trees with binary core

We have made a careful distinction between Im(π∗) and H∗(UDnT ;R) in the
previous sections so as to provide clear proof arguments. In this section we use
the resulting algebro-combinatorial description of cup-products and have no need
to make any further distinction between these isomorphic rings. Accordingly, we
transfer the notation and descriptions of elements in Im(π∗) back to H∗(UDnT ;R).
In particular, the notation and conventions in the paragraph containing (19) will
be carried over this final section, directly in the context of H∗(UDnT ;R), with the
simplifications discussed below.

Definition 6.1. A tree T is said to have binary core provided that, for each essential
vertex x of T , at most two of the components of T \ {x} in x-directions 1, 2, . . . , dx
carry essential vertices (recall dx := d(x) − 1).

Throughout this section, T stands for a tree with binary core (e.g. an actual
binary tree). In addition, we assume that the chosen planar embedding of T has
been adjusted so that, for any essential vertex x of T ,

(37) no component of T \ {x} in x-direction j with 1 ≤ j ≤ dx − 2
carries an essential vertex.

There are two reasons for sticking to such a hypothesis. For one, the existence of
non-vanishing products whose factors are given by weak-interacting basis elements

{ki |xi, (pi,1, . . . , pi,ri), (qi,1, . . . , qi,si)}
with x1 < · · · < xm, i.e., the obstructions in Remark 1.8, is somehow restricted
(cf. Example 1.6), while our description of the corresponding product is greatly
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simplified. Explicitly, in the setting and notation of Theorem 5.1, since the top
left configuration in Figure 9 holds, (37) forces sx = 1, i.e., the edge (x, x) must
lie in the largest x-direction, with x1 then lying in the second largest x-direction
rx = dx − 1. In particular, the product Π2 takes the simpler form

(38) Π2 = −
∑{

R0 − |a|
∣∣∣x, a,Qx

∣∣∣x1, P1, Q1

∣∣∣ · · · ∣∣∣xm, Pm, Qm

}
,

where the sum runs over all rx-tuples of integer numbers a = (a1, . . . , arx) with
a > 0 and |a| ≤ R0.

The second advantage for working under the situation in (37) is that, for 1 ≤ i ≤
m and j ≤ di−2, any set of pruned leaves Li,j associated to a product (19) is empty.
As a result, the corresponding Ci,j-local interaction is “vacuous” in the sense that
the Ci,j-instance of (2) simplifies to �Ci,j

(νi) ≥ 0 —a condition which is certainly
true. In fact, still in the context of (19), there will be no local interactions in the
positive xi-directions leading to a weak interaction situation as long as pi,j > 0
for some j ≤ min{ri, di − 2} (cf. (33)). In particular, it makes sense to reset the
notation for pruned leaves in the presence of (37): we shall set L1(xi) := Li,di−1
and L2(xi) := Li,di

when i > 0, and L1(x0) := L0,1 (recall from Definition 4.1 that
x0 stands for the root of T ).

Expression (38) suggests redefining some of the basis elements 〈k, x, (p1, . . . , pr),
(q1, . . . , qs)〉 ∈ H1(BnT ) in the proof of Theorem 1.7. Namely, for the purposes of
this section, if p1 = · · · = pr−1 = 0 and s = 1, we set
(39)

〈k, x, (p1, . . . , pr), (q1, . . . , qs)〉 :=
∑{

k − |a|
∣∣∣x, (a1, . . . , ar−1, pr + ar), (q1)

}
,

where the summation runs over all r-tuples a = (a1, . . . , ar) ≥ 0 with |a| ≤ k,
otherwise we keep

〈k, x, (p1, . . . , pr), (q1, . . . , qs)〉 :=
{
k
∣∣∣x, (p1, . . . , pr), (q1, . . . , qs)

}
.

Remark 6.2. We use the angle-bracket notation
〈
k, x, p, q

〉
since we have reserved

the parenthesis notation for cubes in DnT (as tuples of their ingredients). Addi-
tionally, the angle-bracket notation is intended to stress the change of basis in (39).

A central task in this section is the analysis of the relationship between ordered10

products

(40) 〈k1, x1, p1, q1〉 · · · 〈km, xm, pm, qm〉 and {k1 |x1, p1, q1} · · · {km |xm, pm, qm}.
We say that any of these products is a strong interaction product if the factors
of the product on the right hand-side of (40) interact strongly (in the sense of
Definition 4.3).

Remark 6.3. Corollary 4.5, Proposition 4.4 and Theorem 5.1 show that both prod-
ucts in (40) are (possibly empty) linear combinations of basis elements

{� |x1, �, � | · · · |xm, �, �}.
Such a linear combination will be written as∑

� {� |x1, �, � | · · · |xm, �, �}.

10In the sense that x1 < · · · < xm.
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x1

x2

xm

x0 (root) x0 (root) x1

x2

xm

Figure 11. Configurations of essential vertices in Lemma 6.5

Here and below, a dot ‘�’ stands for either an unspecified ring coefficient or an
unspecified tuple11 of integer numbers, t = (t1, t2, . . .) ≥ 0, satisfying t > 0 when the
tuple immediately follows an essential vertex xi (the context clarifies the option).

Theorem 6.4. Let T be a tree with binary core, R be a commutative ring with
1, and n ≥ 1. Then H∗(BnT ;R) ∼= ΛR(KnT ). In detail: (i) An ordered product
〈k1, x1, p1, q1〉 · · · 〈km, xm, pm, qm〉 is non-zero if and only if it is a strong inter-
action product. (ii) Two ordered strong interaction products agree if and only if
they have the same factors. (iii) A graded basis of H∗(UDnT ) is given by the set
of ordered strong interaction products.

The crux of the matter in the proof of Theorem 6.4 is getting at a precise
description of the conditions that have to be satisfied by some of the unspecified
dot ingredients in

(41) 〈k1, x1, p1, q1〉 · · · 〈km, xm, pm, qm〉 =
∑

� {� |x1, �, � | · · · |xm, �, �}.

With this in mind, the product in (41) will be denoted by � throughout the section,
setting

R0 := R0(x1, . . . , xm), Pi,j := Pi,j(x1, . . . , xm), Qi,j := Qi,j(x1, . . . , xm),
Pi := (Pi,1, . . . , Pi,ri) and Qi := (Qi,1, . . . , Qi,si), 1 ≤ i ≤ m, for the corresponding
interaction parameters. Furthermore, we set

(42) Bi := (xi, Pi, Qi) and
�
Bi := (xi, �, �),

where the latter expression stands for any triple with unspecified tuples in the
second and third coordinates (subject to the usual restrictions). Additionally, the
i-th factor on the left hand-side of (41) will denoted by φi. For instance, in terms
of the notation set forth in Definition 4.3,

φi = {ki |xi, pi, qi} +
∑

{ki |xi, �, qi},

with a possibly empty summation, whereas Corollary 4.5 asserts that the second
product in (40) is trivial or agrees with {R0 |B1 | . . . |Bm} under, respectively, the
no-interaction or strong-interaction condition of the factors.

In the following results, some of which are true for general trees, we make free
use of the notation and considerations above. Likewise, the use of cup-product
descriptions in Sections 4 and 5, with the simplification in (38), we will refer to
generically as “interaction reasons”.

11As in Definition 4.3, we make no distinction between integer numbers and 1-tuples.
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Lemma 6.5.
(1) Assume L1(x0) = {x1, x2, . . . , xm} (left configuration in Figure 11), then

� =

{
{R0 |B1 | · · · |Bm} +

∑ � {R0 |
�
B1 | · · · |

�
Bm}, if R0 ≥ 0;

0, otherwise.

(2) Assume L1(x1) = {x2, x3, . . . , xu} and L2(x1) = {xu+1, . . . , xm−1, xm}
with 1 ≤ u ≤ m (right configuration in Figure 11) with u = 1 (i.e.
L1(x1) = ∅ and L2(x1) = {x2, . . . , xm}) if s1 = 1, then

� =

⎧⎪⎪⎨⎪⎪⎩
{R0 |B1 | · · · |Bm} +

∑
� {R0 |

�
B1 | · · · |

�
Bm}

+
∑

� {R0 |x1, P1, Q1 |
�
B2 | · · · |

�
Bm},

if Q1 ≥ 0;

0, otherwise.
Proof. The first assertion follows by direct inspection of the expression(

{k1 |x1, p1, q1} +
∑

{k1 |x1, �, �}
)
· · ·
(
{km |xm, pm, qm} +

∑
{km |xm, �, �}

)
,

noticing that the only non-vacuous interaction occurs in the tree T0,1 (so that
Pi = pi and Qi = qi for 1 ≤ i ≤ m). The second assertion is proved in a similar
way, noticing that this time non-vacuous interactions occur only either on T1,d1 or
T1,d1−1 (or both). In any case, R0 = k1, Pi = pi for 1 ≤ i ≤ m, while Qi = qi for
2 ≤ i ≤ m. �

A key situation with L1(x1) ∪ L2(x1) = {x2, x3, . . . , xm} not covered by
Lemma 6.5(2) is:
Lemma 6.6. Assume L1(x1) = {x2, x3, . . . , xm}. Then the product of
〈k1, x1, (p1,1, . . . , p1,d1−1), (q1,1)〉 with {R |x2, p2, q2 | · · · |xm, pm, qm} vanishes pro-
vided p1,1 = · · · = pi,d1−2 = 0 and p1,d1−1 + R ≤ n.
Proof. We proceed by induction on p1,d1−1 + R − n = p1,d1−1 +

∑m
j=2(tj − n) ∈

{0,−1,−2, . . .}, where
{R |x2, p2, q2 | · · · |xm, pm, qm} = {t2 |x2, p2, q2} · · · {tm |xm, pm, qm}

is the unique strong-interaction factorization of {R |x2, p2, q2 | · · · |xm, pm, qm} noted
in the proof of Theorem 1.7. Since p1,j = 0 for j = 1, . . . , d1 − 2, the induction is
grounded for p1,d1−1 + R− n = 0 by

{k1 | x1, (p1,1, . . . , p1,d1−1), (q1,1)} ·
(
{t2 |x2, p2, q2} · · · {tm |xm, pm, qm}

)
= −

∑
{k1 − |a| |x1, a, (q1,1) |x2, p2, q2 | · · · |xm, pm, qm}

= −
∑

{k1 − |a| |x1, (a1, . . . , ad1−2, p1,d1−1 + ad1−1), (q1,1)}({t2 |x2, p2, q2}
· · · {tm |xm, pm, qm}),

where both summations run over tuples a = (a1, . . . , ad1−1) > 0 with |a| ≤ k1. The
inductive step then follows by noticing that, for p1,d1−1 + R − n < 0,

〈k1, x1, (p1,1, . . . , p1,d1−1), (q1,1)〉 ·
(
{t2 |x2, p2, q2} · · · {tm |xm, pm, qm}

)
=〈k1 − 1, x1, (p1,1, . . . , p1,d1−2, p1,d1−1 + 1), (q1,1)〉

·
(
{t2 |x2, p2, q2} · · · {tm |xm, pm, qm}

)
,
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as

{k1 − |a| |x1, (p1,1 + a1, . . . , p1,d1−2 + ad1−2, p1,d1−1), (q1,1)}

·
(
{t2 |x2, p2, q2} · · · {tm |xm, pm, qm}

)
vanishes for a = (a1, . . . , ad1−2, 0) ≥ 0 with |a| ≤ k1 by interaction reasons. �

Corollary 6.7. If the factors on the left of (41) do not yield a strong interaction
product, then � = 0.

Proof. By focusing on the factors φi of � that are involved in a faulty interaction
parameter, it suffices to consider three cases: L1(x0) = {x1, . . . , xm}, L2(x1) =
{x2, . . . , xm} and L1(x1) = {x2, . . . , xm}. The first two cases are covered by
Lemma 6.5. On the other hand, there are two options for the instances of the
third case that are not covered by Lemma 6.5((2)): either p1,j > 0 for some
j ∈ {1, 2, . . . , d1−2} or p1,j = 0 for all j ∈ {1, 2, . . . , d1−2} —in both cases s1 = 1.
In the latter option, the result follows from Lemma 6.6; in the former option we have
〈k1, x1, p1, q1〉 = {k1 |x1, p1, q1} while the condition p1,d1−1 + R0(x2, . . . , xm) < n
is forced by the no-strong-interaction hypothesis, so that the result follows by in-
teraction reasons in view of Lemma 6.5((1)). �

The proof of Theorem 6.4 will be complete once we set a one-to-one correspon-
dence between the set of ordered strong interaction products � and the graded
basis of H∗(BnT ;R) formed by the elements in (10). With this in mind, we start
with a two-step approach to the missing case in Lemma 6.5((2)):

Lemma 6.8. Assume L1(x1) = {x2, x3, . . . , xm} with s1 = 1. Then
(43)

� =

⎧⎪⎪⎨⎪⎪⎩
{R0 |B1 | · · · |Bm} +

∑
� {R0 |

�
B1 | · · · |

�
Bm}

+
∑

� {R0 |x1, P1, Q1 |
�
B2 | · · · |

�
Bm},

if P1 > 0;

0, otherwise.

Proof. Interactions occur only in T1,d1−1, so R0 = k1, Qi = qi for 1 ≤ i ≤ m, and
Pi = pi for 2 ≤ i ≤ m. By Corollary 6.7, only the case P1 > 0 needs to be argued.
Use Lemma 6.5((1)) to write � = φ1 · (φ2 · · ·φm) as(
{R0 |x1, p1, Q1}+

∑
{R0 |x1, �, Q1}

)(
{R′

0 |B2 | · · · |Bm}+
∑

{R′
0 |

�
B2 | · · · |

�
Bm}

)
,

where R′
0 = R0(x2, . . . , xm) (so P1,d1−1 = p1,d1−1+R′

0−n). The result then follows
by direct inspection, though this time (38) needs to be used in the analysis of the
products giving rise to the terms in both summations of (43). �

Proposition 6.9. Assume L1(x1) = {x2, x3, . . . , xu} and L2(x1) = {xu+1, . . . ,
xm−1, xm}, with 1 < u < m and s1 = 1. Then

� =

⎧⎪⎪⎨⎪⎪⎩
{R0 |B1 | · · · |Bm} +

∑
� {R0 |

�
B1 | · · · |

�
Bm}

+
∑

� {R0 |x1, P1, Q1 |
�
B2 | · · · |

�
Bm},

if P1 > 0 ≤ Q1;

0, otherwise.
Here and below each expression P1, Q1 is meant to represent a pair V1,W1 of
unspecified tuples of integer numbers with V1 = (V1,1, . . . , V1,d1−1), W1 = (W1,1)
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and such that V1 > 0 ≤ W1 and (V1,W1) < (P1, Q1) in the product ordering, i.e.,
V1,j ≤ P1,j for j = 1, 2, . . . , d1 − 1 and W1,1 ≤ Q1,1, with at least one of the last
d1 inequalities being strict.

Proof. By Corollary 6.7, it suffices to consider the case P1 > 0 ≤ Q1. Lem-
mas 6.5((1)) and 6.8 allow us to write � = (φ1 · · ·φu) · (φu+1 · · ·φm) as the product
of

{R0 |x1, P1, q1 |B2 | . . . |Bu} +
∑

� {R0 |
�
B1 |

�
B2 | . . . |

�
Bu}

+
∑

� {R0 |x1, P1, q1 |
�
B2 | . . . |

�
Bu}

with
{R′

0 |Bu+1 | . . . |Bm} +
∑

� {R′
0 |

�
Bu+1 | . . . |

�
Bm},

where R′
0 = R0(xu+1, . . . , xm) (so Q1,1 = q1,1 + R′

0 − n). The result follows by
inspection. �

We are now ready to set up the strategy for completing the proof of Theorem 6.4.
By Lemma 4.6, Remark 6.3 and Corollary 6.7, the goal reduces to describing,
for fixed essential vertices x1 < · · · < xm, a partial ordering � on the set of
basis elements {t0 |x1, u1, v1 | · · · |xm, um, vm} of Hm(UDnT ) such that any strong
interaction product (41) can be expressed by a congruence
(44) 〈k1, x1, p1, q1〉 · · · 〈km, xm, pm, qm〉 ≡ {R0 |B1 | · · · |Bm}
modulo basis elements that are �-smaller than {R0 |B1 | · · · |Bm}. The partial
ordering � we need becomes apparent by writing either of the triples (x1, P1, Q1),
(x1, P1, Q1) and (x1, P1, Q1) in Proposition 6.9 and Lemmas 6.8 and 6.5((2)), re-
spectively, as B1. Indeed, in such terms, the (P1 > 0 ≤ Q1)-conclusions in those
results can be written as
(45)
� = {R0 |B1 | · · · |Bm} +

∑
� {R0 |

�
B1 | · · · |

�
Bm} +

∑
� {R0 |B1 |

�
B2 | · · · |

�
Bm}.

Definition 6.10. The �-th level of pruned leaves L� of the essential vertices x1 <
· · · < xm is

L� = L�(x1, . . . , xm) :=

{
L1(x0), if � = 1;⋃

xi∈L�−1

(
L1(xi) ∪ L2(xi)

)
, if � > 1.

The interaction level of the vertices x1 < · · · < xm is the largest � such that L� �= ∅.
Furthermore, extending the notation introduced in (42) and (45), let B(�) denote
the collection of blocks Bi with xi ∈ L�, and let

�
B(�) stand for any collection of

blocks
�
Bi with xi ∈ L�. On the other hand, B(�) stands for any collection of blocks

(xi, Vi,Wi), with xi ∈ L�, satisfying:
• Vi > 0 ≤ Wi and (Vi,Wi) ≤ (Pi, Qi) (the latter in the product ordering)

for all xi ∈ L�, and
• (Vi,Wi) �= (Pi, Qi) for at least one xi ∈ L�.

Note that the definition of B(�) is less restrictive than actually requiring B(�)

to be a collection of blocks Bi with xi ∈ L�. As in Proposition 6.9, the condition
we want for B(�) is based on a strict product-order inequality. The reason for this
becomes apparent in the proof of Proposition 6.12.
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Example 6.11. Lemma 6.5((1)) gives � = {R0, B
(1)}+

∑ � {R0,
�
B(1)} in interac-

tion level 1 (under a strong condition hypothesis). Likewise, (45) becomes

(46) � = {R0 |B(1) |B(2)} +
∑

� {R0 |
�
B(1) |

�
B(2)} +

∑
� {R0 |B(1) |

�
B(2)}

in interaction level 2 (with L1 = {x1}, so B(1) consist of B1 alone). In full generality:

Proposition 6.12. Let x1 < · · · < xm be essential vertices having interaction
level �. If � is a strong interaction product, then

� = {R0 |B(1) | · · · |B(�)} +
∑

� {R0 |
�
B(1) | · · · |

�
B(�)}

+
∑

� {R0 |B(1) |
�
B(2) | · · · |

�
B(�)} + · · ·

+
∑

� {R0 |B(1) | · · · |B(�−2) |B(�−1) |
�
B(�)}.

(47)

Proof of Theorem 6.4 (Conclusion). Partially order the set of basis elements
{v0 |x1, v1, w1 | · · · |xm, vm, wm}

by means of a level-wise lexicographical comparison of their v- and w-ingredients.
Then (47) yields the required congruence (44). �
Proof of Proposition 6.12. The argument is by direct computation, proceeding by
induction on � and with Example 6.11 grounding the induction. The real challenge
consists of setting a suitable notation so arguments can be seen clearly. With this in
mind, we start by checking the situation in the special case L1 = {x1} (so R0 = k1),
i.e., the generalization of (46) to higher interaction levels. In such a situation
(48) Lλ(x2, . . . , xm) = Lλ+1(x1, . . . , xm), for λ ≥ 2.
Accordingly, we reset notation and start level-number counting at 2 (rather than
at 1) for x2 < · · · < xm, so as to make it compatible with that for x1 < · · · < xm.
Thus, (48) gets replaced by
(49) Lλ(x2, . . . , xm) = Lλ(x1, . . . , xm), for λ ≥ 3.
Let x2, x3, . . . , xt be the essential vertices lying on the component of T \ {x1} in
x1-direction d1−1, while xt+1, xt+2, . . . , xm be the vertices lying on the component
of T \ {x1} in x1-direction d1 (1 ≤ t ≤ m). Then, if B(λ),

�
B(λ) and B(λ) stand for

collections defined by all the vertices x1, . . . , xm, we write

(50) B
(λ)
[ε] ,

�
B

(λ)
[ε] or B

(λ)
[ε] ,

with ε = 1, to denote the corresponding parts coming only from the vertices
x2, . . . , xt. Likewise, the case ε = 2 in (50) stands for the parts that come from the
vertices xt+1, . . . , xm. For instance, B(λ) = B

(λ)
[1] ∪ B

(λ)
[2] . In these terms, we use

induction to write � = φ1 · (φ2 · · ·φt) · (φt+1 · · ·φm) as the product of the three
expressions

{R0 |x1, p1, q1} +
∑

{R0 |x1, �, q1},{
R′

0

∣∣∣B(2)
[1]

∣∣∣ · · · ∣∣∣B(�)
[1]

}
+
∑

�
{
R′

0

∣∣∣ �
B

(2)
[1]

∣∣∣ · · · ∣∣∣ �
B

(�)
[1]

}
+
∑

3≤j≤�

�
{
R′

0

∣∣∣B(2)
[1]

∣∣∣ · · · ∣∣∣B(j−2)
[1]

∣∣∣B(j−1)
[1]

∣∣∣ �
B

(j)
[1]

∣∣∣ · · · ∣∣∣ �
B

(�)
[1]

}
,
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and{
R′′

0

∣∣∣B(2)
[2]

∣∣∣ · · · ∣∣∣B(�)
[2]

}
+
∑

�
{
R′′

0

∣∣∣ �
B

(2)
[2]

∣∣∣ · · · ∣∣∣ �
B

(�)
[2]

}
+
∑

3≤j≤�

�
{
R′′

0

∣∣∣B(2)
[2]

∣∣∣ · · · ∣∣∣B(j−2)
[2]

∣∣∣B(j−1)
[2]

∣∣∣ �
B

(j)
[2]

∣∣∣ · · · ∣∣∣ �
B

(�)
[2]

}
,

where R′
0 = R0(x2, . . . , xt) and R′′

0 = R0(xt+1, . . . , xm). Note the compactified
notation for the two summations running over j, each of which really stands for
sums of summations as in (47). Note also that the interaction level of the ver-
tices x2, . . . , xt (or xt+1, . . . , xm) could be smaller than �, in which case some of
the corresponding collections of blocks are empty. Then, by direct inspection and
interaction reasons (using (38) when s1 = 1 and the interaction parameter under
consideration lies in x1-direction d1−1), the product of the three expressions above
takes the form (47). This completes the proof when L1 is a singleton.

In general, L1 consists of, say, vertices x1 = xi1 < · · · < xik , and we evaluate �
as the length-k product
(51) (φ1 · · ·φi2−1)(φi2 · · ·φi3−1) · · · (φik · · ·φm).
(This time there is no need to reset notation so as to get the analogue of (49) to
hold.) We have just seen that the w-th factor in (51) takes the form{

riw

∣∣∣B(1)
[w]

∣∣∣· · ·∣∣∣B(�)
[w]

}
+
∑

�
{
rw

∣∣∣ �
B

(1)
[w]

∣∣∣· · ·∣∣∣ �
B

(�)
[w]

}
+
∑

2≤j≤�

�
{
riw

∣∣∣B(1)
[w]

∣∣∣· · ·∣∣∣B(j−2)
[w]

∣∣∣B(j−1)
[w]

∣∣∣ �
B

(j)
[w]

∣∣∣· · ·∣∣∣ �
B

(�)
[w]

}
,

where
B

(1)
[w] := Biw ,

�
B

(1)
[w] :=

�
Biw , B

(1)
[w] := Biw

and, for interaction levels larger than 1, a subindex ‘[w]’ in a collection of blocks
indicates that only blocks in positive xiw -directions are to be taken. The required
form (47) for the product of all these expressions follows again from direct inspection
—this time without requiring the use of (38). �
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City 07000, México
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