Orthogonal rational functions with real poles, root asymptotics, and GMP matrices
HTML articles powered by AMS MathViewer
- by Benjamin Eichinger, Milivoje Lukić and Giorgio Young;
- Trans. Amer. Math. Soc. Ser. B 10 (2023), 1-47
- DOI: https://doi.org/10.1090/btran/117
- Published electronically: January 17, 2023
- HTML | PDF
Abstract:
There is a vast theory of the asymptotic behavior of orthogonal polynomials with respect to a measure on $\mathbb {R}$ and its applications to Jacobi matrices. That theory has an obvious affine invariance and a very special role for $\infty$. We extend aspects of this theory in the setting of rational functions with poles on $\overline {\mathbb {R}} = \mathbb {R} \cup \{\infty \}$, obtaining a formulation which allows multiple poles and proving an invariance with respect to $\overline {\mathbb {R}}$-preserving Möbius transformations. We obtain a characterization of Stahl–Totik regularity of a GMP matrix in terms of its matrix elements; as an application, we give a proof of a conjecture of Simon – a Cesàro–Nevai property of regular Jacobi matrices on finite gap sets.References
- Damir Z. Arov and Harry Dym, $J$-contractive matrix valued functions and related topics, Encyclopedia of Mathematics and its Applications, vol. 116, Cambridge University Press, Cambridge, 2008. MR 2474532, DOI 10.1017/CBO9780511721427
- David H. Armitage and Stephen J. Gardiner, Classical potential theory, Springer Monographs in Mathematics, Springer-Verlag London, Ltd., London, 2001. MR 1801253, DOI 10.1007/978-1-4471-0233-5
- Adhemar Bultheel, Pablo González-Vera, Erik Hendriksen, and Olav Njåstad, Orthogonal rational functions, Cambridge Monographs on Applied and Computational Mathematics, vol. 5, Cambridge University Press, Cambridge, 1999. MR 1676258, DOI 10.1017/CBO9780511530050
- M. J. Cantero, L. Moral, and L. Velázquez, Five-diagonal matrices and zeros of orthogonal polynomials on the unit circle, Linear Algebra Appl. 362 (2003), 29–56. MR 1955452, DOI 10.1016/S0024-3795(02)00457-3
- Jacob S. Christiansen, Barry Simon, and Maxim Zinchenko, Finite gap Jacobi matrices: a review, Spectral analysis, differential equations and mathematical physics: a festschrift in honor of Fritz Gesztesy’s 60th birthday, Proc. Sympos. Pure Math., vol. 87, Amer. Math. Soc., Providence, RI, 2013, pp. 87–103. MR 3087900, DOI 10.1090/pspum/087/01429
- Jacob S. Christiansen, Benjamin Eichinger, and Tom VandenBoom, Finite-gap CMV matrices: periodic coordinates and a magic formula, Int. Math. Res. Not. IMRN 18 (2021), 14016–14085. MR 4320803, DOI 10.1093/imrn/rnz213
- David Damanik, Rowan Killip, and Barry Simon, Perturbations of orthogonal polynomials with periodic recursion coefficients, Ann. of Math. (2) 171 (2010), no. 3, 1931–2010. MR 2680401, DOI 10.4007/annals.2010.171.1931
- David Damanik, Alexander Pushnitski, and Barry Simon, The analytic theory of matrix orthogonal polynomials, Surv. Approx. Theory 4 (2008), 1–85. MR 2379691
- David Damanik and Peter Yuditskii, Counterexamples to the Kotani-Last conjecture for continuum Schrödinger operators via character-automorphic Hardy spaces, Adv. Math. 293 (2016), 738–781. MR 3474334, DOI 10.1016/j.aim.2016.02.023
- Karl Deckers and Doron S. Lubinsky, Christoffel functions and universality limits for orthogonal rational functions, Anal. Appl. (Singap.) 10 (2012), no. 3, 271–294. MR 2948895, DOI 10.1142/S0219530512500133
- Joseph L. Doob, Classical potential theory and its probabilistic counterpart, Classics in Mathematics, Springer-Verlag, Berlin, 2001. Reprint of the 1984 edition. MR 1814344, DOI 10.1007/978-3-642-56573-1
- Benjamin Eichinger, Periodic GMP matrices, SIGMA Symmetry Integrability Geom. Methods Appl. 12 (2016), Paper No. 066, 19. MR 3519566, DOI 10.3842/SIGMA.2016.066
- B. Eichinger and M. Lukić. 2020. Stahl–Totik regularity for continuum Schrödinger operators, arXiv:2001.00875.
- Fritz Gesztesy, Helge Holden, Johanna Michor, and Gerald Teschl, Soliton equations and their algebro-geometric solutions. Vol. II, Cambridge Studies in Advanced Mathematics, vol. 114, Cambridge University Press, Cambridge, 2008. $(1+1)$-dimensional discrete models. MR 2446594, DOI 10.1017/CBO9780511543203
- Leonid Golinskii and Sergei Khrushchev, Cesàro asymptotics for orthogonal polynomials on the unit circle and classes of measures, J. Approx. Theory 115 (2002), no. 2, 187–237. MR 1901215, DOI 10.1006/jath.2001.3655
- Roger A. Horn and Charles R. Johnson, Topics in matrix analysis, Cambridge University Press, Cambridge, 1994. Corrected reprint of the 1991 original. MR 1288752
- Helge Krüger, Probabilistic averages of Jacobi operators, Comm. Math. Phys. 295 (2010), no. 3, 853–875. MR 2600036, DOI 10.1007/s00220-010-1014-y
- Paul G. Nevai, Orthogonal polynomials, Mem. Amer. Math. Soc. 18 (1979), no. 213, v+185. MR 519926, DOI 10.1090/memo/0213
- V. P. Potapov, The multiplicative structure of $J$-contractive matrix functions, Amer. Math. Soc. Transl. (2) 15 (1960), 131–243. MR 114915, DOI 10.1090/trans2/015/07
- Thomas Ransford, Potential theory in the complex plane, London Mathematical Society Student Texts, vol. 28, Cambridge University Press, Cambridge, 1995. MR 1334766, DOI 10.1017/CBO9780511623776
- Christian Remling, The absolutely continuous spectrum of Jacobi matrices, Ann. of Math. (2) 174 (2011), no. 1, 125–171. MR 2811596, DOI 10.4007/annals.2011.174.1.4
- Barry Simon, Equilibrium measures and capacities in spectral theory, Inverse Probl. Imaging 1 (2007), no. 4, 713–772. MR 2350223, DOI 10.3934/ipi.2007.1.713
- Barry Simon, Regularity and the Cesàro-Nevai class, J. Approx. Theory 156 (2009), no. 2, 142–153. MR 2494549, DOI 10.1016/j.jat.2008.04.016
- Barry Simon, Szegő’s theorem and its descendants, M. B. Porter Lectures, Princeton University Press, Princeton, NJ, 2011. Spectral theory for $L^2$ perturbations of orthogonal polynomials. MR 2743058
- Barry Simon, Basic complex analysis, A Comprehensive Course in Analysis, Part 2A, American Mathematical Society, Providence, RI, 2015. MR 3443339, DOI 10.1090/simon/002.1
- Mikhail Sodin and Peter Yuditskii, Almost periodic Jacobi matrices with homogeneous spectrum, infinite-dimensional Jacobi inversion, and Hardy spaces of character-automorphic functions, J. Geom. Anal. 7 (1997), no. 3, 387–435. MR 1674798, DOI 10.1007/BF02921627
- Herbert Stahl and Vilmos Totik, General orthogonal polynomials, Encyclopedia of Mathematics and its Applications, vol. 43, Cambridge University Press, Cambridge, 1992. MR 1163828, DOI 10.1017/CBO9780511759420
- Gerald Teschl, Jacobi operators and completely integrable nonlinear lattices, Mathematical Surveys and Monographs, vol. 72, American Mathematical Society, Providence, RI, 2000. MR 1711536, DOI 10.1090/surv/072
- Gerald Teschl, Mathematical methods in quantum mechanics, 2nd ed., Graduate Studies in Mathematics, vol. 157, American Mathematical Society, Providence, RI, 2014. With applications to Schrödinger operators. MR 3243083, DOI 10.1090/gsm/157
- J. L. Ullman, On the regular behaviour of orthogonal polynomials, Proc. London Math. Soc. (3) 24 (1972), 119–148. MR 291718, DOI 10.1112/plms/s3-24.1.119
- A. Volberg and P. Yuditskii, Kotani-Last problem and Hardy spaces on surfaces of Widom type, Invent. Math. 197 (2014), no. 3, 683–740. MR 3251833, DOI 10.1007/s00222-013-0495-7
- P. Yuditskii, Killip-Simon problem and Jacobi flow on GMP matrices, Adv. Math. 323 (2018), 811–865. MR 3725892, DOI 10.1016/j.aim.2017.11.005
Bibliographic Information
- Benjamin Eichinger
- Affiliation: Institute of Analysis, Johannes Kepler University of Linz, 4040 Linz, Austria
- MR Author ID: 1148875
- Email: benjamin.eichinger@jku.at
- Milivoje Lukić
- Affiliation: Department of Mathematics, Rice University MS-136, Box 1892, Houston, Texas 77251-1892
- MR Author ID: 947053
- Email: milivoje.lukic@rice.edu
- Giorgio Young
- Affiliation: Department of Mathematics, Rice University MS-136, Box 1892, Houston, Texas 77251-1892
- MR Author ID: 1392121
- ORCID: 0000-0002-7646-1853
- Email: gfy1@rice.edu
- Received by editor(s): October 30, 2020
- Received by editor(s) in revised form: December 1, 2020, and February 16, 2022
- Published electronically: January 17, 2023
- Additional Notes: The first author was supported by Austrian Science Fund FWF, project no: J 4138-N32. The second author was supported in part by NSF grant DMS–1700179. The third author was supported in part by NSF grant DMS–1745670.
- © Copyright 2023 by the authors under Creative Commons Attribution-NonCommercial 3.0 License (CC BY NC 3.0)
- Journal: Trans. Amer. Math. Soc. Ser. B 10 (2023), 1-47
- MSC (2020): Primary 47B36, 42C05
- DOI: https://doi.org/10.1090/btran/117
- MathSciNet review: 4535510