On unit signatures and narrow class groups of odd degree abelian number fields
HTML articles powered by AMS MathViewer
- by Benjamin Breen, Ila Varma and John Voight; with an appendix by Noam Elkies
- Trans. Amer. Math. Soc. Ser. B 10 (2023), 86-128
- DOI: https://doi.org/10.1090/btran/90
- Published electronically: February 3, 2023
- HTML | PDF
Abstract:
For an abelian number field of odd degree, we study the structure of its $2$-Selmer group as a bilinear space and as a Galois module. We prove structural results and make predictions for the distribution of unit signature ranks and narrow class groups in families where the degree and Galois group are fixed.References
- J. V. Armitage and A. Fröhlich, Classnumbers and unit signatures, Mathematika 14 (1967), 94–98. MR 214566, DOI 10.1112/S0025579300008044
- Michael Adam and Gunter Malle, A class group heuristic based on the distribution of 1-eigenspaces in matrix groups, J. Number Theory 149 (2015), 225–235. MR 3296009, DOI 10.1016/j.jnt.2014.10.018
- Steve Balady, Families of cyclic cubic fields, J. Number Theory 167 (2016), 394–406. MR 3504053, DOI 10.1016/j.jnt.2016.03.011
- B. Breen, The $2$-Selmer group of number fields, Ph.D. thesis, in preparation.
- B. Breen, I. Varma, and J. Voight, Cyclic fields code, 2019, available at https://github.com/BenKBreen/Cyclic-fields-code.
- Claus Fieker, Tommy Hofmann, and Carlo Sircana, On the construction of class fields, Proceedings of the Thirteenth Algorithmic Number Theory Symposium, Open Book Ser., vol. 2, Math. Sci. Publ., Berkeley, CA, 2019, pp. 239–255. MR 3952015
- S. Chan, P. Koymans, D. Milovic, and C. Pagano, On the negative Pell equation, arXiv preprint available at https://arxiv.org/abs/1908.01752.
- Henri Cohen, Francisco Diaz y Diaz, and Michel Olivier, On the density of discriminants of cyclic extensions of prime degree, J. Reine Angew. Math. 550 (2002), 169–209. MR 1925912, DOI 10.1515/crll.2002.071
- H. Cohen and H. W. Lenstra Jr., Heuristics on class groups of number fields, Number theory, Noordwijkerhout 1983 (Noordwijkerhout, 1983) Lecture Notes in Math., vol. 1068, Springer, Berlin, 1984, pp. 33–62. MR 756082, DOI 10.1007/BFb0099440
- Henri Cohen and Jacques Martinet, Étude heuristique des groupes de classes des corps de nombres, J. Reine Angew. Math. 404 (1990), 39–76 (French). MR 1037430
- Henri Cohen and Jacques Martinet, Heuristics on class groups: some good primes are not too good, Math. Comp. 63 (1994), no. 207, 329–334. MR 1226813, DOI 10.1090/S0025-5718-1994-1226813-X
- Harvey Cohn, The density of abelian cubic fields, Proc. Amer. Math. Soc. 5 (1954), 476–477. MR 64076, DOI 10.1090/S0002-9939-1954-0064076-8
- Leonard Eugene Dickson, History of the theory of numbers. Vol. II: Diophantine analysis, Chelsea Publishing Co., New York, 1966. MR 245500
- David S. Dummit, Evan P. Dummit, and Hershy Kisilevsky, Signature ranks of units in cyclotomic extensions of abelian number fields, Pacific J. Math. 298 (2019), no. 2, 285–298. MR 3936019, DOI 10.2140/pjm.2019.298.285
- D. S. Dummit and H. Kisilevsky, Unit signatures in real biquadratic and multiquadratic number fields, arXiv preprint available at https://arxiv.org/pdf/1904.04411.
- David S. Dummit and John Voight, The 2-Selmer group of a number field and heuristics for narrow class groups and signature ranks of units, Proc. Lond. Math. Soc. (3) 117 (2018), no. 4, 682–726. MR 3873132, DOI 10.1112/plms.12143
- Philippe Dutarte, Compatibilité avec le Spiegelungssatz de probabilités conjecturales sur le $p$-rang du groupe des classes, Number theory (Besançon), 1983–1984, Publ. Math. Fac. Sci. Besançon, Univ. Franche-Comté, Besançon, 1984, pp. Exp. No. 4, 11 (French). MR 803700
- H. M. Edgar, R. A. Mollin, and B. L. Peterson, Class groups, totally positive units, and squares, Proc. Amer. Math. Soc. 98 (1986), no. 1, 33–37. MR 848870, DOI 10.1090/S0002-9939-1986-0848870-X
- Noam D. Elkies, On $A^4+B^4+C^4=D^4$, Math. Comp. 51 (1988), no. 184, 825–835. MR 930224, DOI 10.1090/S0025-5718-1988-0930224-9
- L. Euler, De resolutione formularum quadricarum indeterminatarum per numeros integros (On the resolution of formulas of squares of indeterminates by integral numbers), Novi Comm. Acad. Petrop. 9 (1764), 3–39; Opera Omnia (1) 2, 576–611.
- Étienne Fouvry and Jürgen Klüners, On the negative Pell equation, Ann. of Math. (2) 172 (2010), no. 3, 2035–2104. MR 2726105, DOI 10.4007/annals.2010.172.2035
- Albrecht Fröhlich, Galois module structure of algebraic integers, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 1, Springer-Verlag, Berlin, 1983. MR 717033, DOI 10.1007/978-3-642-68816-4
- Georges Gras, Théorèmes de réflexion, J. Théor. Nombres Bordeaux 10 (1998), no. 2, 399–499 (French, with English and French summaries). MR 1828251, DOI 10.5802/jtnb.234
- Georges Gras, Class field theory, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2003. From theory to practice; Translated from the French manuscript by Henri Cohen. MR 1941965, DOI 10.1007/978-3-662-11323-3
- Humio Ichimura, On a duality of Gras between totally positive and primary cyclotomic units, Math. J. Okayama Univ. 58 (2016), 125–132. MR 3444640
- Yoonjin Lee, Cohen-Lenstra heuristics and the Spiegelungssatz: number fields, J. Number Theory 92 (2002), no. 1, 37–66. MR 1880583, DOI 10.1006/jnth.2001.2699
- Yoonjin Lee, Cohen-Lenstra heuristics and the Spiegelungssatz; function fields, J. Number Theory 106 (2004), no. 2, 187–199. MR 2059070, DOI 10.1016/j.jnt.2004.01.001
- Heinrich-Wolfgang Leopoldt, Zur Struktur der $l$-Klassengruppe galoisscher Zahlkörper, J. Reine Angew. Math. 199 (1958), 165–174 (German). MR 96633, DOI 10.1515/crll.1958.199.165
- F. Lemmermeyer, Selmer groups and quadratic reciprocity, Abh. Math. Sem. Univ. Hamburg 76 (2006), 279–293. MR 2293446, DOI 10.1007/BF02960869
- The LMFDB Collaboration, The $L$-functions and Modular Forms Database, http://www.lmfdb.org, 2019.
- Wieb Bosma, John Cannon, and Catherine Playoust, The Magma algebra system. I. The user language, J. Symbolic Comput. 24 (1997), no. 3-4, 235–265. Computational algebra and number theory (London, 1993). MR 1484478, DOI 10.1006/jsco.1996.0125
- Gunter Malle, Cohen-Lenstra heuristic and roots of unity, J. Number Theory 128 (2008), no. 10, 2823–2835. MR 2441080, DOI 10.1016/j.jnt.2008.01.002
- Gunter Malle, On the distribution of class groups of number fields, Experiment. Math. 19 (2010), no. 4, 465–474. MR 2778658, DOI 10.1080/10586458.2010.10390636
- Bernard Oriat, Relations entre les $2$-groupes des classesd’idéaux des extensions quadratiques $k(\surd d)$ et $k(\surd -d)$, Ann. Inst. Fourier (Grenoble) 27 (1977), no. 2, vii, 37–59 (French, with English summary). MR 466064, DOI 10.5802/aif.650
- Bernard Oriat, Relation entre les $2$-groupes des classes d’idéaux au sens ordinaire et restreint de certains corps de nombres, Bull. Soc. Math. France 104 (1976), no. 3, 301–307. MR 435038, DOI 10.24033/bsmf.1828
- Daniel Shanks, The simplest cubic fields, Math. Comp. 28 (1974), 1137–1152. MR 352049, DOI 10.1090/S0025-5718-1974-0352049-8
- Joseph H. Silverman, The arithmetic of elliptic curves, 2nd ed., Graduate Texts in Mathematics, vol. 106, Springer, Dordrecht, 2009. MR 2514094, DOI 10.1007/978-0-387-09494-6
- Peter Stevenhagen, The number of real quadratic fields having units of negative norm, Experiment. Math. 2 (1993), no. 2, 121–136. MR 1259426, DOI 10.1080/10586458.1993.10504272
- M. Taylor, Galois module structure of classgroups and units, Mathematika 22 (1975), no. 2, 156–160. MR 387247, DOI 10.1112/S002557930000601X
- Lawrence C. Washington, Class numbers of the simplest cubic fields, Math. Comp. 48 (1987), no. 177, 371–384. MR 866122, DOI 10.1090/S0025-5718-1987-0866122-8
- Melanie Matchett Wood, On the probabilities of local behaviors in abelian field extensions, Compos. Math. 146 (2010), no. 1, 102–128. MR 2581243, DOI 10.1112/S0010437X0900431X
Bibliographic Information
- Benjamin Breen
- Affiliation: Department of Mathematics, Dartmouth College, 6188 Kemeny Hall, Hanover, New Hampshire 03755
- Email: benjamin.k.breen.gr@dartmouth.edu
- Ila Varma
- Affiliation: Department of Mathematics, University of Toronto, Bahen Centre, 40 St. George Street, Toronto, Ontario M5S 2E4
- MR Author ID: 960137
- Email: ila@math.toronto.edu
- John Voight
- MR Author ID: 727424
- ORCID: 0000-0001-7494-8732
- Noam Elkies
- Affiliation: Department of Mathematics, Dartmouth College, 6188 Kemeny Hall, Hanover, New Hampshire 03755
- MR Author ID: 229330
- Email: jvoight@gmail.com
- Received by editor(s): June 7, 2021
- Received by editor(s) in revised form: July 18, 2021
- Published electronically: February 3, 2023
- Additional Notes: Breen was partially supported by an NSF Grant (DMS-1547399). Varma was partially supported by an NSF MSPRF Grant (DMS-1502834) and an NSF Grant (DMS-1844206). Voight was supported by an NSF CAREER Award (DMS-1151047) and a Simons Collaboration Grant (550029). Elkies was partially supported by an NSF grant (DMS-1502161) and a Simons Collaboration Grant.
- © Copyright 2023 by the authors under Creative Commons Attribution 3.0 License (CC BY 3.0)
- Journal: Trans. Amer. Math. Soc. Ser. B 10 (2023), 86-128
- MSC (2020): Primary 11R29, 11R27, 11R45, 11Y40
- DOI: https://doi.org/10.1090/btran/90
- MathSciNet review: 4544138