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SHIFT MODULES, STRONGLY STABLE IDEALS, AND THEIR

DUALITIES

GUNNAR FLØYSTAD

Abstract. We enrich the setting of strongly stable ideals (SSI): We introduce
shift modules, a module category encompassing SSIs. The recently introduced
duality on SSIs is given an effective conceptual and computational setting. We
study SSIs in infinite dimensional polynomial rings, where the duality is most
natural. Finally a new type of resolution for SSIs is introduced. This is the
projective resolution in the category of shift modules.
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1. Introduction

Strongly stable ideals (SSI) are somewhat hard to place in the landscape of
mathematics, but let us venture a brief tour. In algebraic geometry the ideal of every
projective variety (char. 0) degenerates to such an ideal, [21] or see [14, Sec.15.9].
Also called Borel-fixed ideals, they are a way to understand and classify components
of the Hilbert scheme, [7, 8, 12, 19, 29, 41, 42, 45]. They are the most degenerate of
homogeneous ideals in polynomial rings k[x1, . . . , xn]: The closed orbits for the
action of GL(n) on the Hilbert scheme are precisely the orbits of the strongly
stable ideals, see Appendix C. However they being so degenerate, there is hardly
any geometry left in them.

In commutative algebra they have a distinguished resolution, the Eliahou-Kervaire
resolution [15]. They occur in the study of Hilbert functions and Betti numbers
of graded ideals [32], and in particular in the proofs of Macaulay’s theorems [22].
Algorithms to generate Borel-fixed ideals with given invariants are given in [31] and
[34].

In combinatorics one finds them in shifting theory [28], [10], minimal growth
of Hilbert functions [24], and relations to posets [18, Section 6]. One might even
consider them so skeletal and degenerate that they are more or less numerical
objects. In any case they retain significant invariants of ideals that degenerate to
them, for instance regularity [5].

They occur in a number of places but always on the fringe. Their natural position
and effective use is however clear. Standard references [24, Ch.4] and [33, Ch.2]
have early on specific chapters on them with basic and significant theory. [38] has
much the same more distributed, see also [14, Ch.15]. The most comprehensive
treatment may be [22] with many examples and relations to algebraic geometry.

In this article we enrich the setting of strongly stable ideals. The following new
features are studied:

(1) Shift modules: extending strongly stable ideals to a category of modules,
(2) Dualities: recently discovered in [16] and [44],
(3) Ambient polynomial ring with infinitely many variables: natural setting for

the dualities,
(4) Resolutions: new type of projective resolution with new homological invari-

ants.

1.1. Shift modules. Over a polynomial ring k[x1, . . . , xn] where k is a field, we
introduce a category of modules with shift operations. This class subsumes strongly
stable ideals.

Recall that a monomial ideal I in k[x1, . . . , xn] is strongly stable if whenever a
monomial xju ∈ I and i < j, then xiu ∈ I. We may write xiu = si,j(xju). So an
ideal I is strongly stable when it is invariant under such shift operations.

This inspires defining the category of multigraded shift modules over polynomial
rings. Such a module M comes with shift operations between graded pieces

sij : Md+ej
→ Md+ei

.
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A typical example of a shift module comes from an inclusion of two strongly stable
ideals I ⊆ J : The quotient J/I is a shift module. More generally quotients of maps
between sums of such ideals are shift modules.

We define shift modules in three steps. First we define finite shift modules,
Section 5. Such a module is graded by a finite set of degrees d ∈ N

m+1 with
some fixed total degree. Then we define shift modules over finite dimensional
polynomial rings k[x1, . . . , xm]. We show that finitely generated such modules come
from finite shift modules, Theorem 6.12. Lastly we define shift modules over the
infinite dimensional polynomial ring.

Given a monomial m let 〈m〉 be the smallest strongly stable ideal containing m.
For instance 〈x1x2x3〉 will be the ideal generated by x3

1, x
2
1x2, x1x

2
2, x

2
1x3, x1x2x3.

1.2. Dualities. Recently a duality on strongly stable ideals was discovered, [16]
and [44]. We develop the conceptual framework for this duality, enabling effective
arguments and concrete computations of duals. Moreover we extend this duality
to shift modules. This is an analog of extending Alexander duality for squarefree
monomial ideals to squarefree modules [47].

We get nice formulas such as the dual of 〈ynm〉 being 〈xm
n 〉, Corollary 3.12, and

the following:

Proposition 3.11. The dual of the strongly stable ideal with one generator
〈ya1

ya2
· · · yan

〉 is the strongly stable ideal with generators 〈xa1
1 , xa2

2 , . . . , xan
n 〉.

Furthermore the duality takes sums of ideals to intersections of their duals,
Corollary 3.16.

A complicating aspect with these dualities is that they do not take place in a
fixed finite dimensional polynomial ring, as seen by the above. Fixing m the dual
of 〈ynm〉 is 〈xm

n 〉, and the latter requires larger and larger polynomial rings as n gets
larger. In order to have a full natural setting we must be in an infinite dimensional
polynomial ring.

A basic tool and inspiration for our work here is that strongly stable ideals
generated in degree ≤ n in k[x1, . . . , xm] are in one-to-one correspondence with

poset ideals in Hom([m], [n+ 1]) [18, Section 6]. To extend this, let N̂ = N ∪ {∞}.
The poset of order preserving maps f : N → N̂, denoted Hom(N, N̂) is a central
object for us, and in [17, Section 5] we introduced a topology on this poset.

1.3. Infinite dimensional polynomial rings. Let k[xN] be the infinite dimen-
sional polynomial ring in the variables x1, x2, · · · indexed by natural numbers. A
basic tool we use is the commutative diagram of bijections:

(1) HomS(N, N̂)

D

��

Λ

����
���

���
���

Mon(xN).

HomL(N, N̂)

Γ

������������
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Here HomS are the bounded maps in Hom(N, N̂), and HomL are the maps which
eventually take value ∞. The maps are given by

Γ(f) =
∏

f(i)<∞
xf(i), Λ(f) =

∏
i≥1

x
f(i)−f(i−1)
i ,

and D is the duality. We show that strongly stable ideals in k[xN] are in one-to-

one correspondence with open poset ideals in Hom(N, N̂). The duality for strongly

stable ideals in k[xN] comes about because Hom(N, N̂) is a self-dual poset, Section
2.1. Not all strongly stable ideals in k[xN] have duals. We identify precisely which
ideals have. In particular all finitely generated strongly stable ideals have duals.

We remark that a recent trend in commutative algebra is to consider infinite
dimensional polynomial rings [2, 26, 30, 37]. The increasing monoid Hominj(N,N)
of injective order-preserving maps f : N → N is in one-one correspondence with
Hom(N,N) by mapping f to f − idN + 1. The increasing monoid has been used to
study k[xN] in [37], [30], see also [23]. The use differs however sharply from ours, as

Hominj(N,N) is used there to act on k[xN], while we use Hom(N, N̂) in a distinct
and intrinsic way by diagram (1).

1.4. Resolutions. The most well-known class of explicit resolutions of ideals of
polynomial rings is the Eliahou-Kervaire resolutions of stable ideals [15] (a some-
what more general class than strongly stable ideals), see also [39].

The shift module category enables us to define a completely new type of projec-
tive resolution of strongly stable ideals, with graded Betti numbers quite distinct
from those in the Eliahou-Kervaire resolution.

The indecomposable projectives in the shift module category are precisely the
strongly stable ideals with a single strongly stable generator. For instance x1x

3
2x3 in

a polynomial ring S generates a projective P = 〈x1x
3
2x3〉. The ordinary S-module

minimal free resolution of P is

S(−5)9 ← S(−6)12 ← S(−7)4.

On the other hand the resolution in the shift module category is simply P , since it is
projective. The invariants of these two resolutions give quite distinct information.
The Betti numbers of the shift module resolution of a strongly stable ideal reflect
more the combinatorics of the strongly stable generators of the ideal. As an example
class, the shift module resolution of universal lex segment ideals has Betti numbers
like a Koszul resolution, Section 13.

We also generalize the Eliahou-Kervaire resolution for strongly stable ideals, to
resolutions for a subclass of shift modules, the rear torsion-free modules, Section
14.

The organization of this article is as follows.

Part I Section 2 recalls basic facts on posets, order preserving maps, dualities, and

the topology on Hom(N, N̂).
Part II Section 3 gives the correspondence between strongly stable ideals and open
poset ideals in Hom(N, N̂). We define the duality on strongly stable ideals, and give
basic tools and examples for computing this. Section 4 shows that the duals of
universal lex segment ideals are also universal lex segment.
Part III Section 5 defines finite shift modules. Section 6 defines shift modules
over finite dimensional polynomial rings. We show that any finitely generated shift
module is derived from a finite shift module by the process of expansion. In Section
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7 we define shift modules over infinite dimensional polynomial rings. At the end,
in Section 8 we give examples of shift modules.
Part IV Section 9 defines duals of finite shift modules, and Section 10 defines
duals of shift modules over polynomial rings. Section 11 gives examples of duals.
Part V Section 12 gives examples of how the ordinary free resolution of a strongly
stable ideal and the shift module resolution differ. In Section 13 we give a shift
resolution for strongly stable ideals which is an analog of the Taylor complex. We
give conditions ensuring it is minimal. In Section 14 we establish the Eliahou-
Kervaire resolution for shift modules.
Appendices. Appendix A recalls incidence algebras, and Appendix B gives the
equivalence of categories between shift modules and modules over the incidence
algebras of certain posets. Appendix C states and proves folklore knowledge that
the strongly stable ideals are the most degenerate ideals.

Part I. Isotone maps between natural numbers

2. Isotone maps between natural numbers

We recall basic notions for partially ordered sets (posets) and distributive lat-

tices. In particular we consider isotone maps f : N → N̂, where N̂ = N∪{∞}. These
form themselves a partially ordered set Hom(N, N̂), which is self-dual. Moreover
there is a natural topology on this poset. We see in Part II that it is intimately
related to strongly stable ideals.

2.1. Posets, isotone maps, and distributive lattices. Given a poset P . A
poset ideal I of P is a subset closed under taking smaller elements, and a poset
filter F is a subset closed under taking larger elements. The distributive lattice P̂
associated to P is the lattice of all cuts (I, F ) where I is a poset ideal and F the
complement filter of I. It is ordered by (I, F ) ≤ (J,G) if I ⊆ J (or equivalently

F ⊇ G). The top element (P, ∅) in P̂ is denoted ∞.
We are particularly interested in this when P is totally ordered:

N = {1 < 2 < · · · }, [n] = {1 < 2 < · · · < n}.
Then

N̂ = N ∪ {∞}, [̂n] = [n+ 1] = [n] ∪ {∞}.
For a poset P denote by P op the opposite poset with order relation reversed,

so pop ≤ qop in P op if p ≥ q in P . For P,Q two posets, a map f : P → Q is
isotone (order preserving) if p1 ≤ p2 implies f(p1) ≤ f(p2). The set of such maps
is denoted Hom(P,Q). It is itself a poset by f ≤ g if f(p) ≤ g(p) for all p. We note

that P̂ naturally identifies with Hom(P op, {0 < 1}): The cut (I, F ) corresponds to
the morphism

p : P op → {0 < 1}, p−1(0) = F op, p−1(1) = Iop.

For p ∈ P let ↑ p be the filter {q | q ≥ p}. There is a natural isotone map P → P̂
sending p �→ ((↑ p)c, ↑ p). For the totally ordered sets above, this is the natural
inclusion.

By [17, Section 2] there is a natural duality

Hom(N, N̂)
D−→ Hom(N, N̂)
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Figure 1. Graph (red discs) and dual graph (blue circles)

such that f ≤ g iff Df ≥ Dg. It makes Hom(N, N̂) into a self-dual poset, i.e. we
have an isomorphism:

(2) D : Hom(N, N̂)
∼=−→ Hom(N, N̂)op.

This duality is easy to explain by an example.

Example 2.1. In Figure 1 the red discs form horizontal segments making the graph
of f . The values of f are

2, 2, 4, 5, 5, 7, · · · .
The blue circles are filled in along vertical segments to make a “connected snake”,
and the graph of Df is obtained by considering the vertical axis as the argument
for Df and its graph given by the blue circles. The values of Df are

1, 3, 3, 4, 6, 6, · · · .

Remark 2.2. In general isotone maps P → Q̂ identify as profunctors P |−→Q, and
are studied in [17]. The duality above is a special case of a duality

D : Prof(P,Q)
∼=−→ Prof(Q,P )op,

see [17, Section 2]. In the sequel several results from that article are used.

2.2. Large and small maps. This poset of isotone N → N̂ decomposes into a
disjoint union:

Hom(N, N̂) = HomL(N, N̂) ∪Homu(N, N̂) ∪HomS(N, N̂),

where an isotone map f : N → N̂ is in

• HomS(N, N̂) if its values are bounded by a finite number in N. These maps
are called small.

• HomL(N, N̂) if f(n) = ∞ for some n ∈ N. These maps are called large.

• Homu(N, N̂) if the image f(N) is in N = N̂\{∞} and is unbounded.
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Figure 2. A NE-path from (1, 1) to (4, 5)

The duality (2) swaps HomS(N, N̂) and HomL(N, N̂) and maps Homu(N, N̂) to
itself.

There is a natural inclusion [n] ↪→ N. It gives [n]op ↪→ N
op. Applying Hom(−, {0

< 1}) we get N̂ → [̂n] where all l > n are sent to ∞ ∈ [̂n].
We get a commutative diagram

(3) Hom(N, N̂) �� ��

����

Hom(N, [̂n])

����

Hom([m], N̂) �� �� Hom([m], [̂n]).

It restricts to diagrams

(4) HomS(N, N̂) �� ��

����

Hom(N, [̂n])

����

HomS([m], N̂) �� �� Hom([m], [̂n])

, HomL(N, N̂) �� ��

����

HomL(N, [̂n])

����

Hom([m], N̂) �� �� Hom([m], [̂n])

.

All maps in these diagrams respect duality appropriately, as is readily seen by
Example 2.1.

2.2.1. Large and small maps identify with finite paths. A finite North-East path is a
path starting from (1, 1) going steps of length one in the north and east directions,
see Figure 2. If it ends at (m,n) we get a function f : [m] → N with f(m) = n,
by letting f(i) be the largest value j such that (i, j) is on the path. So we have a
one-one correspondence

NE-path from (1, 1) to (m,n)
1−1←−→ isotone maps f : [m] → N with f(m) = n.

Let a partial map f : N ��� N be an isotone map [m] → N, defined for some initial

interval [m] where m is finite. Denote by HomP (N,N) the set of partial maps. Note
that we have a fibration

HomP (N,N) → N
2
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by sending f to (m,n) if f(m) = n. The fibers identify as the NE-paths from (1, 1)
to (m,n). The cardinality of this fiber is

(
m+n−2
n−1

)
.

Given a partial map f define two new maps on N by

(5) fS(i) =

{
f(i), i < m

n+ 1, i ≥ m
, fL(i) =

{
f(i), i ≤ m,

∞, i > m.

There are then one-to-one correspondences

HomS(N, N̂)
1−1←−→ HomP (N,N)

1−1←−→ HomL(N, N̂).

2.3. The topology on Hom(N, N̂). The isotone maps Hom(N, N̂) may be given

a topology. Let f, f : N → N̂ be respectively a small and large isotone map and

U(f, f) = {f : N → N̂ | f ≤ f ≤ f}.

These sets U(f, f) form a basis for a topology on Hom(N, N̂). The map D is a
homeomorphism of topological spaces. In the diagram (3), we give the other spaces

the quotient topology. On Hom([m], [̂n]) this becomes the discrete topology.
On a topological space X, and Y a subset of X, denote by Y c its complement

X\Y , by Y its closure, and by Y ◦ its interior (the union of all open subsets contained
in Y ). For any topological spaceX we have a distinguished subclass of open subsets,
those that are the interiors of their closures. These are called regular open sets, and
we denote this class as regX. There is an involution, see [17, Section 4]

(6) regX
i−→ regX, U �→ (U)c = (Uc)◦.

If I is a poset ideal in Hom(N, N̂) both its closure I and its interior (I)◦ are poset
ideals, and similarly concerning poset filters, see [17, Section 4]. We have the
following criterion for an open poset ideal to be regular.

Definition 2.3. Let I be an open poset ideal and F : N → N an isotone map taking
finite values. This is a bounding function for I if any f ∈ I with f(p) > F (p) is
dominated by a g ∈ I (i.e. g ≥ f) with g(p) = ∞.

Proposition 2.4. An open poset ideal I in Hom(N, N̂) is regular iff it has a bound-
ing function.

Proof. By Proposition 6.6b in [17] we have the following criterion: Consider se-
quences f1 ≤ f2 ≤ f3 ≤ · · · in I and let f be colimfi. Then I is regular iff f is in
I whenever f is large.

So suppose I has a bounding function. Suppose f large and let m such that
f(m − 1) < ∞ and f(m) = ∞. Since fi(j) ≤ f(j) for j ∈ [m − 1] and fi(j)
eventually becomes f(j), there is an N such that fi(j) = f(j) for j ∈ [m− 1] and
i ≥ N . We also will have limfi(m) = ∞ so fi(m) > F (m) for i large. Then there
is gi ∈ I such that gi ≥ fi and gi(m) = ∞. But then gi ≥ f and so f ∈ I.

Conversely assume I is regular. Suppose we have defined F (i) for i < m such
that if f ∈ I and f(p) > F (p) for some p < m, then there is g ∈ I with g ≥ f and
g(p) = ∞. Let

T = {f ∈ I | f(m) finite, and there is no g ∈ I, g ≥ f with g(m) = ∞}.
If T = ∅, let F (m) = F (m− 1). If T �= ∅ consider f ∈ T . If f(p) > F (p) for some
p < m, there would be g ∈ I with g ≥ f and g(p) = ∞. This contradicts f ∈ T , so
f(p) ≤ F (p) for every p < m.
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We show the values of f(m) for f ∈ T are bounded. Suppose they were not.
Then there must be an isotone φ : [m − 1] → N such that for any N there is an
f ∈ T with f(m) ≥ N and the restriction f|[m−1] = φ. Let then

fm(p) =

{
φ(p), p < m

f(m), p ≥ m
(fm depending on N).

Then clearly fm ∈ T since if there is a g ∈ I dominating fm with g(m) = ∞, such
a g would contradict f being in T . So we get an increasing sequence of fm’s with
limit φL (see (5)), which is in I since I is regular. But this contradicts fm being
in T .

The upshot is that the elements in T have bounded f(m). Let F (m) be the
maximal of these. �

Part II. Strongly stable ideals and their duality

3. Strongly stable ideals and their duals

We recall the notion of strongly stable ideals in a polynomial ring over a field
k. For the infinite dimensional polynomial ring k[xN] these correspond precisely to

open poset ideals I in Hom(N, N̂). Using the topology on Hom(N, N̂) and that it
is a self-dual poset, we define the dual of a strongly stable ideal in k[xN]. We call
the ideal dualizable iff its double dual is the ideal itself. The class of dualizable
strongly stable ideals are those corresponding to regular open poset ideals I. We
provide results on how to compute the duals of strongly stable ideals.

3.1. Correspondence between Hom(N, N̂) and monomials. For a set R de-
note by k[xR] the polynomial ring in the variables {xr}r∈R and by Mon(xR) the
monomials in this ring. Let Mon≤d(xR) be the monomials of degrees ≤ d. There
is a bijection [17, Section 8]

HomS(N, N̂)
Λ−→ Mon(xN), f �→

∏
i≥1

x
f(i)−f(i−1)
i .

Here by convention f(0) = 1. Similarly there is a bijection

HomL(N, N̂)
Γ−→ Mon(xN), f �→

∏
f(i)<∞

xf(i).

We get a commutative diagram of bijections, by [17, Section 8]

(7) HomS(N, N̂)

D

��

Λ

����
���

���
���

Mon(xN).

HomL(N, N̂)

Γ

������������
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There are also commutative diagrams of bijections
(8)

Hom(N, [̂n])

D

��

Λ

����
���

���
���

�

Mon≤n(xN)

Hom([n], N̂)

Γ

�������������

HomS([m], N̂)

D

��

Λ

����
���

���
���

�

Mon(x[m])

HomL(N, [̂m])

Γ

������������

Hom([m], ˆ[n])

D

��

Λ

����
���

���
���

��

Mon≤n(x[m]).

Hom([n], [̂m])

Γ

�������������

Definition 3.1. If R is a totally ordered set, a monomial ideal I of the polynomial
ring k[xR] is strongly stable (sst) if a monomial xju ∈ I implies xiu ∈ I for i < j.
The transitive closure of the relations (i) xiu ≥ xju if i ≤ j and (ii) xiu ≥ u for
any i and monomial u gives a partial order ≥st on monomials, the strongly stable
order. (See also [24, Lemma 4.2.5] where it is called the Borel order.)

If {ui}i∈I is a set of monomials in k[xR], we write 〈ui〉i∈I for the smallest strongly
stable monomial ideal containing all the ui. It consists of all monomials u for which
u ≥st ui for some i. We say it is the strongly stable ideal generated by the ui’s. We
denote by STS(xR) the strongly stable ideals in k[xR]. (See [20] for more on the
perspective of strongly stable generators.)

The following is immediately verified.

Lemma 3.2. The order relation ≥st corresponds to the order relation on Hom(N, N̂)
in the following way:

f ≤ g in HomL(N, N̂) ⇔ Γf ≥st Γg,(9)

f ≤ g in HomS(N, N̂) ⇔ Λf ≤st Λg.

If I is an open poset ideal in Hom(N, N̂), it is fully determined by its intersection

IL = I ∩ HomL(N, N̂).

Similarly if F is an open poset filter it is fully determined by

FS = F ∩HomS(N, N̂).

Proposition 3.3. There is a one-to-one correspondence between open poset ideals
I in Hom(N, N̂) and strongly stable ideals I in k[xN]. For an open poset ideal I the
associated strongly stable ideal is I = Γ(IL).

Proof. By Observation (9), the image by Γ in (7) of IL is a strongly stable ideal I
in Mon(xN).

When I is an open poset ideal, it is fully determined by its elements in IL,
and so distinct I give distinct strongly stable ideals. Conversely the elements of
a strongly stable ideal give elements of HomL(N, N̂) which generate an open poset

ideal I in Hom(N, N̂). �

Remark 3.4. There are also one-to-one correspondences by Γ between open poset

ideals in Hom(N, ˆ[n]),Hom([m], N̂) and Hom([m], ˆ[n]] and strongly stable ideals in
respectively k[x[n]], k[xN]≤m and k[x[n]]≤m.
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3.2. Dualizable strongly stable ideals. If I is a regular open poset ideal of
Hom(N, N̂), let F be the poset filter (Ic)◦, the interior of the complement of I.
Since i of (6) is an involution, it also turns F into I. We say the pair [I,F ] is a

Dedekind cut of Hom(N, N̂). Since D is a homeomorphism, the dual DF is again a
regular open poset ideal and similarly DI a regular open poset filter, and [DF , DI]
is the dual Dedekind cut.

Definition 3.5. A strongly stable ideal in k[xN] is dualizable strongly stable if it

corresponds by Γ to a regular open poset ideal I in Hom(N, N̂). Its dual strongly
stable ideal in k[yN] is the ideal corresponding to the dual regular open poset ideal
DF by the construction above.

By the commutative diagram (7) the dual of the ideal Γ(IL) is Λ(FS).

Example 3.6. The following two strongly stable ideals are not dualizable.

• I1 = 〈x1, x2, x3, . . .〉, the maximal irrelevant ideal in k[xN]
• I2 = 〈x1, x

2
2, x

3
3, x

4
4, . . .〉

The corresponding open poset ideals I are not regular since they do not have
bounding functions, Proposition 2.4.

• I3 = 〈x2
1, x1x

2
2, x1x2x

2
3, x1x2x3x

2
4, . . .〉.

This ideal is dualizable since the corresponding poset ideal is regular open. The
identity map idN is a bounding function. The ideal I3 is the ideal I21 of Example
3.9. The dual of I3 is 〈y1, y22 , y2y23 , y2y3y24 , . . .〉.

Remark 3.7. Definition 3.5 is for strongly stable ideals in k[xN] but is easily adapted

to the more restricted cases. For instance in Hom([m], ˆ[n]) (which has the discrete
topology) let (I,F) a cut. By Γ the (open) poset ideal I corresponds to a strongly

stable ideal in k[x[n]]≤m. The Alexander dual poset ideal J = DF in Hom([n], ˆ[m])
then gives the dual strongly stable ideal J = Γ(J ) = Λ(F) in k[x[m]]≤n. Similarly
with other cases of Remark 3.4. All maps and correspondences in (4) and (8)
interact well. For instance sst-ideals in k[x[m]] correspond to (open) poset ideals in

Hom(N, [̂m]) (here the topology is the discrete topology). The dual (open) poset

ideal in Hom([m], N̂) then via Γ corresponds to a strongly stable ideal in k[xN]≤m.

For a Dedekind cut [I,F ] for Hom(N, N̂), its gap is:

G = Hom(N, N̂)\(I ∪ F).

The gap is a subset of Homu(N, N̂) by [17, Cor.4.9], so it consists of unbounded
functions. The following is [17, Theorem 5.10].

Theorem 3.8. Let I be an open poset ideal in Hom(N, N̂). Then I is also closed
iff the strongly stable ideal corresponding to I is finitely generated.

So finitely generated strongly stable ideals correspond precisely to clopen I, or
alternatively to regular open pairs with empty gap. Such strongly stable ideals are
therefore dualizable

Proof. By [17, Theorem 5.10] I is clopen iff it is finitely generated (and these
generators can be chosen large). But this corresponds to the corresponding strongly
stable ideal being finitely generated. �

Here are examples where the gap consists of a single element.
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Example 3.9. Let idN : N → N be the identity function. For 1 ≤ a < p consider
the strongly stable ideal Ipa generated by

(10) {x1x2 · · ·xrx
p
r+a | r ≥ 0}.

Let J be any finitely generated strongly stable ideal, not containing the monomial
x1x2 · · ·xr−1xr for any r ≥ 1. Consider the strongly stable ideal Ipa + J and let I
be the corresponding open poset ideal. It is regular by Proposition 2.4 and Lemma
3.14. The monomials of (10) are the Γh of the large isotones hr defined by

hr(i) =

⎧⎪⎨⎪⎩
i, i ≤ r

r + a, r < i ≤ r + p

∞, i > r + p

.

These are then in I. The function fr below is ≤ hr

fr(i) =

{
i, i ≤ r,

r + 1, i ≥ r + 1

and so is also in I. Then limrfr = idN and is in the closure of I by [17, Proposition
5.10]. But idN is not in I, since if it were, for some r the map

gr(i) =

{
i, i ≤ r,

∞, i > r

would be in I due to I being open. But Γgr is not in J and not in the ideal Ipa for
p > a. One may argue that idN is the only function in the gap for I.

Now consider when p ≤ a. Note that when r = 0 in (10) the monomial xp
a is in

Ipa . Since now p ≤ a this implies that x1x2 · · ·xp is in the ideal Ipa . All generators
of Ipa with r ≥ p are a consequence of this, so Ipa in this case is finitely generated.

Problem 3.10. What subsets of Homu(N, N̂) can be gaps for Dedekind cuts [I,F ]?

3.3. Computing duals of strongly stable ideals. By Theorem 3.8 any finitely
generated ideal is dualizable. A package to compute their duals is given in [11]. We
describe the duals of principal strongly stable ideals. When A : a1, a2, . . . , am is a
finite non-decreasing sequence in N we get two strongly stable ideals

〈yA〉 = 〈ya1
ya2

· · · yam
〉, 〈xA〉 = 〈xa1

1 , xa2
2 , · · · , xam

m 〉.
Proposition 3.11. The dual of the strongly stable ideal 〈yA〉 with a single sst-
generator is the strongly stable ideal 〈xA〉.
Proof. Define the isotone map f by

f(i) =

{
ai, i = 1, . . . ,m,

∞, i > m.

Let I be the poset ideal generated by f , i.e. consisting of all isotone maps g
such that g ≤ f . Then Γ(IL) is the strongly stable ideal generated by Γf =
ya1

ya2
· · · yam

. The complement filter F of I is then generated by the bounded
functions g1, . . . , gm where

gp(i) =

{
1, i < p,

ap + 1, i ≥ p.

The dual ideal is then J = Λ(FS), generated by the Λgp = x
ap
p . �
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Corollary 3.12. The strongly stable ideals 〈yma 〉 and 〈xa
m〉 are duals of each other.

Proof. The monomial yma corresponds to the sequence a, a, · · · , a of length m. The
dual of 〈yma 〉 is then the ideal 〈xa

1 , x
a
2 , · · · , xa

m〉 but this is 〈xa
m〉. �

Remark 3.13. Strongly stable ideals with one generator are studied in [20]. In
Section 3 they give the minimal primary decomposition. In Section 5 so called
Catalan diagrams are introduced associated to principal Borel ideals, giving effec-
tive computation of Hilbert series, and in Section 7 they relate Betti numbers of the
principal ideal 〈x1x2 · · ·xn〉 to pseudo-triangulations. In [15, Example 2] they note
that Catalan numbers occur in computing total Betti numbers of 〈x1, x

2
2, · · · , xn

n〉.
In [25] p-Borel principal ideals are studied.

Corollary 3.16 shows that strongly stable duality behaves quite similar to Alexan-
der duality for squarefree monomial ideals, see [24, Cor. 1.5.5] or [33, Def. 5.20].

Lemma 3.14. Let I1 and I2 be dualizable strongly stable ideals, with duals J1 and
J2. Then I1 + I2 is dualizable strongly stable with dual J1 ∩ J2.

In particular, when I1 is dualizable and I2 is finitely generated, then I1 + I2 is
dualizable.

Proof. Let Ii correspond to Ii, and Ji to Ji. Then I1 ∪ I2 is regular open by
Proposition 2.4. In general the closure I1 ∪ I2 = I1 ∪ I2. Thus the complement

I1 ∪ I2
c
= I1

c ∩ I2
c
= J1 ∩ J2.

In conclusion: I1 ∪ I2 is regular open with dual regular open poset ideal J1 ∩
J2. �

Remark 3.15. In a topological space U1 ∪ U2 may not be regular open when U1

and U2 are so. For instance if [I,F ] is a regular open pair, then I ∪ F will not be
regular open if the gap is non-empty.

Corollary 3.16. Let the A1, . . . , Ar each be finite weakly increasing sequences of
natural numbers. The following strongly stable ideals are then duals

〈yA1
, · · · , yAr

〉, 〈xA1〉 ∩ 〈xA2〉 ∩ · · · ∩ 〈xAr〉.

In addition to the above, the below seems to be an effective tool to compute the
dual of a strongly stable ideal. It is [17, Lemma 2.5].

Lemma 3.17. Let I be a poset ideal in Hom(N, N̂) and J its dual poset ideal. Then
g is in J iff for each f ∈ I there is p ∈ N (depending on f) such that g(f(p)) ≤ p.

Note. We have no assumptions on these ideals being open or regular.

Proof. By Lemma 2.2 a and b of [17], the following holds for p, q ∈ N (and is easily
checked by Figure 1):

q < Dg(p) iff g(q) ≤ p.

Now g is in J iff Dg is in F , the complement of I. This holds iff for every f ∈ I
there is a p with f(p) < Dg(p). By the above this is equivalent to g(f(p)) ≤ p. �
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4. Universal lex-segment ideals

If I⊆k[x1, . . . , xn] is a lex segment ideal the extended ideal (I)⊆k[x1, . . . , xn, xn+1]
in a polynomial ring with one more variable is usually not lex segment. However
there is a class, universal lex segment ideals, which has this property. They were
introduced in [4] for finite dimensional polynomial rings. We show these ideals cor-
respond precisely to either an isotone map f : N → N (infinitely generated ideals)
or partial isotones f : N ��� N (finitely generated ideals). These ideals also have
duals, the universal lex segment ideals corresponding to the dual isotones Df .

On Hom(N, N̂) we have the lexicographic order: f �lex g if f = g or f(r) > g(r)
where

r = min{n ∈ N | f(n) �= g(n)}.

This is a total order which refines the partial order on Hom(N, N̂).

Lemma 4.1. f �lex g iff Df �lex Dg.

Proof. Let p be minimal with f(p) > g(p) and let m = g(p). Then Df(m) = p and
Dg(m) > p as we readily see from Figure 1, and Df(l) = Dg(l) for l < m. �

Let f : N → N be an unbounded function. Define a poset ideal and poset filter
by (note the order relation is strict)

I(f) ={g ∈ Hom(N, N̂) | g ≺lex f},
F(f) ={g ∈ Hom(N, N̂) | g �lex f}.

Proposition 4.2. I(f) and F(f) form a Dedekind cut with gap {f}.

Proof. The ideal I(f) is generated by the large maps

(11) fr(i) =

⎧⎪⎨⎪⎩
f(i), i < r

f(r)− 1, i = r

∞, i > r

, for r ≥ 1 and f(r − 1) < f(r),

and so is an open subset. By Proposition 2.4, I(f) is regular. By Lemma 4.1 the
dual by D of F(f) is I(Df). Hence also F(f) is regular. �

Definition 4.3. Recall that IL(f) are the large functions in I(f), and FS(f) the
small functions in F(f).

• Γ̃(f) is the strongly stable ideal Γ(IL(f)).

• Λ̃(f) is the strongly stable ideal Λ(FS(f)).

Example 4.4. In the case when f = idN : N → N is the identity, Γ̃(idN) is the
strongly stable ideal I21 (where a = 1 and p = 2) in Example 3.9.

Note also that

Ipp−1 ⊇ Γ̃(idN) = I21 ⊇ Ip1 .

Thus the I(f) are not extremal regular open poset ideals with gap {f}.
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We get the following diagram

Homu(N, N̂)

Λ̃

�����
���

���
��

Γ̃

����
���

���
���

D

��

STS(xN) STS(xN)

Homu(N, N̂).

Γ̃

		���������� Λ̃



����������

Proposition 4.5. The left and right triangles above commute. Furthermore Γ̃(f)

and Λ̃(f) are dual strongly stable ideals.

Proof. By Lemma 4.1 the dual of I(f) is F(Df). Hence by the commutative
diagram (7), Γ(IL(f)) = Λ(FS(Df), showing that the triangles above commute.

For the strongly stable ideal Γ̃(f) = Γ(IL(f)), by Definition 3.5 the dual ideal

is Λ(FS(f)) = Λ̃(f). �

Let us describe these ideals more in detail. They may be called (infinitely gen-
erated) universal lex segment ideals, due to the comment after Proposition 4.7.

Proposition 4.6. Let the unbounded isotone f take values f(i) = ai, so
a1, a2, a3, · · · , is the sequence of values. Recall that we set a0 = 1.

(a) Γ̃(f) is the strongly stable ideal sst-generated by

xa1
· · ·xar−1

xar−1, for r ≥ 1 and ar−1 < ar.

(b) Its dual Λ̃(f) is the strongly stable ideal sst-generated by

xa1−a0
1 xa2−a1

2 · · ·xar−1−ar−2

r−1 xar−ar−1+1
r , r ≥ 1.

Proof. Part (a) is due to the generators of I(f) being (11). Part (b) follows in a
similar way by considering the generators of the filter F(f). �

The above ideals are not finitely generated since f is unbounded. Now we con-
sider universal lex-segment ideals which are finitely generated. Let f : [m] → N be
an isotone map. Recall the functions fS and fL from (5). Note that fS �lex fL

and this is a covering relation for the lex order. Define a poset ideal and filter by

I(f) ={g ∈ Hom(N, N̂) | g �lex fL},
F(f) ={g ∈ Hom(N, N̂) | g �lex fS}.

In the same way as above, these form a regular open pair. In fact a clopen pair.
The associated ideals Γ̃(f) and Λ̃(f) are dual strongly stable ideals.

Proposition 4.7. Let the partial isotone f take values a1, a2, a3, · · · , am (recall
that we set a0 = 1).

(a) Γ̃(f) is the strongly stable ideal generated by

xa1
· · ·xar−1

xar−1, 1 ≤ r ≤ m and ar−1 < ar

together with xa1
· · ·xam

.
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(b) Λ̃(f) is the ideal generated by

xa1−a0
1 xa2−a1

2 · · ·xar−1−ar−2

r−1 xar−ar−1+1
r , 1 ≤ r ≤ m.

These ideals are dual finitely generated universal lex-segment ideals.

The description of universal lex segment ideals as above was given in Proposi-
tion 1.2 and Corollary 1.3 in [36], as well as other characterizations. The Hilbert
functions of these ideals were in [35] characterized as critical, i.e. all ideals with
this Hilbert functions have the same Betti numbers.

Part III. Shift modules

We define the category of shift modules. They are the module-theoretic general-
ization of strongly stable ideals, much in the same way as squarefree modules [47]
are the generalization of squarefree ideals. As it turns out, in the natural setting
for the duality, our base ring should be the infinite dimensional polynomial ring.
In order to get there, we go through some steps.

5. Finite shift modules

Let Δm+1(n) be all sequences d = (d1, . . . , dm+1) of non-negative integers such

that the sum |d| =
∑m+1

i=1 di = n. We define shift modules graded by Δm+1(n).

5.1. Finite combinatorial shift modules. Denote the i’th basis vector for Nm+1
0

by ei, so we may write d above as
∑m+1

i=1 diei.

Definition 5.1. Let V be a finite dimensional vector space graded by Δm+1(n) so

V =
⊕

d∈Δm+1(n)

Vd.

This is a combinatorial shift module if for each p = 1, . . . ,m and d = (d1, . . . , dm+1)
in Δm+1(n) with dp+1 > 0 there are linear maps

sp : Vd → Vd+ep−ep+1

such that if 1 ≤ p < q ≤ m and d has both dp+1, dq+1 > 0, the maps sp and sq
commute:

sp ◦ sq = sq ◦ sp : Vd → Vd+ep+eq−ep+1−eq+1
.

If dp+1 = 0 we define sp to be zero.

Homomorphisms f : V → W between combinatorial shift modules on Δm+1(n)
are then naturally defined by requiring f to commute with the shift maps. These
modules form an abelian category.

For each pair p < q in [m+ 1] we moreover define shift maps:

sp,q : Vd −→ Vd+ep−eq
,

as the composition

sp,q = sp ◦ sp+1 ◦ · · · ◦ sq−1.

Note then:

• For p < r < q we have

sp,q = sp,r ◦ sr,q.
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• When dq and d� are both > 0, the two maps sp,q and sk,� commute. In fact
they commute save possibly in the following cases:

– d� = 0, dq > 0 and p = �,
– dq = 0, d� > 0 and q = k.

5.2. Relations to the incidence algebra and projectives. Appendix B shows

that for the poset Hom([m], [̂n]), the category of finite dimensional modules over
this incidence algebra is isomorphic to the category of combinatorial shift modules
on Δm+1(n). In particular, by Corollary B.1 this module category has projective
dimension min{m,n}.

The projectives in the category of shift modules over Δm+1(n) are given as

follows: Consider the partial order ≥st on Δm+1(n) given by d ≥st e if
∑j

i=1 di ≥∑j
i=1 ei for j = 1, . . . ,m+ 1.

Lemma 5.2. d ≥st e iff there is a sequence of shifts taking an element of degree e
to an element of degree d.

Proof. The if direction is clear since d+ ep − ep+1 ≥st d. For the only if direction,
let p be minimal such that dj > ej . Then d′ = d− ep + ep+1 ≥st e, and it follows
by induction. �

Then for each d consider the module which is the one-dimensional vector space
k in all degrees e ≥st d and zero in all other degrees, and with all shift maps
the identity maps. By the equivalence with the incidence algebra, this is a pro-
jective P (d) in the category of combinatorial shift modules over Δm+1(n), and all
indecomposable projectives are of this form.

5.3. Digression: Algebraic shift modules. Given a combinatorial shift module
V on Δm+1(n), its associated algebraic shift module is defined by the maps, for
p = 1, . . . ,m:

(12) ap := dp+1 · sp : Vd → Vd+ep−ep+1
,

where dp+1 is the (p+1)’th coordinate of d. More generally we put ap,q = dq · sp,q.
We then have the commutator relation

(13) [ap,r, ar,q] = ap,q.

This makes the module V a module over the Lie algebra Um+1 of strictly upper
triangular (m+ 1)× (m+ 1)-matrices.

Note however that for any v ∈ Vd the images of the maps included in relation
(13)

ap,r ◦ ar,q(v), ar,q ◦ ap,r(v), ap,q(v)

form at most a one-dimensional space, and not two-dimensional (as one would have
expected if one defined algebraic shift maps (12) as only fulfilling the commuta-
tor relation (13)). So the algebraic shift modules we get from combinatorial shift
modules form a special subclass of the algebraic shift modules.

In this article we are concerned with combinatorial shifting and we explain why
in Section 6.3.
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6. Shift modules over the polynomial ring k[x1, x2, · · · , xm]

We define shift modules over finite dimensional polynomial rings k[x[m]]. When
such a module is finitely generated, we show it is induced by a finite shift module
over Δm+1(n) for some n. Write Nm

0 for all m-tuples d = (d1, . . . , dm) such that di
are natural numbers ≥ 0. For uniformity of statements we define dm+1 = ∞ and

sometimes consider an element d as
∑m+1

i=1 diei.

6.1. Combinatorial shift modules.

Definition 6.1. An N
m
0 -graded vector space M with finite dimensional graded

parts Md is a combinatorial shift module if there for p = 1, . . . ,m are linear maps

sp : Md → Md+ep−ep+1
,

whenever dp+1 > 0, such that sp and sq commute if dp+1 and dq+1 are both > 0.
If dp+1 = 0 we define sp to be zero.

For 1 ≤ p < q ≤ m+ 1 we define

sp,q = sp ◦ sp+1 ◦ · · · ◦ sq−1.

Again sp,q and sk,� commute if dq > 0 and d� > 0.
We make an N

m
0 -graded shift module into a module over the polynomial ring

S = k[x1, . . . , xm] as follows. For an element u of Md define

xi · u = si,m+1(u), (recall dm+1 = ∞).

Note that for i < j:

xi · u = si,m+1(u) = si,j ◦ sj,m+1(u) = si,j(xj · u).
In particular the polynomial ring S itself becomes a shift module, by defining

sp(· · ·xdp
p x

dp+1

p+1 · · · ) = · · ·xdp+1
p x

dp+1−1
p+1 · · · .

Note that the power dp+1 of xp+1 does not contribute to the coefficient of the
monomial on the right side, see Section 6.3.

The maps sp are almost S-module maps, but not quite.

Lemma 6.2.

(a) Let u ∈ Md have degree d. We have sp(xiu) = xisp(u) except when i = p+1
and dp+1 = 0. In this latter case we have si−1(xiu) = xi−1u while xisi−1(u) = 0.

(b) Generally we have

(14) sp(x
au) =

⎧⎪⎨⎪⎩
0, if dp+1 = 0 and ap+1 = 0,

sp(x
a)u, if ap+1 > 0,

xasp(u), if dp+1 > 0.

Note that when sp acts non-trivially on both xa and u (i.e. both ap+1 > 0 and
dp+1 > 0), we can chose which of these to act on:

sp(x
au) = sp(x

a)u = xasp(u).

Proof. (a)

sp(xiu) = sp ◦ si,m+1(u)

= sp,p+1 ◦ si,m+1(u).
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If dp+1 > 0 this is

= si,m+1 ◦ sp,p+1(u)

= xi · sp(u).

If dp+1 = 0 and p+ 1 �= i then

sp(xiu) = 0 = xisp(u).

If p+ 1 = i and di = 0 we have

si−1(xiu) = si−1,i ◦ si,m+1(u)

= si−1,m+1(u)

= xi−1u

and xisi−1(u) = 0.
(b) The last property of (14) follows due to the S-module property in part

(a) when dp+1 > 0. The middle property of (14) follows by using the S-module

property in part (a) on xa = x
ap+1

p+1 xa′
as long as ap+1 ≥ 2, and then in the last

instance using that sp(xp+1x
a′
u) = xpx

a′
u. �

The shift modules over N
m
0 or equivalently k[x1, . . . , xm] form an abelian cate-

gory. We denote this category as shmod k[x[m]].

Example 6.3. Any strongly stable ideal I in k[x1, . . . , xm] is a shift module, our
primary example of a shift module. Also any quotient ring S/I of a strongly stable
ideal I is a shift module. More generally if {Ia} is a finite family of strongly stable
ideals and {Jb} is another finite family, we get maps

⊕aIa → ⊕bJb,

where the component Ia → Jb is either zero or a scalar multiple of an inclusion
map. The kernel and cokernel of this map are shift modules. We see later that any
shift module is a cokernel of such a map.

A basic result on free shift modules is the following.

Lemma 6.4. The free S-module Sud with generator ud of degree d ∈ N
m
0 can be a

shift module iff d = d1e1 for some d1 ≥ 0. Then Sud is isomorphic to the strongly
stable ideal 〈xd

1〉.

Proof. Suppose for some 1 ≤ p ≤ m − 1 that dp+1 > 0. If Sud is a shift module,
then note that sp(ud) = 0 since Sud is zero in degree d+ ep − ep+1. Thus

xp · ud = sp,m+1(ud) = sp,p+1 ◦ sp+1,m+1(ud)

= sp+1,m+1 ◦ sp,p+1(ud) = sp+1,m+1(0) = 0,

which is wrong. Here we use that sp,p+1 and sp+1,m+1 commute since dp+1 > 0
(and dm+1 = ∞ > 0).

Conversely, if d = d1e1 the map xaud �→ xd1
1 xa defines an isomorphism of shift

modules by Lemma 6.2(b). �

More generally we may prove as above:
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Lemma 6.5. Sud/(x1, . . . , xp−1) · ud is a shift module if d =
∑p

i=1 diei, but not
if di > 0 for some p+ 1 ≤ i ≤ m.

This shift module is isomorphic to the cokernel of the inclusion

〈xd · xp−1〉 ↪→ 〈xd〉.

6.2. Projectives. The following is an immediate consequence of the definition of
shift modules.

Lemma 6.6. If sq ◦ sp(u) is non-zero with q > p, then sp ◦ sq(u) = sq ◦ sp(u).

Corollary 6.7. Given q1 ≤ q2 ≤ · · · ≤ qr and let q′1, . . . q
′
r be some reordering of

these. Then
sq1 ◦ · · · ◦ sqr(u) = sq′1 ◦ · · · ◦ sq′r(u)

if the latter is non-zero.

Lemma 6.8. If sp1
◦ · · · ◦ spr

(u) and sq1 ◦ · · · ◦ sqt(u) are non-zero of the same
degree, with the p’s and the q’s in weakly increasing order, then r = t and each
pi = qi.

Proof. It is easy to see that we must have p1 = q1. Then we continue by induction.
�

For a monomial xd recall that 〈xd〉 is the strongly stable ideal generated by xd.

Proposition 6.9. The ideal 〈xd〉 is a projective in the category of shift modules
over k[x[m]] and all indecomposable projectives are of this form.

Proof. Let M be a shift module and m ∈ Md. By Corollary 6.7 and Lemma 6.8
there is a unique morphism of shift modules 〈xd〉 → M sending xd �→ m, and such
that if xe = sp1

◦ · · · ◦ spr
(xd) then xe �→ sp1

◦ · · · ◦ spr
(m).

Let M → N be a surjection, and given 〈xd〉 → N sending xd �→ n ∈ Nd. Let
m ∈ Md be a lifting of n. We then get map 〈xd〉 → M with xd �→ m lifting the
map 〈xd〉 → N .

If P is a projective shift module, let d be minimal for the order ≥st such that
Pd �= 0. Consider the short exact sequence

0 → 〈xd〉>st
→ 〈xd〉 → k · xd → 0.

There is a map P → k ·xd which is a map of shift modules. It lifts to a map of shift
modules P → 〈xd〉, which must be a surjection, and hence the latter is a summand
of P . �

6.3. Digression: Algebraic shifting. For a combinatorial shift module M over
k[x1, . . . , xm] its associated algebraic shift maps

ap : Md → Md+ep−ep+1

are ap = dp+1 · sp for p < m and am = sm. More generally define ap,q = dq · sp,q
for q ≤ m and ap,m+1 = sp,m+1. Again we have the commutator relation

[ap,r ◦ ar,q] = ap,q.

Then M becomes a graded module over the Lie algebra Um+1. We also have the
natural shift operations sp and ap on the polynomial ring S. By this the ap act as
derivations:

ap(x
bu) = ap(x

b)u+ xbap(u).
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In this article we are only concerned with combinatorial shifting. The reason
is that we want to define dual shift modules in Part IV. A shift map sp : Md →
Md+ep−ep+1

dualizes to a shift map tDp
: Nc → Nc+eDp−eDp+1

where Dp = 1 +∑p
i=1 di. If dp+1 ≥ 2 then sp and sp+1 dualize to tDp

and tDp+1
where the difference

|Dp+1 −Dp| ≥ 2. These latter shift maps then commute and so, in a setting where
we have duals, sp and sp+1 should commute when dp+1 ≥ 2. When dp+1 = 1 we have
the possibility of divergence between combinatorial and algebraic shift modules, in
the presence of duals. In this case it is consistent for algebraic shift modules that
sp ◦ sp+1 and sp+1 ◦ sp are different maps, as well as their duals tDp

◦ tDp+1
and

tDp+1
◦ tDp

being different maps. We stick to combinatorial shift modules where we
require also these two to commute. The category of shift modules is then equivalent
to the category of modules over an incidence algebra, Appendix B. Since we only
consider combinatorial shift modules, we henceforth call them simply shift modules.

6.4. Expanded shift modules. Given a shift module V over Δm+1(n) we may
extend it to a shift module M over k[x1, . . . , xm]. Let d =

∑m
i=1 diei ∈ N

m
0 . If the

total degree |d| ≤ n, let dm+1 = n− |d| and d̂ = d+ dm+1em+1 which is of degree
n. Then let Md = Vd̂. If |d| ≥ n then write d = d1 + d2 where

(15) d1 = (d11, d
1
2, . . . , d

1
r, 0, · · · , 0) d2 = (0, . . . , 0, d2r, d

2
r+1, . . .),

where the break r is such that

|d1| = n, dr = d1r + d2r, d1r > 0.

We let Md = Vd1 . Then M becomes a shift module over Nm
0 as follows.

• If |d| < n let sMp : Md → Md+ep−ep+1
be sp : Vd̂ → Vd̂+ep−ep+1

.

• If |d| ≥ n let:
– If p < r then

sp = sMp : Md → Md+ep−ep+1
is sVp : Vd1 → Vd1+ep−ep+1

.

– If p ≥ r then sMp is the identity map if dp+1 > 0, otherwise 0. (Recall
when p = m the convention that dm+1 = ∞.)

This gives an exact functor from the category of shift modules over Δm+1(n) to
the category of shift modules over k[x[m]].

Definition 6.10. A shift module M over k[x1, . . . , xm] is expanded if it is isomor-
phic to a module induced from a shift module over Δm+1(n) for some n. More
specifically it is called an n-expanded shift module.

We denote the category of n-expanded shift modules over k[x[m]] by
shmod≤nk[x[m]]. So this is a category equivalent to the category of shift mod-
ules over Δm+1(n). Strongly stable ideals in k[x[m]] generated in degree ≤ n are
typical examples of n-expanded shift modules.

Let A,B be finite subsets of Nm
0 and let

φ : ⊕b∈B〈xb〉 → ⊕a∈A〈xa〉
be a morphism of shift modules. Note that there is a non-zero morphism of shift
modules 〈xb〉 → 〈xa〉 iff b ≥st a and in this case xb �→ αxb for some non-zero
α ∈ k.

Let
b̂ = max{|b| |b ∈ B}, â = max{|a| | a ∈ A}.
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Proposition 6.11. Given a morphism φ which is a minimal presentation of its

cokernel. The regularity of the image imφ is b̂, and the regularity of coker φ is

max(â, b̂− 1).

Proof. Let n = b̂. Let A′ ⊆ A be those a ∈ A such that |a| ≤ n. The image of φ is
contained in ⊕a∈A′〈xa〉. So let φ′ be the map φ restricted to this codomain. Both
⊕a∈A′〈xa〉 and ⊕b∈B〈xb〉 are n-expanded, and the map φ′ comes from a map

φ′ : ⊕b∈BP (b) → ⊕a∈A′P (a)

of shift modules over Δm+1(n). The kernel kerφ′ has finite projective resolution
with terms being finite sums of projective shift modules over Δm+1(n). Each pro-
jective P (c) in this resolution must have |c| ≤ n. Since expanding modules is exact,
imφ′ has a projective resolution (F•, d•) of shift modules where all terms are pro-
jectives 〈xc〉 with |c| ≤ n. Such a projective has regularity |c|. By taking successive
mapping cones of this resolution, we get that each im di has regularity ≤ n, and in
the end imφ′ = imφ has regularity ≤ n. But since imφ′ has a generator of degree

b̂ = n, its regularity is n.
Consider the exact sequence

0 → imφ
i−→ ⊕a∈A〈xa〉 → cokerφ → 0,

and taking the mapping cone of i, the regularity of cokerφ is max(â, b̂− 1). �

Theorem 6.12. A shift module M over k[x[m]], finitely generated as an S-module,
is expanded. The least n such that M is n-expanded is either the regularity regM
or regM − 1.

Proof. Since M is finitely generated it has a minimal presentation

⊕b∈B〈xb〉 φ−→ ⊕a∈A〈xa〉 → M

with A,B finite subsets of Nm
0 . Let n = max(â, b̂). The proof of Proposition 6.11

shows that φ is induced from a map of shift modules over Δm+1(n):

⊕b∈BP (b)
φ−→ ⊕a∈AP (a).

Let M be the cokernel of φ. Expanding up to shift modules over k[x[m]] and

using that expansion is exact, we get that M is expanded from M . The minimal
presentation of φ is unique up to isomorphism, and so we get that the minimal n

is max(b̂, â). If this n is â, it is the regularity of M by Proposition 6.11. If â < b̂,

the regularity of M is b̂− 1 = n− 1. �

Example 6.13. Any n-expanded shift module is generated in degrees ≤ n, but
may be generated in much smaller degrees, for instance if I is a strongly stable
ideal generated in degree n, then S/I is generated in degree 0. It is n-expanded,
but not (n− 1)-expanded.

7. Shift modules over the infinite dimensional polynomial ring k[xN]

We define shift modules over the infinite dimensional polynomial ring k[xN]. Let
N

∞
0 = ⊕i≥1N0 consist of all infinite sequences d = (d1, d2, . . . , ) where all di ≥ 0

and only a finite number of the di may be non-zero. We also put d∞ = ∞.
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Definition 7.1. An N
∞
0 graded moduleM over the infinite dimensional polynomial

ring is a combinatorial shift module if for every natural number p ≥ 1 there are linear
maps

sp : Md → Md + ep − ep+1,

with sp the zero map if dp+1 = 0, such that:

• The maps sp and sq commute if dq and dq are both > 0.
• sp(xp+1u) = xpu and if u has degree d with dp+1 > 0 this also equals
xp+1sp(u).

For 1 ≤ p < q we define

sp,q = sp ◦ sp+1 ◦ · · · ◦ sq−1,

and sp,∞ to be multiplication by xp. Again sp,q and sk,� commute if dq > 0 and
d� > 0.

We could alternatively in a more uniform way have defined an N
∞
0 -graded shift

modules as a graded vector space with maps for every 1 ≤ p < q ≤ ∞
sp,q : Md → Md + ep − eq,

with sp,q the zero map if dq = 0 such that:

• sp,r ◦ sr,q = sp,q,
• sp,q and sk,� commute when dq > 0 and d� > 0.

In this case sp,∞ would define multiplication with xp.
In the same way as before we may also define the algebraic shift maps ap,q

making M an algebraic shift module, a module over the infinite-dimensional Lie
algebra U∞.

7.1. Extending shift modules. A shift module M over k[x1, . . . , xm] may be
extended to a shift module

M̃ = M ⊗k[x1,...,xm] k[xN]

over k[xN]. The shift maps are given as:

s̃p,∞(u⊗ xd) =

{
xp · u⊗ xd, p ≤ m,

u⊗ xp · xd, p > m,

and

• For p < m

s̃p : Md ⊗ xc sp⊗1−→ Md+ep−ep+1
⊗ xc.

• For p > m

s̃p : Md ⊗ xc 1⊗sp−→ Md ⊗ sp(x
c).

• For p = m, if xc contains xm+1

s̃m : Md ⊗ xc (·xm)⊗(:xm+1)−→ Md+em
⊗ xc−em+1 ,

and s̃m is zero if xc does not contain xm+1.

8. Examples of shift modules

In these examples S is a finite dimensional polynomial ring k[x1, . . . , xm] or
infinite dimensional polynomial ring k[xN].
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8.1. Strongly stable ideals. Any strongly stable ideal in a finite or infinite di-
mensional polynomial ring is shift module.

Here are examples in the infinite dimensional polynomial ring k[xN] which we
discussed in Example 3.6 and will discuss in Section 11.

(1) The maximal irrelevant ideal in k[xN], I1 = 〈x1, x2, x3, . . .〉.
(2) I2 = 〈x1, x

2
2, x

3
3, x

4
4, . . .〉.

(3) I3 = 〈x2
1, x1x

2
2, x1x2x

2
3, x1x2x3x

2
4, . . .〉.

8.1.1. Quotients of strongly stable ideals. Any quotient module S/I of a strongly
stable ideal is a shift module. More generally if {Ia} is a finite family of strongly
stable ideals and {Jb} is another finite family, the quotient by a map

⊕aIa → ⊕bJb

is a shift module, where each component Ia → Jb is either zero or a scalar multiple
of an inclusion map.

8.2. Non-finitely generated shift modules I. For a ∈ N0 let ua be an element
of degree a · e1.

(1) The module M = ⊕a∈N0
Sua is a shift module.

(2) The module

M1 = ⊕a∈N0
Sua/(x1ua)

is a shift module with the same multigraded dimensions as S, all are one-
dimensional. For M1 the shift map s1 is zero.

For a, b ∈ N0 let ua,b be an element of degree a · e1 + b · e2.
(3) The module

M2 = ⊕(a,b)∈N2
0
Sua,b/(x1, x2)ua,b

is again a shift module with the same multigraded dimensions as S.

8.3. Non-finitely graded shift modules II.

(1) Let the module N1 be the graded vector space which is the direct sum of all
the one-dimensional spaces generated by ya = ya1

ya2
· · · yar

for weakly increasing
sequences 1 ≤ a1 ≤ a2 ≤ · · · ≤ ar, with r ≥ 1. As a graded vector space it identifies
as S≥1, the subspace of S spanned by monomials in S of degree ≥ 1. We make this
a shift module over k[yN] by
(i) sa1−1(ya) = 0
(ii) For p ≥ 2 if ap−1 < ap then

sap−1(ya) = ya1
· · · yap−1yap+1

· · · yar
.

(2) Let the module N2 be the graded vector space which is the direct sum of all
the one-dimensional spaces generated by ya = ya1

ya2
· · · yar

for weakly increasing
sequences 1 ≤ a1 ≤ a2 ≤ · · · ≤ ar, with r ≥ 2. As a graded vector space it identifies
as S≥2, the subspace of S spanned by monomials in S of degree ≥ 2. We make this
a shift module over k[yN] by:
(i) sa1−1(ya) = 0 and sa2−1(ya) = 0.
(ii) For p ≥ 3 if ap−1 < ap then

sap−1(ya) = ya1
· · · yap−1yap+1

· · · yar
.
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Part IV. Duals of shift modules

For a shift module there is a dual shift module, in much the same way as for a
squarefree module there is a dual squarefree module. However shift modules over
polynomial rings are more subtle. This is due to there not being a simple stable
correspondence between the degrees in the two polynomial rings where the module
and its dual module live over. However for finite shift modules this problem is not
there and we first do this case.

9. Duals of finite shift modules

9.1. Degree correspondences. Recall that Δm+1(n) is the set of all (m + 1)-
tuples d = (d1, . . . , dm+1) of integers ≥ 0 such that their sum is n. This set is in
bijection with monomials in k[x[m]] of degree ≤ n by sending d to the monomial∏m

i=1 x
di
i . Recall the rightmost commutative triangle in (8). Splicing this triangle

with its mirror we get a commutative diagram of bijections.

(16)

Hom([m], ˆ[n])

Γ

������
����

����
����

D

��

Λ

��			
				

				
				

	

Δn+1(m) ∼= Mon≤m(y[n]) Mon≤n(x[m]) ∼= Δm+1(n)

Hom([n], ˆ[m])

Λ

													 Γ

���������������

The right Γ-map sends a map f to the monomial
n∏

i=1

xf(i).

For a map g in Hom([m], ˆ[n]) define g(0) = 1 and g(m+1) = n+1. Then the right
Λ-map sends a map g to the monomial

m∏
i=1

x
g(i)−g(i−1)
i

and further to the element in Δm+1(n)

(g(1)− g(0), g(2)− g(1), · · · , g(m+ 1)− g(m)).

The essential thing for our purpose it that the diagram gives a bijection between
Δm+1(n) and Δn+1(m). The practical way to compute this bijection seems to be
using the diagram above. Here is an example.

Example 9.1. Consider (2, 1, 0, 3, 1) in Δ4+1(7) corresponding to the monomial
x2
1x2x

3
4 in k[x[4]]≤7. We want to compute the corresponding element in Δ7+1(4).

The most convenient way is perhaps to use the lower path in (16).
(1) Via Γ this monomial x1x1x2x4x4x4 corresponds to the function f in

Hom([7], ˆ[4]) with values 1, 1, 2, 4, 4, 4, 5. To compute the image by Λ we add 1
and 5 at the ends

1− 1, 1, 2, 4, 4, 4, 5− 5
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and take the differences 0, 0, 1, 2, 0, 0, 1, 0 giving the element in Δ7+1(4), correspond-
ing to the monomial y3y

2
4y7 in k[y[7]]≤4.

We may also use the upper path in (16):
(2) From (2, 1, 0, 3, 1) we take the partial sums 2, 3, 3, 6, and add 1 to each.

Then it corresponds to the function g in Hom([4], ˆ[7]) with values 3, 4, 4, 7. By
applying the map Γ this gives y3y

2
4y7, which in turn may be converted to the

element (0, 0, 1, 2, 0, 0, 1, 0) in Δ7+1(4).

Remark 9.2. The element 1 in Mon≤n(x[m]) corresponds to (0, 0, · · · , 0, n) in
Δm+1(n). Via the procedure (1) above this corresponds to the function f in

Hom([n], ˆ[m]) with values m+ 1,m+ 1, · · · ,m+ 1. Taking the differences of

1− (m+ 1), (m+ 1), · · · , (m+ 1)− (m+ 1),

we get the sequence (m, 0, 0, · · · , 0) giving the monomial ym1 in k[y[n]]≤m. In par-
ticular we see that as m increases the element 1 goes to different elements.

9.2. Duals of finite modules. For a vector space V denote its dual as V ∗ =
Hom(V, k). Let V = ⊕d∈Δm+1(n)Vd be a shift module over Δm+1(n). We want
to define a dual shift module W = ⊕c∈Δn+1(m)Wc over Δn+1(m). Take f in

Hom([n], ˆ[m]) and set

WΛf = (VΓf )
∗.

Next we define the shift maps. For p ∈ [n] let ip be the map with domain [n] such
that ip(p) = 1 while all other values of ip are zero. Suppose that f(p) < f(p + 1)
(where we set f(n+ 1) = m+ 1 = ∞). Note the shift map

sp : VΛf → VΛ(f+ip).

Let g = D(f + ip) be the dual. Letting k = f(p) we see by Figure 3 that the dual
Df = g + ik.

Now we have

WΛ(g+ik) = (VΓ(g+ik))
∗ = (VΛD(g+ik))

∗ = (VΛf )
∗.

Similarly WΛg = (VΛ(f+ip))
∗. The dual of the map sp above is then by definition

our shift map tk for W

tk : WΛg → WΛ(g+ik).

1 p1

k

1 p1

k

Figure 3. f with • and g + ik with ◦ f + ip with • and g with ◦
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Lemma 9.3. When V is a shift module over Δm+1(n), the module W = V ∗ is a
shift module over Δn+1(m) with shift maps the tk.

Proof. Let f : [n] → ˆ[m] be an isotone map. Let 1 ≤ p < q ≤ n with f(p) < f(p+1)
and f(q) < f(q + 1). Since V is a shift module we have a commutative diagram

(17) VΛf

sp ��

sq

��

VΛ(f+ip)

sq

��
VΛ(f+iq)

sp �� VΛ(f+iq+ip).

Now let g = D(f + ip + iq) and k = f(p) and � = f(q). Then as we can infer from
Figure 3:

g + i� = D(f + ip), g + ik = D(f + iq), g + ik + i� = Df.

Dualizing the diagram (17) we get a commutative diagram

WΛ(g+ik+i�) WΛ(g+i�)tk
��

WΛ(g+ik)

t�

��

WΛg.

t�

��

tk
��

�

We observe that dualization is an exact functor on the category of shift modules
over Δm+1(n).

10. Duals of shift modules over polynomial rings

We now want to define duals of shift modules over polynomial rings k[x[m]] and
k[xN]. By the diagram (16) there is a one-one correspondence between monomials
in k[x[m]] of degree ≤ n and monomials in k[y[n]] of degree ≤ m. However by
Remark 9.2 such a correspondence does not stabilize to a correspondence when n
and m go to infinity. The element 1 in the first ring corresponds to the element ym1
in the second ring. Also the diagram (7) does not extend to a diamond diagram

like (16) since the map Λ cannot be defined on HomL(N, N̂) and the map Γ not on

HomS(N, N̂). The notion of dual modules cannot then rest on a bijection between
the monomials in k[xN] and k[yN]. However we may accomplish our objective using
limit considerations.

Definition 10.1.

• For f in HomL(N, N̂) let r be the integer such that f(r) = ∞ and f(r−1) <

∞. For m ≥ f(r − 1) define fm to be the small function in HomS(N, N̂)
given by

fm(i) =

{
f(i), i < r

m, i ≥ r
.

Note that we have

(18) Λfm+1 = xr · Λfm.
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• For g in HomS(N, N̂) let p be such that g(p− 1) < g(p) and g(i) = g(p) for

i ≥ p. For n ≥ p let g|n be the element in HomL(N, N̂) given by

g|n(i) =

{
g(i), i < n

∞, i ≥ n
.

Note that we have

(19) Γg|n+1 = xg(p) · Γg|n.

The following is easily verified, since the duality D is essentially reflection about
the axis x = y.

Lemma 10.2. Let f ∈ HomL(N, N̂) and g ∈ HomS(N, N̂) correspond via D. Then

fm ∈ HomS(N, N̂) and g|m ∈ HomL(N, N̂) correspond via D.

To define the dual of a module M we need to extend the meaning of Λ to
HomL(N, N̂) and of Γ to HomS(N, N̂).

Definition 10.3. Let M be a shift module over k[xN].

• For g ∈ HomS(N, N̂) we have g|n ∈ HomL(N, N̂). By (19) we have multipli-
cation maps

MΓg|n

·xg(p)−→ MΓg|n+1
.

We define

MΓg = colimnMΓg|n .

• For f ∈ HomL(N, N̂) we have fm ∈ HomS(N, N̂). By (18) we have multi-
plication maps

M Λfm
·xr−→ MΛfm+1 .

We define

MΛf = colimmMΛfm .

Corollary 10.4. For M a shift module over k[xN] and dual elements f ∈HomL(N, N̂)

and g ∈ HomS(N, N̂), then MΛf = MΓg.

Proof.

MΛf = colimmMΛfm = colimmMΓg|m = MΓg.

�

Definition 10.5. Let M be a shift module over k[xN] such that for every g ∈
HomS(N, N̂) the graded part MΓg is finite dimensional. The dual module N = M∨

over k[yN] is defined by letting

NΛg = (MΓg)
∗.

Note that if f = Dg is the dual large map, the dual module N also by Corollary
10.4 fulfills

NΓf = NΛg = (MΓg)
∗ = (MΛf )

∗.

The shift maps are defined as follows. Let g ∈ HomS(N, N̂). Suppose g(p) <
g(p+ 1). For n large enough, we have shift maps

sg(p) : MΓ(g+ip)|n → MΓg|n .
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Taking the colimit w.r.t. n we get a shift map and a dual map

sg(p) : MΓ(g+ip) → MΓg, tp : NΛg → NΛ(g+ip),

where tp is the shift map for N . That the shift maps tp and tq commute when the
(p + 1)’th and (q + 1)’th degree coordinates of Γf are positive is checked like in
Lemma 9.3.

Since colim is an exact functor on vector spaces, we observe that dualization is
an exact functor on the category of shift modules over k[xN].

Definition 10.6. A shift module M over k[xN] is dualizable if it has a dual module
N such that the dual module of N is M again.

For a shift module M over k[xN] and u ∈ Mon(xN) with n ≥ max(u) the largest
index of a variable in u, there are maps

Mu

·xm
n ��

xm
n+1 ��

















 Mu·xm
n

Mu·xm
n+1

.

(sn)
m

��

Here (sn)
m is the shift maps sn applied m times. This gives a diagram

Mu
��

����
���

���
���

� colimmMu·xm
n

colimmMu·xm
n+1

(sn)
m

��

and then a map

Mu → limncolimmMu·xn
m
.

Proposition 10.7. Let M be a shift module over k[xN] which has a dual module.
(In particular this holds if there is a uniform bound on the dimensions of the Mu.)
Then M is dualizable if and only if the natural map

Mu → limncolimmMu·xm
n

is an isomorphism for every u ∈ N
∞
0 .

Proof. Suppose M is dualizable with dual module N . Then for large f

MΓf = (colimnNΛfn)∗

= limn (NΛfn)∗.

But

(NΛfn)∗ = MΓfn = colimmMΓ(fn)|m .

If u = Γf then Γ(fn)|m = u · xm−c0
n for suitable c0. Whence

MΓf = limncolimmMΓ(fn)|m ,

Mu = limncolimmMu·xm
n
.

Conversely, suppose the natural map is an isomorphism. Let N be the dual module
of M . Then

NΛfn = (colimmMΓ(fn)|m)∗.
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Hence for the dual M ′ of N :

M ′
Γf = (NΛf )

∗ = limn(NΛfn)∗ = limn colimmMΓ(fn)|m = MΓf .

�

11. Examples of duals

We give examples of duals of the modules given in Section 8. We first give three
examples of ideals where the dual module is the polynomial ring S = k[xN].

11.1. Duals of ideals. I = S = k[xN] the polynomial ring. Then for f in

HomL(N, N̂) with f(n− 1) < f(n) = ∞, the multiplication maps for m ≥ n

SΛfm
·xn−→ SΛfm+1

are always isomorphisms of one-dimensional vector spaces. Hence the dual module
of S is S itself.

I is the ideal mr = (x1, x2, x3, · · · , )r. As above the multiplication maps

IΛfm
·xn−→ IΛfm+1

are always isomorphisms of one-dimensional vector spaces for m sufficiently large.
Hence the dual module of I is again S.

I is the ideal 〈x1, x
2
2, x

3
3, · · · , xp

p, · · · 〉. Note that for any monomial u and m large,
the maps

Iu·xm
n

·xn−→ Iu·xm+1
n

are isomorphism between one-dimensional spaces for m ≥ n. Whence the dual of I
is the module S.

In the last two examples, the ideals were modules which were not dualizable.
When the ideal is dualizable we have the following, which is analogous to what
happens for Alexander duality for squarefree ideals [47].

Proposition 11.1. Let I and J be dual strongly stable ideals.

(a) The dual of I is the module S/J .
(b) The dual of S/I is the ideal J .

Proof. (a) Let [I,F ] be a Dedekind cut in Hom(N, N̂), with I = Γ(IL) and J the
dual ideal of I, which is

J = Λ(FS) = Γ((DF)L).

Note that for f in HomL(N, N̂):

(S/J)Γf =

{
k, f �∈ (DF)L,

0, f ∈ (DF)L.

Let N be the dual shift module of I. We show that N lives in precisely the same
degrees as S/J above. Let f be an element of HomL(N, N̂) and g = Df the dual
small function. Then

NΓf = NΛg = (IΓg)
∗, IΓg = colimnIΓg|n .

(i) Suppose f is in (DF)L so g is in FS . Note that g|n is then also in F . Whence
IΓg|n = 0. Then NΓf above is zero.
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(ii) If f is not in (DF)L then g is not in FS . Since g is small, it is not in the gap
between I and F , and hence it is in I. Since I is open, g|n is in I for n big, and so

colimnIΓg|n = k.

This shows that N and S/J have precisely the same dimensions in each degree. It
is readily verified that the shift maps also correspond, so N = S/J .

(b) The exact sequence

0 → I → S → S/I → 0

dualizes to the exact sequence

0 → (S/I)∨ → S∨ → I∨ → 0.

Here the map between the last shift modules identify as S → S/J and so the dual
of S/I is J . �

I is the principal strongly stable ideal 〈ya1
ya2

· · · yar
〉. By Proposition 3.11 and

Proposition 11.1, the dual module is k[xN]/〈xa1
1 , xa2

2 , . . . , xar
r 〉.

11.2. Duals of modules. The module M = ⊕a∈N0
Sua where ua is a generator

with degree (a, 0, 0, · · · ). Then Mxm
1

is a vector space of dimension m+ 1 and the
maps

Mxm
1
→ Mxm+1

1

are injections. Thus

colimmMxm+1
1

is not finite-dimensional, and M has no dual.
Recall the modules N1 and M1 in Sections 8.2 and 8.3.

Proposition 11.2. The modules N1 and M1 are dual modules. Similarly the mod-
ules N2 and M2 are dual modules.

Proof. We show that N1 is the dual module of M1. That M1 is the dual module
of N1 is an analogous argument. So let N ′ be the dual module of M1. Let f ∈
HomL(N, N̂). Then

(N ′)Γf = (M1,Λf )
∗,

where

(20) M1,Λf = colimmM1,Λfm .

If f is the function taking value ∞ at every i ∈ N, then

M1,Λfm = M1,xm
1

and the colimit above is 0 (the multiplication by x1 on M1 is zero). Thus (N ′)Γf =
(N ′)0 = 0.

If f is not the above constant function, then for m big Λfm is u ·xm−c0
p for some

fixed monomial u and fixed p ≥ 2. Then the colimit in (20) is k. Such f correspond
to monomials u = Γf of positive degree and so N ′

u = k for these u.
As for the shift maps in N ′ let f have values the finite sequence a1, · · · , ar−1, ar,

ar+1, · · · , ap, with ar−1 < ar, and let f ′ have values the finite sequence a1,
a2 · · · , ar−1, ar − 1, ar+1, · · · , ap. The map

tar−1 : (N ′)Γf → (N ′)Γf ′
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is the dual of the colimit of the shift maps

sr : (M1)Λf ′m → (M1)Λfm .

If r ≥ 2 this is an isomorphism of one-dimensional spaces. If r = 1 this is the zero
map. We find that dual N ′ of M1 identifies as N1.

In a similar way we show that the dual of N1 is M1. �

Part V. Resolutions

12. Examples of resolutions

We give simple examples of minimal projective shift module resolutions, and
in particular see how they differ from the ordinary minimal free resolutions as S-
modules. Recall from Proposition 6.9 that the projective shift modules over the
polynomial ring k[x[m]] are the principal strongly stable ideals 〈xd〉.

12.1. Ideals with projective dimension one as shift modules. Consider the
ideal in k[x1, x2, x3] with strongly stable generators

xa
1x

b
2, xa−1+r

1 xb−r
2 x3, xa−2+s

1 xb−s
2 x2

3,

where r ≥ 1 and s ≥ r + 1. These generators are illustrated with bullets in Figure
4. The strongly stable ideal generated by these three monomials will have

• One generator, xa+b
1 , whose highest index variable is x1,

• b generators whose highest index variable is x2,
• 2b+ 2− r − s generators whose highest index variable is x3.

The minimal free resolution as S = k[x1, x2, x3]-modules, by Eliahou-Kervaire
[15], has the following form

S(−a− b)3b+3−r−s ← S(−a− b− 1)5b+4−2r−2s ← S(−a− b− 2)2b+2−r−s.

On the other hand the minimal projective shift resolution of this ideal has the
following form when r ≥ 2 and s ≥ r + 2:

〈xa
1x

b
2〉 ⊕ 〈xa−1+r

1 xb−r
2 x3〉 ⊕ 〈xa−2+s

1 xb−s
2 x2

3〉
←〈xa−1+r

1 xb+1−r
2 〉 ⊕ 〈xa−2+s

1 xb+1−s
2 x3〉.

When r = 1 and s ≥ 3 the minimal resolution becomes

〈xa
1x

b−1
2 x3〉 ⊕ 〈xa−2+s

1 xb−s
2 x2

3〉 ← 〈xa−2+s
1 xb+1−s

2 x3〉.
When r ≥ 2 and s = r + 1 the minimal resolution becomes

〈xa
1x

b
2〉 ⊕ 〈xa−1+r

1 xb−1−r
2 x2

3〉 ← 〈xa−1+r
1 xb−r

2 x3〉.

Finally when r=1 and s=2 the ideal becomes the projective module 〈xa
1x

b−2
2 x2

3〉.
The two resolutions give quite distinct information.

• By Figure 4 the Betti numbers in the shift resolution reflect better the
combinatorial nature of the shift generators.

• For the various pairs (a, b) with a+ b fixed, the shift resolutions above have
the same graded Betti numbers, but those in the EK-resolution vary.

• It is easy to find strongly stable ideals with the same graded Betti numbers
in the EK-resolution above (and so in particular have the same Hilbert
series), but with distinct Betti numbers in the shift resolution.
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xa+b
2

xa+b
1

xa+b
3

Figure 4

In general all strongly stable ideals in three variables with generators of the same
degree will have shift projective dimension one or zero.

12.2. Ideals with projective dimension two as shift modules. Consider the
ideal with strongly stable generators

xa+t
1 xb

2x
c
3, xa

1x
b+r
2 xc

3, xa
1x

b
2x

c+s
3 .

The minimal projective shift-resolution of this when s > r > t is

〈xa+t
1 xb

2x
c
3〉 ⊕ 〈xa

1x
b+r
2 xc

3〉 ⊕ 〈xa
1x

b
2x

c+s
3 〉

←〈xa+t
1 xb+r−t

2 xc
3〉 ⊕ 〈xa

1x
b+r
2 xc+s−r

3 〉 ⊕ 〈xa+t
1 xb

2x
c+s−t
3 〉

←〈xa+t
1 xb+r−t

2 xc+s−r
3 〉.

This is a special case of Proposition 13.2.

13. Koszul-type shift resolutions

If the sst-generators of a strongly stable ideal are sufficiently generic we expect
the minimal resolution to be given by a Koszul-type resolution: If there are n
generators, the p’th Betti number should be

(
n
p

)
. We will see there is always such

a resolution for any set of generators, and give conditions so that it is minimal.
In particular the minimal shift resolution of universal lex-segment ideals has this
form.

Recall the strongly stable partial order on Mon(xN).

xa1
· · ·xar

≥st xb1 · · ·xbs

iff r ≥ s and ai ≤ bi for i = 1, · · · , s.
Recall that 〈xd〉 and 〈xe〉 are indecomposable projectives in shmod k[xN], where

d, e are in N
∞
0 . There is an inclusion of shift modules 〈d〉 ↪→ 〈e〉 iff xd ≥st x

e. If
the latter does not hold the only map from 〈d〉 to 〈e〉 is the zero map. By Lemma

3.2 for f, g ∈ Hom(N, N̂) there is an inclusion of shift modules 〈Γf〉 ↪→ 〈Γg〉 iff
f ≤ g.



SHIFT MODULES, STRONGLY STABLE IDEALS, AND THEIR DUALITIES 703

Given isotone maps

(21) fi : N → N̂ (or [m] → N̂), i ∈ J.

When explicitly mentioned later we might have Condition 13.1 on the fi.

Condition 13.1. For each i there exists qi ∈ N (or [m]) such that fi(qi) < fj(qi)
for every j ∈ J\{i}. So each fi has some qi where fi is the unique function having
minimal value at qi.

Thus q gives an injective function q : J → N (or [m]). For R a finite subset of J
let fR be the isotone map which is the meet of the functions fi, i ∈ R, so:

fR(p) = min{fi(p) | i ∈ R}.
Let P (fR) be the projective module 〈Γ(fR)〉. There is an inclusion map

iR,S : P (fR) ↪→ P (fS)

when S ⊆ R. For r ∈ R denote by iR,r = iR,R\{r}.
Let I be the ideal 〈Γfi〉i∈J . We can now give the terms in the resolution of the

quotient ring k[xN]/I. Let the first term be F0 = k[xN] and for p ≥ 1 let

Fp = ⊕R⊆J,|R|=pP (fR).

For R = {r1 < r2 < · · · < rp}, there are natural maps

P (fR)
[−iR,r1

,iR,r2
,··· ,(−1)piR,rp ]−−−−−−−−−−−−−−−−−−→

p⊕
i=1

P (fR\{ri}) ⊆ Fp−1.

This gives natural maps

Fp
dp−→ Fp−1, p ≥ 1.

Proposition 13.2. The map d is a differential, and F• is a projective shift reso-
lution of the quotient ring k[xN]/I.

If the {fi} fulfills Condition 13.1, then F• is a minimal projective resolution.

Remark 13.3. The above is the analog of the Taylor resolution for square free
modules [33, 4.3.2, 6.1], [38, Sec.26] or [24, Ch.7]. The condition for minimality is
also similar to that for the Taylor complex [33, Lem.6.4].

Proof. Let
∑

αRuR be a syzygy in Fp where the αR are non-zero constants in k
and each αRuR is in P (fR). We may assume it is homogeneous so all monomials
uR equal a fixed monomial u. Put a total order on I. Order the p-subsets of I such
that S > R if for the maximal � such that s� and r� differ, we have s� < r�. (So R
is dragged down by having a heavy rear.)

Let R0 be minimal among the R where αR is non-zero in the sum. Write R0 =
{r1 < r2 < · · · < rp}. Then

P (fR0
) maps to

⊕
ri∈R0

P (fR0\{ri}).

The image of αR0
uR0

in P (fR0\{r1}) must cancel against a term in the image of
P (fS) for some S occurring in the syzygy

∑
αRuR. So R0\{r1} = S\{st} for some

t. If t ≥ 2 then si = ri for i > t while rt = st−1 < st. This contradicts R0 < S.
Thus t = 1 and since R0 < S we have r1 > s1. Let r0 = s1 and R′ = R0 ∪ {r0}. If
we add plus or minus the image of d(αRΓ(fR′)) to the syzygy

∑
αRuR, we get a
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syzygy with larger minimal fR. We may thus continue and in the end see that all
syzygies are in the image of d.

When Condition 13.1 is fulfilled, the maps fR < fR\{r} for every r ∈ R. Hence
the resolution is minimal. �

Corollary 13.4. The above gives the minimal shift resolutions of the following
ideals:

• 〈x1, x
2
2, x

3
3, · · · 〉

• Universal lex-segment ideals.

14. Generalized Eliahou-Kervaire resolution

The resolution of strongly stable ideals and more generally stable ideals is the
celebrated Eliahou-Kervaire resolution [15], a resolution where the terms and differ-
entials are explicitly described. See [39] or [38, Sec.28] for a simple exposition. Here
we generalize this to shift modules. Another direction where the Eliahou-Kervaire
resolution has recently been generalized is to the resolution of co-letterplace ideals
[13].

14.1. Rear torsion-free modules. For a degree d in N
∞
0 let max(d) be the largest

index i such that di is non-zero. Also let min(d) be the smallest such index.

Definition 14.1. A shift module M over k[xN] is rear torsion-free if for every
m ∈ Md and every monomial xa with max(d) ≤ min(a), if xa ·m = 0 then m = 0.

Note that since M is graded by N
∞
0 and the Md are finite-dimensional, the

module M has a minimal homogeneous generating set. Let {mi
d} be such a minimal

generating set for M , with mi
d of degree d.

Lemma 14.2. Let M be a rear-torsion free module and m ∈ M . There is a unique
way of writing

m =
∑
i,d

αi
dx

ai
dmi

d

with αi
d ∈ k and mi

d ∈ Md, and for each term max(d) ≤ min(aid).

Proof. First we do existence. We may in some way write m =
∑

αi
dx

ai
dmi

d. Con-
sider xp ·mi

d where p < maxd = b. This is

sp,∞(mi
d) = sp,b ◦ sb,∞(mi

d)

= sb,∞ ◦ sp,b(mi
d) = xb · sp,b(mi

d).

This means that whenever xpm
i
d occurs in a term above, we may replace it with

the term xb · sp,b(mi
d) where b ≥ max sp,b(m

i
d). Continuing in this way we get the

existence of an expression as claimed.
Now consider uniqueness. If we do not have uniqueness, we have a homogeneous

expression of degree e

0 =
∑

ai
d+d=e

αi
dx

ai
dmi

d,

where not all the αi
d are zero. Let p = max(e). If xp does not divide xai

d then we

would have xai
d = 1, which is not so since the mi

d are part of a minimal generating
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set. Hence xp divides each xai
d . By rear torsion-freeness we may divide out by xp

and get

0 =
∑

αi
dx

ai
d/xp ·mi

d.

In this way we may continue until some mi
d is a combination of the other ones,

contradicting minimality of the generators. �

Remark 14.3. Such a unique way of writing an element in the module is more or
less exactly the same as the unique way of writing an element in a quasi-stable
submodule in terms of its Pommaret basis, [1, Thm.3.3] or [43, Prop.4.4, 4.6].

A difference to Pommaret bases is that those are submodules of free mod-
ules. In contrast the class of rear torsion-free shift modules also includes mod-
ules that are not submodules of free modules. For instance let the multidegree
d = (d1, d2, d3, 0, . . . , 0) have d3 > 0. Then the module Sud/(x1, x2)ud (which is a
shift module by Lemma 6.5) is rear-torsion free if d3 > 0. However it is not rear
torsion-free if d3 = 0.

Another difference is the quasi-stable modules are essentially direct sums of
ideals, they are generated by terms xαek. In contrast for a shift submodule of a
free module, this may not be so.

Let {ui
d} be a set of symbols where ui

d has degree d. Let T i
d be the subspace of

Sui
d with basis xaui

d where max(d) ≤ min(a), and

T =
⊕
i,d

T i
d ⊆

⊕
i,d

Si
d.

Corollary 14.4. The natural map T → M sending ui
d to mi

d is an isomorphism
of vector spaces.

Proof. This is clear. �

For p ∈ N we may then transport the shift map sp on M to a shift map sp on T .
Since sp and sq commute on Md when dp+1 and dq+1 are non-zero, the same holds
for sp and sq on T . Explicitly we have

sp(x
a · ui

d) =

{
sp(x

a) · ui
d, p ≥ max(d),

xa · sp(ui
d), p < max(d).

14.2. The complex giving the resolution. Let Fp be the free S-module gener-
ated by all symbols (i1, . . . , ip |ui

d) where

i1 < i2 < · · · < ip < max(d).

This symbol has multidegree d+
∑p

j=1 eij . For a monomial xa, we also let (i |xaui
d)

be xa · (i |ui
d). For each d choose an arbitrary total order on the ui

d’s. Define a

total order on the symbols (i |ui
d) by (j |uj

d) > (i |ui
e) when we have the following.

• If d �= e let p = max{i | di �= ei}. Then we have dp > ep (and write also
d > e).

• If d = e and i �= j let q = max{r | ir �= jr}. Then we have jq > iq.

• If d = e and i = j then uj
d > ui

d.
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In the following b = max(d). Define maps δ, μ : Fp → Fp−1 by

(i1, i2, · · · , ip |ui
d)

δ�→
∑
q

(−1)qxiq · (i1, · · · , îq, · · · , ip |ui
d),

(i1, i2, · · · , ip |ui
d)

μ�→
∑
q

(−1)qxb · (i1, · · · , îq, · · · , ip | siq,b(ui
d)).

Note that siq,b(u
i
d) will typically be rewritten as a linear combination of products

of monomials and other uj
e.

Lemma 14.5. d = δ − μ is a differential, i.e. d2 = 0.

This is a simple check using that the maps si,j commute when they are non-zero.
Note that the free modules Fp are generally not shift modules, as a free S-module
only is a shift-module if its generator has a multidegree d = d1e1, Lemma 6.4. The
following is the generalized Eliahou-Kervaire resolution.

Theorem 14.6. Let M be a rear torsion-free shift module. The complex F• is a
free resolution M .

When M is a strongly stable ideal, the resolution F• is the Eliahou-Kervaire
resolution.

Proof. Given a homogeneous (for the N
∞
0 -grading) syzygy in Fp

(22)
∑

αi,ux
ai,u(i |u).

Let (i0 |u0) be maximal of the non-zero terms with respect to the order above.
Note that

d(i0 |u0) = xi01
· (i02, · · · , i0p |u0) + lower terms.

Since (22) is a syzygy and so maps by d to zero, in order for the above to cancel,
we must in (22) have a term xai0′,u0 · (i0′1 , i02, · · · , i0p |u0) where i0′1 < i01. Then we
must in (22) have terms

αn · xi0′1
(i0 |u0)− αn · xi01

(i0′ |u0).

Then subtracting the image of αn · (i0′1 , i01, i02, · · · , ip |u0) from (22), we reduce (22)
to a syzygy with smaller initial term. We may continue until we get zero, and so

the kernel of Fp
d−→ Fp−1 is the image of Fp+1

d−→ Fp. �

Remark 14.7. A similar resolution occurs in W. Seiler [43, Thm.7.2] for the class
of quasi-stable modules, and generalizing the Eliahou-Kervaire resolution for stable
ideals [15]. Again in [43] the differential decomposes into two parts, which are
completely analogous to our δ and μ.

However quasi-stable modules are essentially direct sums of ideals. So the reso-
lution of [43, Thm.7.2] is essentially a resolution of an ideal.

A difference concerning the terms in the resolution is then that our term Siq,b(u
i
d)

may be a linear combination of products of monomials and other basis terms ui
e,

while in [43, Thm.7.2] the corresponding term is only a product of a monomial and
a basis element. In Section 6 of [43] there is a more general form for the differential
when taking resolutions of polynomial submodules. This resolution may however
not be minimal.
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Appendix A. Incidence algebras

Incidence algebras are constructed from partially ordered sets. They can be
viewed as quiver algebras with relations.

Let P be a poset. It gives a quiver with an arrow for each pair p′ > p in P which
is a covering relation. Denote this arrow as [p′, p]. A path

q = pn > pn−1 > · · · > p0 = p

of covering relations gives a product

[pn, pn−1] · · · [p2, p1] · [p1, p0]
in the quiver algebra. We form the quiver algebra with relations by setting these
products equal for any two paths from p to q. This is the incidence algebra I(P ).

A module M over the incidence algebra is a direct sum M = ⊕p∈PMp such that

for each q > p we have a map Mq
·[q,p]←− Mp such that all path relations are respected.

The indecomposable projective modules for the incidence algebra are the modules,
one for each y ∈ P

P (y) =
∏
x≥y

kx,

where kx is a copy of k in degree x. The multiplication with [q, p] on P (y) is the
identity map from kp to kq and is zero on the kx where x �= p.

Let P̂ = Hom(P op, ω) be the associated distributive lattice to P . Then P̂ is a
Cohen-Macaulay poset by for instance [9, Cor.4.5, Ex. 4.6]. By [40] or [46] the

incidence algebra I(P̂ ) is then Koszul. The elements of P̂ are poset ideals in P

with the ordering on P̂ induced by inclusions of poset ideals. Let I ⊆ J be poset
ideals with J\I = {x, y} and x, y incomparable. The ideals of relations for I(P̂ )
are generated by the quadratic relations as I and J vary

[I ∪ {x, y}, I ∪ {x}] · [I ∪ {x}, I] = [I ∪ {x, y}, I ∪ {y}] · [I ∪ {y}, I].

The Koszul dual E(P̂ ) of I(P̂ ) is then generated by the relations

(1) For incomparable x and y:

[I ∪ {x, y}, I ∪ {x}] · [I ∪ {x}, I] = −[I ∪ {x, y}, I ∪ {y}] · [I ∪ {y}, I],

(2) When y > x:

[I ∪ {x, y}, I ∪ {x}] · [I ∪ {x}, I] = 0.

Lemma A.1. The largest degree d for which E(P̂ )d is non-zero is the largest car-
dinality of an antichain in P .

Proof. We claim that if I ⊆ J are poset ideals and

I = I0 ⊆ I1 ⊆ · · · ⊆ In = J

a sequence of covering relations (meaning each Ip+1 has cardinality one more than
Ip), then the product

(23) [In, In−1] · · · [I1, I0]

is zero iff J\I contains at least two elements x, y which are comparable by a covering
relation, say y > x: By using Relation (1) above repeatedly, we only change the
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product (23) by a sign, and eventually get to a chain where we have successive
terms

Ir+1 = Ir ∪ {y}, Ir = Ir−1 ∪ {x}.
But then by Relation (2) above this product is zero. If J\I is an antichain, the
product (23) only can change sign when we take different paths, and is non-zero. �

Corollary A.2. The global dimension of the incidence algebra I(P̂ ) is the longest
antichain in P .

Proof. The semi-simple part
∏

p∈P̂ kp of the incidence algebra I(P̂ ) has minimal

resolution of length the highest degree in which the Koszul dual algebra E(P̂ ) lives.
This is due to the resolution of the semi-simple part being given by the Koszul dual
algebra [6], and then [3, I.5.1]. This degree is the length of the longest antichain in
P . �

Appendix B. Equivalence with modules over incidence algebras

We show that the categories of shift modules are equivalent to module categories
for incidence algebras of the partially ordered sets that occur in our setting.

B.1. The finite case. Let ω = {0 < 1}. The distributive lattice P̂ then identifies

as Hom(P op, ω). Considering the poset Hom([m], ˆ[n]) we then have

Hom([m], ˆ[n]) = Hom([m],Hom([n]op, ω)) = Hom([m]× [n]op, ω).

So this is the distributive lattice associated to [m] × [n]op. As a consequence of
Corollary A.2 we have:

Corollary B.1. The global dimension of the incidence algebra of

(a) Hom([m], ˆ[n]) is min{m,n}.
(b) Hom(N, ˆ[n]) and Hom([n], N̂) is n.

Proof. (a) The longest antichain in [m]× [n]op has length min{m,n}. Similarly the
longest antichain in N× [n]op has length n. �

Denote the incidence algebra of Hom([m], ˆ[n]) as I(m,n). Now given a finite
dimensional module M = ⊕

f∈Hom([m], ˆ[n])
Mf over this incidence algebra. Recall

the map Λ in (8) in Section 3. Let MΛf = Mf . We get a vector space ΛM graded
by the monomials Mon≤n(x[m]) (These monomials are in one-one correspondence
with Δm+1(n).)

ΛM :=
⊕

f∈Hom([m], ˆ[n])

MΛf .

Proposition B.2. The correspondence M → ΛM gives an isomorphism of cate-
gories of finite dimensional modules:

modules over I(m,n) ↔ shift modules over Δm+1(n) ∼= shmod≤nk[x[m]].

Proof. Let α be such that α(p) < α(p+ 1) and ip the bump function which takes
value 1 at p and zero elsewhere, and β = α+ ip. The multiplication map

Mβ
·[β,α]←− Mα
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in the incidence algebra corresponds to the shift map

sp : MΛα → MΛβ .

If p < q such that α(q) < α(q + 1), let

γ = α+ iq, φ = α+ ip + iq.

The relation

[φ, β] · [β, α] = [φ, γ] · [γ, α]

then corresponds to sp and sq commuting. �

Each element f of the poset Hom([m], ˆ[n]) gives an indecomposable projective
module P (f) of the incidence algebra I(m,n). The module in shmod≤nk[x[m]]
corresponding to P (f) is the principal strongly stable ideal 〈Λf〉 ⊆ k[x[m]]. As a
consequence of Corollary B.1 we get:

Corollary B.3. The global dimension of the module category shmod≤nk[x[m]] is
min{m,n}.

In particular if I is a strongly stable ideal in k[x[m]] generated by monomials of
degree 2, it has projective dimension one in this category (or zero if it has only a
single strongly stable generator). In contrast, in the ordinary category of modules
over the polynomial ring S = k[x[m]], it may have any projective dimension up to
m− 1.

All of the above may be extended to the poset Hom([m], N̂) giving an incidence
algebra I(m,N). Thus the indecomposable projectives in shmod k[x[m]] are precisely
the principal strongly stable ideals for this ring.

We may also use the correspondence Γ to get shift modules. Given again a
module M = ⊕

f∈Hom([m], ˆ[n])
Mf over the incidence algebra I(m,n) we get a shift

module over Δn+1(m):

ΓM =
⊕

f∈Hom([m], ˆ[n])

(MΓf )
∗.

As above we get:

Proposition B.4. The correspondence M → ΓM gives an isomorphism of cate-
gories of finite dimensional modules

modules over I(m,n) −→ shift modules over Δn+1(m) ∼= shmod≤mk[x[n]].

B.2. Duals. If M = ⊕p∈PMp is a module over an incidence algebra I(P ), we get
a module M∨ over the incidence algebra I(P op) of the opposite poset (where ∗
denotes dual vector space)

M∨ =
⊕

pop∈P op

(M∨)pop :=
⊕
p∈P

(Mp)
∗.

Since Hom([m], ˆ[n]) and Hom([n], ˆ[m]) are opposite posets, by the third diagram of
(8), we get a commutative diagram (modulo identifying the double dual V ∗∗ of a
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finite dimensional vector space with V ).

mod I(m,n)

Γ

�����
���

���
���

�

()∨

��

Λ

��







shmodΔn+1(m) shmodΔm+1(n)

mod I(n,m).

Λ

�� Γ

���������������

B.3. The non-finite case. Consider the poset HomS(N, N̂) of small maps, and its

incidence algebra IS(N, N̂). Again we get a functor

mod IS(N, N̂)
Λ−→ shmod k[xN]

which is an equivalence of categories.
Moreover for the poset HomL(N, N̂) of large maps and its incidence algebra we

get an equivalence of categories

mod IL(N, N̂)
Γ−→ shmod k[xN].

Since HomS(N, N̂) and HomL(N, N̂) are opposite posets, a module

M = ⊕f∈HomS(N,N̂)Mf

over IS(N, N̂) gives a dual module over IL(N, N̂)

M∨ =
⊕

g∈HomL(N,N̂)

(M∨)g :=
⊕

f∈HomS(N,N̂)

(Mf )
∗,

where g = Df .
We obtain a commutative diagram

mod IS(N, N̂)

()∗

��

Λ

����
���

���
���

�

shmod k[xN]

mod IL(N, N̂).

Γ

�������������

Appendix C. The most degenerate ideals

In Section 1 we stated that the strongly stable ideals are the most degenerate
ideals in a polynomial ring (characteristic k is 0). We state this in precise form and
give the argument as it seems not easy to come by in the literature.

The group GL(n + 1) of invertible linear operators on the linear space gener-
ated by the variables acts by coordinate change on homogeneous ideals in I ⊆
k[x0, . . . , xn], where in this appendix k may have any characteristic. Let B =
B(n + 1) be the Borel subgroup of upper triangular matrices of G = GL(n + 1),

those invertible linear maps sending xj �→
∑j

i=1 αijxi, where the αij ∈ k. An ideal
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I is Borel-fixed if g.I = I for every g ∈ B. When char. k = 0 this is the same as I
being strongly stable [24, Prop. 4.2.4].

Let HilbP
n

be the Hilbert scheme of subschemes of the projective space P
n. We

get the action

(24) GL(n+ 1)×HilbP
n

→ HilbP
n

,

where if x corresponds to the ideal I then g.x corresponds to g.I.

Theorem C.1.

(a) The closed orbits of the action (24) are precisely the orbits of Borel-fixed
ideals.

(b) (char. k = 0) Any such orbit has exactly one Borel-fixed ideal.

Note. Part (b) is likely true in arbitrary characteristic but needs a more elaborate
proof.

Proof. (a) Given x ∈ HilbP
n

we get a morphism

G −→ HilbP
n

, g �→ g.x.

When x corresponds to a Borel-fixed ideal, it is fixed by B and so by [27, Sec. 12.1]
we get a morphism

G/B −→ HilbP
n

.

But G/B is a projective variety [27, Section 21.3], hence complete and so the image,

the orbit of x, is a closed subvariety of HilbP
n

[27, Section 21.1].
Conversely suppose an orbit Y of the action (24) is closed, and let Y have the

reduced scheme structure. We get a morphism G × Y → HilbP
n

which factors
through Y (since it is reduced) to give G × Y → Y . The restriction B × Y → Y
has a fixed point by the Borel fixed point theorem [27, Section 21.2]. This fix point
corresponds to an ideal I such that g.I = I for every g ∈ B. So I is a Borel-fixed
ideal, and Y is its orbit by G = GL(n+ 1).

(b) Let I be a strongly stable ideal, and suppose J = g.I is also strongly stable.
We show that I and J are equal. Given g, for each 〈x1, . . . , xi〉 let τ (i) be minimal
such that g.〈x1, . . . , xi〉 ⊆ 〈x1, . . . , xτ(i)〉. Then τ (i) ≥ i. Let S = {i | τ (i) = i}.
Clearly n ∈ S. If τ ′ is the associated function to g−1, it is clear that the associated
S′ must equal S.

Suppose now first S = {n}. We show that I and J are both the ideal xd
n for

some d. Let m =
∏n

p=1 x
ip
p be a minimal strongly stable generator for I. Since

τ (p) > p, for each p < n there is a q = q(p) ≤ p such that the g(xq) has a variable
with index > p if p < n and index n if p = n. Let this index be r = r(p). Then∏n

p=1 x
ip
q(p) is in I by it being strongly stable, and � =

∏n
p=1 x

ip
r(p) is in J , since J is

monomial. If m is not a power of xn, we note that m >st �. By applying the same
argument to g−1 and � we get an element m′ in I with � ≥ m′. But if m is not a
power of xn, this contradicts m being minimal. So m = xd

n for some d, and so also
xd
n is in J , and these ideals must be equal (they contain all monomials of degree d).
Now consider the general case S = {s1 < s2 < · · · < sr = n}. We claim that

every minimal strongly stable generator of I has the form
∏r

u=1 x
ju
su . Then J = g.I

must also have these as generators and so J = g.I. Let m be a minimal generator
for I and writem =

∏r
u=1 mu, where the variables inmu are xj with su−1 < j ≤ su.

By the same type of argument as in the S = {n} case, we will have m′ =
∏r

u=1 x
ju
su

in I where du = degmu. �
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Corollary C.2. (char. k = 0) If I is Borel-fixed and > any term ordering, then
for g in an open subset of GL(n + 1) the initial ideal (the generic initial ideal)
in>(g.I) = I.

Proof. The initial ideal in>(g.I) is the limit at t = 0 of a family of ideals parametrized
by Speck[t] [24, Section 3.2], and whose general member is a coordinate change of
g.I and so of I. Thus in>(g.I) is in the closure of the orbit of g.I and so is in
the orbit of g.I or equivalently of I. But since the generic initial ideal in>(g.I) is
Borel-fixed [14, Chap.15], it is then equal to I. �

Remark C.3. Several people have to their surprise observed Corollary C.2. It is
stated and shown for g in an open subset of GL(n+ 1) in [24, Prop. 4.2.6(b)], and
they attribute it to A. Conca. Theorem C.1 has been known by M. Stillman since
the late 1980’s, who learned it from D. Bayer. He also informed that Theorem
C.1 and Corollary C.2 essentially follow from Borel’s fixed point theorem, as shown
above.

Galligo’s theorem [21] that any ideal degenerates to a Borel ideal and Theorem
C.1 are inspiration for approaches to the classification of Hilbert scheme components
using Borel ideals, [8], [12, 19, 29], and recently [41, 45].
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