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THE HAUSDORFF DIMENSION OF THE HARMONIC

MEASURE FOR RELATIVELY HYPERBOLIC GROUPS

MATTHIEU DUSSAULE AND WENYUAN YANG

Abstract. The paper studies the Hausdorff dimension of harmonic measures
on various boundaries of a relatively hyperbolic group which are associated
with random walks driven by a probability measure with finite first moment.
With respect to the Floyd metric and the shortcut metric, we prove that the
Hausdorff dimension of the harmonic measure equals the ratio of the entropy
and the drift of the random walk.

If the group is infinitely-ended, the same dimension formula is obtained for
the end boundary endowed with a visual metric. In addition, the Hausdorff di-
mension of the visual metric is identified with the growth rate of the word met-
ric. These results are complemented by a characterization of doubling visual
metrics for accessible infinitely-ended groups: the visual metrics on the end
boundary is doubling if and only if the group is virtually free. Consequently,
there are at least two different bi-Hölder classes (and thus quasi-symmetric
classes) of visual metrics on the end boundary.

1. Introduction

Relatively hyperbolic groups can admit several interesting compactifications such
as the Floyd [19], Bowditch [5] and Freudenthal [20] (also called end) compactifica-
tions. The resulting boundaries are compact metrizable spaces on which the groups
act and have rich dynamics in terms of convergence actions. This point of view has
found many applications [3], [24]. In addition, these boundaries can be endowed
with two well-known classes of (quasi-)conformal [8] and harmonic measures [36] so
they are examples of metric measured spaces (X, d, ν). The Hausdorff dimension
Hdimd(ν) of the triple (X, d, ν) is the infimum of the Hausdorff dimensions of ν-full
subsets, so it is a measurement of the largeness of the measure class of ν. Com-
parison of the conformal and the harmonic measures has been an active research
problem with origins in dynamic systems, see [35], [27], [1], [26], [17], [21], [49] to
just name a few.

This paper is devoted to computing the Hausdorff dimension formula for har-
monic measures on various boundaries associated with a random walk with finite
first moment on a non-elementary relatively hyperbolic group. Precisely, we com-
pute the Hausdorff dimension of the harmonic measure ν on the Floyd and Bowditch
boundaries endowed respectively with the Floyd and the Floyd shortcut distances.
We also compute this Hausdorff dimension on the end boundary endowed with a vi-
sual distance whenever the group is infinitely-ended. Up to a parameter depending
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only on the chosen distance, we show that

(1) Hdim(ν) =
h

l
,

where h is the asymptotic entropy and l is the rate of escape in the word metric of
the random walk. See Theorem 1.1 and Theorem 1.3 for accurate statements.

This formula (1) was first obtained by Kaimanovich [33] and Ledrappier [39] on
free groups and then by Le Prince [48] on general hyperbolic groups. A substantial
generalization of Le Prince’s results was given by Tanaka [54] to any proper action
with exponential growth on proper hyperbolic spaces with bounded geometry, and
any acylindrical action on possibly improper hyperbolic spaces. In particular, his
results do apply to both the geometrically finite action of a relatively hyperbolic
group on a proper hyperbolic space, and the acylindrical action on its relative
Cayley graph [43].

However, the former proper action under bounded geometry assumption forces
peripheral subgroups to be virtually nilpotent [12]. This makes a serious limitation
of Tanaka’s result to be applied in this rather general class of groups. Moreover,
visual distances on the Bowditch boundary are very non-canonical, for they can
depend heavily on the choice of a hyperbolic space X on which the group acts, see
[29]. On the other hand, the acylindrical action on the relative Cayley graph does
yield the formula (1) for the harmonic measure on the Gromov boundary of the
relative Cayley graph and where the drift is computed in the relative metric. From
a certain point of view, this is unsatisfactory since the relative metric on the group
is non-proper and the (non-compact) Gromov boundary here is only a part of the
compact Bowditch boundary.

One of our main contributions here is to consider the drift for the word metric
and to compute the Hausdorff dimension associated to the Floyd shortcut distance
on the Bowditch boundary, which only depends on the group and the choice of a
word distance.

1.1. Hausdorff dimension of harmonic measures. Let μ be a probability mea-
sure on a finitely generated group G such that the support supp(μ) generates G as
a semi-group. We call such a measure admissible. The measure defines a μ-random
walk with step transitions given by p(x, y) = μ(x−1y) for x, y ∈ G. Let

Ω := {x = (ωn)n≥0 : ωn ∈ G}
be the trajectory space of the μ-random walk with the probability measure P, which
is the pushforward of the product measure (GN, μN) under the product map GN → Ω
given by

(s1, s2, · · · , sn, · · · ) �→ (1, s1, s1s2, · · · , wn, · · · ),
where ωn = s1 · · · sn.

Denote by

L(μ) =
∑
g∈G

d(1, g)μ(g)

the expectation of d(1, ω1) and more generally by

L(μ∗n) =
∑
g∈G

d(1, g)μ∗n(g)

the expectation of d(1, ωn) where μ∗n is the n-th convolution power of μ. Equiv-
alently, μ∗n is the law of the random variable x �→ ωn. The sequence L(μ∗n) is
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subadditive and so 1
nL(μ

∗n) has a well-defined limit l called the rate of escape
(or drift). Whenever μ has finite first moment (i.e. L(μ) < ∞), Kingman’s sub-
additive ergodic theorem shows that almost surely,

(2) l := lim
n→∞

d(1, ωn)

n
< +∞.

Also define H(μ) =
∑

g∈G μ(g) logμ(g) and H(μ∗n) =
∑

g∈G μ∗n(g) logμ∗n(g).

The sequence H(μ∗n) also is subadditive and so 1
nH(μ∗n) has a well-defined limit

h called the asymptotic entropy. Again, whenever H(μ) is finite, an application of
the ergodic Theorem (see [14] or [35]) shows that

(3) h := lim
n→∞

− log(μ∗n(ωn))

n
< +∞.

The groups G under consideration are assumed to be relatively hyperbolic
throughout. There are many equivalent ways to formulate this notion. To motivate
our results, we use the dynamical definition. An action of G by homeomorphism
on a compact metrizable space M is called convergence if the induced action on
the space of triple points is properly discontinuously. Let (Γ, d) denote the Cayley
graph of G with respect to a finite generating set. Then G is called relatively hy-
perbolic if there exists a Hausdorff compact space M compactifying every Cayley
graph Γ so that the left multiplication of G extends to a minimal geometrically fi-
nite action on the boundary M . See precise definitions in Section 2.1. The compact
space M denoted by ∂BG later on is called Bowditch boundary of G. A relatively
hyperbolic group G is called non-elementary if its Bowditch boundary contains
more than two points. Equivalently, G fixes no finite subset of ∂BG. In such a case,
G is non-amenable. In particular, the rate of escape and the asymptotic entropy
are positive.

There are two natural classes of metrics on the Bowditch boundary. First, by
Yaman [59], ∂BG can be realized as the Gromov boundary of a proper hyperbolic
space X on which G acts via a geometrically finite action. Thus, we can endow ∂BG
with the visual metric constructed using the hyperbolic geometry of X. Second,
the Floyd (shortcut) metric is obtained from the Cayley graph (Γ, d) as follows.
We fix a parameter λ ∈ (0, 1) and a basepoint o ∈ G. Rescaling the length of every
edge e of Γ to λd(o,e) induces a new length metric called the Floyd metric δλ on
Γ. The Cauchy metric completion of (Γ, δλ) is the so-called Floyd compactification
of Γ on which G acts as a convergence action [37]. By the work of Gerasimov and
Potyagailo [23, 24], there exists λ0 such that whenever λ ∈ [λ0, 1), the Bowditch
boundary is an equivariant quotient of the Floyd boundary where the nontrivial
fibers are possible only on bounded parabolic points. The Floyd metric can thus be
pushed forward to obtain the so-called shortcut metric δ̄λ on ∂BG [24]. See more
details in Section 2.2.

In [36], Karlsson proved that almost every trajectory converges to a limit point
in the Floyd boundary, and the hitting measure or harmonic measure νF on the
Floyd boundary gives a model of the Poisson boundary of the μ-random walk [32].
The same discussion applies to the Bowditch boundary which gives another model
of the Poisson boundary when endowed with a harmonic measure denoted by νB.
We are now ready to state the first main result.

Theorem 1.1 (Theorem 3.1). Suppose G is a non-elementary relatively hyperbolic
group and fix a finite generating set for G. Also suppose that μ is an admissible
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probability measure with finite first moment on G. Then there exists λ0 ∈ (0, 1)
such that for every λ ∈ [λ0, 1),

Hdimδλ(νF) = Hdimδ̄λ(νB) =
−1

log λ

h

l
.

Moreover, the measure νB on (∂BG, δ̄λ) and the measure νF on (∂FG, δλ) are exact
dimensional.

Denote by Sn = {g ∈ G : d(1, g) = n} the sphere of radius n in the Cayley graph
(Γ, d). We define the growth rate of (the Cayley graph of) G as

v := lim
n→∞

log �Sn

n
.

The two quantities l and v both depending on the word metric of Γ are related to
the entropy h which only depends on the measure μ by the following fundamental
inequality

h

l
≤ v,

also called the Guivarc’h inequality [13]. This inequality holds for any μ-random
walk.

In [46], it is proved that −v
log λ is the Hausdorff dimension of the Floyd and

Bowditch boundaries. Corollary 1.2 thus follows from the strictness of the fun-
damental inequality established in [17, Theorem 1.3, Theorem 1.6] for certain rel-
atively hyperbolic groups. Recall that μ has finite super-exponential moment if∑

g∈G exp(cd(1, g))μ(g) is finite for every c > 0.

Corollary 1.2. Suppose G is a non-elementary relatively hyperbolic group and μ
is an admissible probability measure on G with finite super-exponential moment.
If one of the parabolic subgroups is virtually abelian of rank at least 2, or if the
Bowditch boundary is homeomorphic to a sphere of dimension at least 2, then

Hdimδ̄λ
(νB) < Hdimδ̄λ

(∂BG).

1.2. Hausdorff dimension of the end boundary and of harmonic measures
with respect to visual metrics. According to a celebrated result of Stallings
[52, 53], any infinitely-ended group G splits nontrivially as an amalgamated prod-
uct A ∗C B or an HNN extension A∗C , where C is a finite group. The action on
the corresponding Bass-Serre tree satisfies the conditions of [5, Definition 2] and
so G is relatively hyperbolic. Moreover, in the former case, the maximal para-
bolic subgroups are exactly the conjugates of A and the conjugates of B. In the
latter case, they are exactly the conjugates of A. In addition to the Floyd and
Bowditch boundary, G can be compactified using the Freudenthal (or end) bound-
ary introduced by Freudenthal [20]. The interplay between the end boundary and
asymptotic properties of random walks is a well-studied subject, see for instance
[44, 45, 58].

Let ∂EG be the end boundary of an infinitely-ended group G. The topology of
the end boundary is independent of the choice of Cayley graph. For every λ ∈ (0, 1),
we define a visual metric, extending the definition of Candellero, Gilch and Müller
[6] for free products. This metric was independently studied by Cornulier in [10].
Fixing a generating set, let Γ be the Cayley graph of G and let ρλ be the visual
metric defined on the end compactification of ∂EG∪Γ. Precisely, define the distance
ρλ(ξ, η) = λn between two ends ξ, η if n is the minimal radius of the ball at a
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basepoint separating ξ and η. A quasi-isometry f induces a homeomorphism f̃
between end boundaries. Moreover, this induced homeomorphism is bi-Hölder : for
some α, β > 0, c > 1 and for all pair (ξ, η) of points,

c−1ρλ(ξ, η)
α ≤ ρλ(f̃(ξ), f̃(η)) ≤ cρλ(ξ, η)

β

which holds more generally for sublinearly bi-Lipschitz equivalence by [9, Corollary
1.4].

Our second main result is analogous to Theorem 1.1 and computes the Hausdorff
dimension of the end boundary and of harmonic measures with respect to visual
metrics. Let us denote by νE the harmonic measure on the end boundary and h, l
the entropy and drift of the μ-random walk. Also, let us denote by v the growth
rate of G.

Theorem 1.3 (Theorem 4.7, Theorem 5.1). Suppose G is a finitely generated group
with infinitely many ends. Also suppose that μ is an admissible probability measure
with finite first moment on G. Then, for every Cayley graph Γ and every λ ∈ (0, 1),

Hdimρλ
(νE) =

−1

log λ

h

l

and

Hdimρλ
(∂EG) =

−v

log λ
.

Remark 1.4. The second equality was proved for free products with a standard
generating set in [6]. Our proof is very different and applies to any infinitely-ended
group with any finite generating set.

The archetypal groups with infinitely many ends are free products of the form
A∗B, where A 	= Z/2Z or B 	= Z/2Z. Using again the strictness of the fundamental
inequality established in [17, Theorem 1.5] for certain free products, we can state
Corollary 1.5.

Corollary 1.5. Suppose G is a free product A ∗ B and assume that A is a non-
virtually cyclic nilpotent group. Let μ be a probability measure on G with finite
super-exponential moment. Then,

Hdimρλ
(νE) < Hdimρλ

(∂EG).

1.3. Doubling property of the end boundary. The study of the harmonic
measure associated with a random walk is closely related to the doubling property
of the involved boundary, see [54, Section 4]. We also refer to [28, Proposition 4.12],
where the doubling property is combined with the so-called shadow lemma to give
a short proof of the formula Hdim(ν) = h/l in the setting of hyperbolic groups. It
is not known whether the Floyd boundary equipped with the Floyd distance and
the Bowditch boundary equipped with the shortcut Floyd distance are doubling,
see [46, Question 1.7]. On the other hand, to give a more complete picture, we
clarify the situation for the end boundary equipped with a visual distance.

A metric space (X, d) is called doubling if there exists a constant N > 0 such
that every ball of radius δ > 0 can be covered by at most N balls of radius δ/2.
Equivalently, for any θ ∈ (0, 1), there exists N(θ) > 0 such that every ball of radius
δ can be covered by at most N(θ) balls of radius θδ. The doubling property is known
to be a bi-Hölder invariant. A measure μ on (X, d) is called doubling if there exists
a constant C such that μ(2B) ≤ Cμ(B) for every ball B, where 2B denotes the ball
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with the same center and a radius twice as large as B. The existence of a doubling
measure on a metric space (X, d) implies that the metric space (X, d) is doubling.
The converse is true for complete metric spaces [30, Thm 13.3].

It is well known that the Patterson-Sullivan measure on the Gromov boundary
of a hyperbolic group is Ahlfors regular, hence doubling, for the Gromov’s visual
metric, so the Hausdorff dimension of the Patterson-Sullivan measure equals that
of the whole boundary, see [8]. One can construct, as in [62], a class of Patterson-
Sullivan measures on the end boundary through the action on the Cayley graph.
Those measures yield quasi-conformal densities without atoms. This motivates
the question whether the Patterson-Sullivan measure is Ahlfors regular or at least
doubling on the end boundary endowed with a visual metric.

Our third main result gives a characterization of the doubling property of the
end boundary for accessible infinitely-ended groups. Such groups admit a splitting
as a graph of groups over finite edge groups so that the vertex groups are either
finite or one-ended. It is a famous result of Dunwoody [15] that finitely presented
groups are accessible.

Theorem 1.6. Let G be a finitely generated, accessible, infinitely-ended group. Let
λ ∈ (0, 1) and endow the end boundary ∂EG of G with the visual metric ρλ. Then,
(∂EG, ρλ) is doubling if and only if G is virtually free.

From the above discussion, Corollaries 1.7 and 1.8 are immediate.

Corollary 1.7. The Patterson-Sullivan measure on the end boundary of an acces-
sible infinitely-ended group is doubling for the visual metric if and only if the group
is virtually free.

The following one addresses an analogous question [54, Question 4.2] in our
setup.

Corollary 1.8. If an accessible infinitely-ended group is not virtually free, then
the harmonic measure νE on the end boundary endowed with a visual metric is not
doubling.

A result of David-Semmes [11, Theorem 15.5] says that a metric space is quasi-
symmetric to the standard Cantor ternary set if and only if it is compact, doubling,
uniformly perfect and uniformly disconnected. Precise definitions of the latter two
can be found in §11.1 and §14.24 in [30]. It is known that a doubling space is
uniformly perfect and an ultrametric space is uniformly disconnected. The end
boundary of a virtually free group with visual metric is doubling by [8] and thus
quasi-symmetric to the standard Cantor ternary set.

By [30, Corollary 11.3], quasi-symmetric maps between uniformly perfect com-
pact spaces are bi-Hölder. However, the converse is not true: bi-Hölder homeo-
morphims are not necessarily quasi-symmetric. Interesting examples are given by
the boundaries of the real hyperbolic space H

4 and the complex hyperbolic space
CH

2 equipped with Gromov’s visual metrics, which are bi-Hölder but not quasi-
symmetric, since they can be distinguished by their conformal dimension. Thus, a
bi-Hölder classification of visual metrics on the end boundary is a reasonable and
interesting problem. We refer the reader to [9, Introduction 1D] for further dis-
cussion. Recalling that the doubling property is a bi-Hölder invariant, we obtain
Corollary 1.9, which answers positively a question of Cornulier [10, Question 1.27].
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Corollary 1.9. The end boundary of an accessible infinitely-ended group is bi-
Hölder equivalent to the standard Cantor ternary set if and only if it is virtually
free.

In particular, the end boundaries of a free group and the free product of two
1-ended groups are not bi-Hölder equivalent.

Inaccessible groups do exist by work of Dunwoody [16]. The proof of Theorem
1.6 fails generally for inaccessible groups, but we can still give a result for such
groups under some additional assumptions, see precisely Proposition 6.1.

Finally, let us compare the visual metric on the end boundary with the Gromov’s
visual metric coming from an action of G on a hyperbolic space X. Fix a splitting
of an infinitely-ended group G over finite groups as a finite graph of groups. As
explained above, by [5, Definition 2], this splitting makes G hyperbolic relative
to the set of vertex groups. Hence, by Yaman [59], G acts via a geometrically
finite action on a proper hyperbolic space X so that the Bowditch boundary is
homeomorphic to the Gromov boundary of X. If G is accessible and the splitting
is terminal, then the end boundary is equivariantly homeomorphic to the Bowditch
boundary, see Section 4.3 for more details. We can also endow the end boundary
with the Gromov’s visual metric coming from the hyperbolic space X on which G
acts. According to [12] and [2], X can be chosen so that this metric is doubling if
and only if the parabolic subgroups are virtually nilpotent. In such a situation, by
Theorem 1.6 the two possible metrics on the end boundary cannot be in the same
bi-Hölder class unless the group is virtually free, for one is doubling and the other
is not.

Corollary 1.10. Assume that G is not virtually free and splits over finite groups as
a finite graph of virtually nilpotent groups. Then, there exists a proper hyperbolic
space X on which G acts via a geometrically finite action such that the visual
metric on the end boundary is not bi-Hölder equivalent to the Gromov’s visual
metric coming from this action.

Remark 1.11. Similarly as in Corollary 1.9, we can derive the following result from
[12]. Let G1 = H1 ∗ Z and G2 = H2 ∗ Z, where H1 is virtually nilpotent and H2 is
one-ended but not virtually nilpotent. Then G1 and G2 admit geometrically finite
actions on proper hyperbolic spaces X1 and X2 with bounded geometry so that
their Gromov boundaries endowed with Gromov’s visual metric are homeomorphic
to the Cantor sets but are not bi-Hölder equivalent, for one boundary is doubling
and not the other.

Overview and organisation of the paper. In Section 2, we review all the
preliminary results we will need in the following. We recall the definition of rela-
tively hyperbolic groups, the Bowditch boundary, the Floyd distance and the Floyd
boundary. We also give more details about the Hausdorff dimension of a finite
measure on a metric space.

Section 3 is devoted to the proof of Theorem 1.1, which treats separately the
upper bound (Proposition 3.6) and lower bound (Proposition 3.13) for the Hausdorff
dimension. The lower bound follows a strategy similar to the one developed by
Tanaka [54]. One of the main tools in [54] is that the random walk sublinearly
tracks geodesics [1, ω∞] on the hyperbolic space X on which the group G acts,
where ω∞ is the limit of the random walk in the Gromov boundary of X.
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In our situation, the Cayley graph of a relatively hyperbolic group G is generally
not hyperbolic anymore, so it cannot be expected that the random walk stay close
to any point on a geodesic [1, ω∞] in the Cayley graph. However, using Maher-
Tiozzo [40] and Tiozzo [56], we can prove that the random walk sublinearly tracks
word geodesics along transition points, which are the points that are not deep in
parabolic subgroups, see Definition 2.2. Along the way, we also prove that the
random walk spends at most sublinear time in parabolic subgroups. Precisely, we
prove the following result. For a given word geodesic α, let Trα be the set of
transition points on α.

Theorem 1.12 (Proposition 3.2, Corollary 3.4). Suppose G is a non-elementary
relatively hyperbolic group and fix a finite generating set for G. Also suppose that
μ is an admissible probability measure with finite first moment on G. Then,

(4) P (sup d(ωn,Trα) = o(n)) = 1,

where the supremum is taken over all geodesics α from 1 to the limit ω∞ of the
random walk in the Bowditch boundary of G. Moreover,

(5) P

(
sup
U∈P

dU (1, ωn) = o(n)

)
= 1,

where P is the set of all left cosets of a chosen full family of conjugacy classes of
parabolic subgroups and where dU (x, y) is the distance between the projections of x
and y on U .

This last result is a weak version (under a finite moment condition) of the results
in [51] for finitely supported random walks. Indeed, it is proved in [51, Theorem 2.3]
that such a random walk spends at most logarithmic time in parabolic subgroups.

With the sublinear tracking of transition points at hand, we use the estimates of
Floyd disks by shadows in [46] to obtain the lower bound of Hausdorff dimension.

In Sections 4 and 5, we prove Theorem 1.3. We first extend the definition of
visual metrics introduced in [6] to any group with infinitely many ends and we
show that

Hdimρλ
(νE) =

−1

log λ

h

l

in Section 4. Our proof is again similar to the proof in [54]. We introduce the
notion of bottleneck: a set V is a bottleneck between two points x and y if any
path from x to y has to pass through a fixed neighborhood of V . We then replace
the sublinear tracking of transition points by the sublinear tracking of bottlenecks,
see precisely Proposition 4.9.

We then prove that

Hdimρλ
(∂EG) =

−v

log λ

in Section 5. The proof follows the outline of an analogous result for the Bowditch
and Floyd boundaries endowed with the Floyd (shortcut) distance [46]. It is well
known that there exists a continuous and surjective map from ∂FG to ∂EG (see
[37] and [21]). We further observe that the Floyd metric dominates the visual
metric through the map. This gives the desired upper bound of ∂EG by the same
bound in [46] on the Hausdorff dimension of ∂FG. Moreover, inspired by transition
points, we use an enhanced version of the notion of bottlenecks introduced above to
construct a sequence of free semi-subgroups of G whose set of ends has Hausdorff
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dimension arbitrarily close to −v
log λ . This proves the lower bound of ∂EG. A technical

result in its proof is Proposition 5.13 saying that endowed with visual metric of
corrected parameter depending on λ, the end boundary ∂ET of free semi-groups
is bi-Lipschitz embedded into ∂EG with visual metric ρλ. This greatly simplifies
the arguments in [46, Section 3] using Patterson-Sullivan measure to estimate the
Hausdorff dimension of ∂ET .

Finally, Section 6 deals with Theorem 1.6. We consider an accessible infinitely-
ended group G. Then, G admits a splitting over finite edge groups as a finite graph
of groups G, so that the vertex groups either are finite or one-ended. If every vertex
group is finite, then G is virtually free so that we can assume that one of the vertex
groups is one-ended. Denote by H such a vertex group. The unique end ξ of H
embeds into the end boundary of G. We then show that for some fixed θ, the ball
of radius λn centered at ξ cannot be covered by N(n) balls of radius θλn, where
N(n) goes to infinity, as n tends to infinity, which concludes the proof.

2. Preliminaries

2.1. Relatively hyperbolic groups. We now properly define relatively hyper-
bolic groups and recall several tools and results that will be used in the paper. Let
G be a finitely generated group. The action of G on a compact Hausdorff space
T is called a convergence action if the induced action on triples of distinct points
of T is properly discontinuous. Since G is countable, T must be metrizable by
[22, Main Theorem]. Equivalently, the action G � T is convergence if and only if
every sequence of distinct elements gn in G contains a subsequence gnk

such that
gnk

· x → a and for all x ∈ X with at most perhaps one exceptional point.
The set of accumulation points ΛG of any orbit G · x (x ∈ T ) is called the limit

set of the action. As long as ΛG has more than two points, it is uncountable and it
is then the unique minimal closed G-invariant subset of T . The action is then said
to be non-elementary. In this case, the orbit of every point in ΛG is infinite. The
action is minimal if ΛG = T .

A point ζ ∈ ΛG is called conical if there is a sequence gn of G and distinct points
α, β ∈ ΛG such that gn · ζ → α and gn · η → β for all η ∈ T \ {ζ}. The point
ζ ∈ ΛG is called bounded parabolic if it is the unique fixed point of its stabilizer in
G, which is infinite and acts cocompactly on ΛG \ {ζ}. The stabilizers of bounded
parabolic points are called maximal parabolic subgroups. The convergence action
G � T is called geometrically finite if every point of ΛG ⊂ T is either conical or
bounded parabolic.

Definition 2.1. Let P be a collection of subgroups of G. We say that G is hy-
perbolic relative to P if there exist some compact Hausdorff space T on which
G acts minimally and geometrically finitely and such that the maximal parabolic
subgroups are exactly the elements of P.

In this situation, Yaman [59] proved that there exists a proper geodesic hyper-
bolic space X on which G acts such that the Gromov boundary of X equivariantly
coincides with T . Further, Bowditch [5] proved that the Gromov boundary of such
a space X is unique up to homeomorphism, hence so is T . We call T the Bowditch
boundary of G and we will denote it by ∂BG in the following. The union G ∪ ∂BG
is called the Bowditch compactification.
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Following Osin [42], we define the relative Cayley graph as follows. We start
with the Cayley graph Γ associated with a finite generating set S. We choose a
system P0 of representatives of conjugacy classes of maximal parabolic subgroups.
Such a system is finite by [5, Proposition 6.10]. The relative Cayley graph Ĝ is
obtained by adding one edge of length 1 between every two elements in the same
left coset of a parabolic subgroup in P0. In other words, setting P0 = {P1, . . . , PN},
the relative Cayley graph Ĝ is the Cayley graph associated with the generating set
S ∪ P1 ∪ · · · ∪ PN . A (quasi-)geodesic in the relative Cayley graph Ĝ is called a

relative (quasi-)geodesic. This graph Ĝ is quasi-isometric to the coned-off graph
introduced by Farb [18] and is hyperbolic in the sense of Gromov.

A sequence gn in G converges to a point ξ in the Gromov boundary ∂Ĝ of Ĝ if
and only if it converges to a conical limit point in the Bowditch compactification
[3, Section 8]. We can thus identify ∂Ĝ with the set of conical limit points. We
refer to [57] for more details on the comparison of these two boundaries.

A very useful tool when studying the geometry of a relatively hyperbolic group
is the notion of transition points on a geodesic.

Definition 2.2. Let γ be a (finite or infinite) geodesic in the Cayley graph of G.
A point v on γ is said to be (ε, R)-deep if there exist g ∈ Γ and P ∈ P0 such that
the R-neighborhood of v in γ is contained in the ε-neighborhood of gP . A point v
on γ is called an (ε, R)-transition point if it is not (ε, R)-deep.

Remark 2.3 (Choice of parameters ε, R). It is well known that the collection of
parabolic cosets G · P0 consists of quasi-convex subsets with bounded intersection.
That is to say, for any ε > 0 there exists R > 0 such that diam(Nε(gP )∩Nε(g

′P ′)) ≤
R. Consequently, an (ε, R)-deep point v must be (ε, R)-deep in a unique parabolic
coset gP , unless the point v is within R/2-distance to one of the endpoints of γ.

The following result of Hruska relates transition points and points on relative
geodesics.

Lemma 2.4 ([31, Proposition 8.13]). For every choice of ε and R as in Remark
2.3, there exists C > 0 such that the following holds. Let α be a (finite or infinite)
geodesic in G and let α̂ be a relative geodesic with the same endpoints. Then,
any point on α̂ is within a distance at most C of an (ε, R)-transition point on α.
Conversely, any (ε, R)-transition point on α is within a distance at most C of a
point on α̂.

2.2. The Floyd distance and the Floyd boundary. We first recall the defi-
nition of the Floyd distance and the Floyd boundary and their relation with the
Bowditch boundary. This boundary was introduced by Floyd in [19] and we also
refer to [36] and [37] for more details.

Let G be a finitely generated group and let Γ denote its Cayley graph associated
with a finite generating set. Let f : N → R be a function satisfying that the sum∑

n≥0 fn is finite and that there exists λ ∈ (0, 1) such that 1 ≥ fn+1/fn ≥ λ for all
n∈N. The function f is then called the rescaling function or the Floyd function.
In the following, we will always choose an exponential Floyd function, that is, the
function f will be of the form f(n) = λn for some λ ∈ (0, 1). Fix a basepoint o ∈ Γ
and rescale Γ by declaring the length of an edge σ to be f(d(o, σ)). The induced
length metric on Γ is called the Floyd distance with respect to the basepoint o and
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Floyd function f and is denoted by δf,o(., .). Whenever f is of the form f(n) = λn,
we will write δλ,o = δf,o and if o = 1, δλ = δf,o.

The Floyd compactification Γ
F
of Γ is the Cauchy completion of Γ endowed with

the Floyd metric. The Floyd boundary is then defined as ∂FΓ = Γ
F \ Γ. Different

choices of basepoints yield bi-Lipschitz homeomorphisms of the Floyd compactifi-
cations. However, the topology may depend on the choice of the generating set and
the rescaling function. Keeping in mind f(n) = λn and a choice of Cayley graph,
we will also call G∪∂FΓ the Floyd compactification of G by abuse of language and
we will write ∂FG = ∂FΓ.

The cardinality of the Floyd boundary is 0, 1, 2 or uncountable. Moreover, it
is 2 if and only if the group G is virtually infinite cyclic, see [37, Proposition 7].
Following Karlsson, we say that the Floyd boundary is trivial if it is finite. We will
only have to deal with groups with nontrivial Floyd boundary.

Finally, as mentioned in Section 1, whenever the Floyd boundary is nontrivial,
G acts on it as a convergence action, see [37, Theorem 2]. Also, whenever the Floyd
boundary is nontrivial, for any probability measure μ with finite first moment on
G and whose support generates G as a semi-group, the random walk driven by μ
almost surely converges to a point in the Floyd boundary. Letting νF be the law
of the limit point, the pair (∂FG, νF ) is a model for the Poisson boundary, see
[36, Section 6, Corollary].

We now assume that G is non-elementary relatively hyperbolic. We denote by
∂BG its Bowditch boundary. The following is due to Gerasimov.

Theorem 2.5 ([23, Map Theorem]). There exists λ0 ∈ (0, 1) such that for every
λ ∈ [λ0, 1), the identity of G extends to a continuous and equivariant surjection φ
from the Floyd compactification to the Bowditch compactification of G.

Actually, Gerasimov only stated the existence of the map φ for one Floyd function
f0 = λn

0 , but then Gerasimov and Potyagailo proved that the same result holds
for any Floyd function f ≥ f0, see [24, Corollary 2.8]. They also proved that
the preimage of a conical limit point is reduced to a single point and described
the preimage of a parabolic limit point in terms of the action of G on ∂FG, see
precisely [24, Theorem A]. From now on, the parameter λ will always be assumed
to be contained in [λ0, 1).

The Floyd distance can be transferred to a distance on the Bowditch boundary
using the map φ. The resulting distance is called the shortcut metric and we denote
it by δ̄λ. It is the largest distance on the Bowditch boundary satisfying that for
every ξ, ζ ∈ ∂FG,

(6) δ̄λ(φ(ξ), φ(ζ)) ≤ δλ(ξ, ζ).

We refer to [25, Section 4] for more details on its construction. The next couple of
lemmas will be used later on.

Lemma 2.6 (Visibility lemma [37]). For every fixed λ, c > 0, there exists a function
ϕ : R≥0 → R≥0 such that for any v ∈ G and any (λ, c)-quasi-geodesic γ in Γ, the
following holds. If δλ,v(γ) ≥ κ, then d(v, γ) ≤ ϕ(κ).

Note that [37] only deals with geodesics, but the proof applies to quasi-geodesic
with fixed parameters, see [24] where this and more general cases are discussed.

The big shadow Π(g,R) at g is the set of boundary points ξ in the Bowditch
boundary such that there exists a geodesic ray [1, ξ] intersecting the ball B(g,R).
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Lemma 2.7 ([46, Lemma 3.14, Lemma 3.15]). For every choice of ε and R as in
Remark 2.3, the following holds. Let ξ be a conical limit point in the Bowditch
boundary. Consider a geodesic γ between 1 and ξ and consider any point g on this
geodesic. There exist C1, C2 such that

Π(g,R) ⊂ Bδ̄λ(ξ, C1r)

and if, in addition, g is an (ε, R)-transition point on γ, then

Bδ̄λ(ξ, C2r) ⊂ Π(g,R),

where r = λd(1,g).

Actually, [46, Lemma 3.16] also states that the above statement is true for the
Floyd distance, but we will only need to use it for the shortcut distance in estimating
the lower bound of Hausdorff dimensions (see Lemma 3.8 and Proposition 3.13).

Lemma 2.8. For every g ∈ G, there exists a constant cg > 0 such that the following
inclusions hold. For every point ξ in the Floyd boundary and for every r ≥ 0,

Bδλ(gξ, c
−1
g r) ⊂ gBδλ(ξ, r) ⊂ Bδλ(gξ, cgr).

For every point ξ in the Bowditch boundary,

Bδ̄λ(gξ, c
−1
g r) ⊂ gBδ̄λ(ξ, r) ⊂ Bδ̄λ(gξ, cgr).

Proof. First, a change of a base point induces a bi-Lipschitz inequality for the Floyd
distance: for every x, y in the Floyd compactification, for any basepoints o, o′ ∈ G,

λd(o,o′) ≤ δλ,o(x, y)

δλ,o′(x, y)
≤ λ−d(o,o′),

see [46, (2)]. Now, by definition, the same is true of the shortcut distance, see
precisely [46, (3)].

We only give the proof of the lemma for the Floyd distance, the proof for the
shortcut distance is exactly the same. Let ζ ∈ Bδλ(ξ, r). We need to prove that
gζ ∈ Bδλ(gξ, cgr) for some cg. Note that δλ,g(gζ, gξ) = δλ,1(ζ, ξ), so that by the
above discussion,

λd(1,g) ≤ δλ,1(gξ, gζ)

δλ,1(ξ, ζ)
≤ λ−d(1,g).

This proves that δλ,1(gξ, gζ) ≤ λ−d(1,g)r and so the right inclusion in the lemma

holds for cg = λ−d(1,g). We immediately deduce the left inclusion, using g−1. �

2.3. Hausdorff dimension of measures. Let (X, d) be a metric space and κ be
a Borel measure on X.

Definition 2.9. The Hausdorff dimension of κ is the smallest possible Hausdorff
dimension of a set of full κ-measure:

Hdim(κ) = inf{Hdim(E), κ(Ec) = 0}.
When we want to insist on the choice of the distance, we will write Hdimd(κ).

Evaluating the Hausdorff dimension of a set can be a difficult task, so the fol-
lowing characterization of the Hdim(κ) as the essential supremum of the local
dimensions of κ is very useful. Recall that the essential supremum κ − sup f of a
function f is defined as the infimum of the constants C such that f ≤ C κ-almost
everywhere.
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Proposition 2.10 ([41, Corollary 8.2]). Let κ be a Borel measure on a metric
space X. Then,

Hdim(κ) = κ− sup lim inf
r→0

log κ(B(x, r))

log r
.

Definition 2.11. A measure κ on a metric space X is exact dimensional if for
κ-almost every x, the above lim inf is a limit, that is, for κ-almost every x,

lim
r→0

log κ(B(x, r))

log r
= Hdim(κ).

We will also use the following notation:

Hdim(κ) = κ− sup lim sup
r→0

log κ(B(x, r))

log r
.

By definition, Hdim(κ) ≤ Hdim(κ). Let us say a few words about our strat-
egy for evaluating the Hausdorff dimensions of harmonic measures ν. We will

first prove that for ν-almost every x, we have lim supr→0
log ν(B(x,r))

log r ≤ −1
log λ

h
l , so

that Hdim(ν) ≤ −1
log λ

h
l . We will then prove that for ν-almost every x, we have

−1
log λ

h
l ≤ lim infr→0

log ν(B(x,r))
log r , so that −1

log λ
h
l ≤ Hdim(ν). This will both prove

that Hdim(ν) = −1
log λ

h
l and that ν is exact dimensional.

3. Harmonic measures on the Floyd and the Bowditch boundaries

Let G be a finitely generated non-elementary relatively hyperbolic group and let
μ be a probability measure with finite first moment on G. Throughout this section,
we consider the harmonic measure denoted by νB on the Bowditch boundary ∂BG
equipped with the shortcut distance δ̄λ and the harmonic measure νF on the Floyd
boundary ∂FG with the Floyd distance δλ.

Our goal in this section is to prove Theorem 3.1.

Theorem 3.1. For any λ ∈ [λ0, 1) with λ0 ∈ (0, 1) given by Theorem 2.5, we have

Hdimδ̄λ(νB) =
−1

log λ

h

l

and, for any λ ∈ (0, 1),

Hdimδλ(νF ) =
−1

log λ

h

l
.

Moreover, those two measures are exact-dimensional.

3.1. Sublinear deviation from transition points. We denote by Ĝ the relative
Cayley graph of G. We fix large enough ε > 0 and R > 0 satisfying the conclusions
of Lemma 2.4 and Lemma 2.7. Whenever α is a geodesic in the Cayley graph of
G, we denote by Trε,R α, or simply by Trα the set of (ε, R)-transition points on α.
We denote by ωn the random walk driven by μ at time n and by ω∞ its almost
sure limit in the Bowditch boundary.

Proposition 3.2. With these notations, we have

P (sup d(ωn,Trα) = o(n)) = 1,

where the supremum is taken over all geodesics α from 1 to ω∞.
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Proof. We follow the strategy of [56]. We introduce the function f defined by

f(ω) = sup d(1,Tr α̂),

where the supremum is taken over all geodesics α̂ between ω−∞ and ω∞, where
ω−∞ is the limit of the reflected random walk, see [40, Section 4.1].

Claim 3.3. The function f is measurable and is almost surely finite.

Proof of the claim. First, according to [40, Theorem 1.1], the exit points ω∞ and
ω−∞ are conical limit points and their laws ν and ν̌ are non-atomic. Since bounded
parabolic points are countable, it follows that ω∞ and ω−∞ almost-surely are dis-
tinct and so there exists a bi-infinite relative geodesic joining them. Hence, the
distance (in the Cayley graph) between 1 and such a relative geodesic is finite.
According to Lemma 2.4, any point on a relative geodesic is within a finite (and
actually uniformly bounded) distance of a transition point on a geodesic in the
Cayley graph, so f is almost surely finite.

We now prove that f is measurable. Recall that ∂Ĝ is the Gromov boundary
of the relative Cayley graph that we identify with the set of conical limit points in
the Bowditch boundary ∂BG. We just need to prove that the function

f̃ : (ξ, ζ) ∈ ∂Ĝ× ∂Ĝ �→ sup d(1,Trαξ,ζ)

is measurable, where the supremum is taken over all word geodesics αξ,ζ from ξ to

ζ. We follow the proof of [56, Lemma 12]. Note that f̃ takes the value +∞ when
ξ = ζ. Since there are no atoms at conical points, it can be extended to a function
that we still denote by f̃ on the double Bowditch boundary ∂BG× ∂BG. To prove
that f̃ is measurable, we just need to prove that for every R ≥ 0, the set

{(ξ, ζ) ∈ ∂BG× ∂BG, f̃(ξ, ζ) > R}
is measurable.

Recall the Bowditch compactification is a metrizable compact space containing
the group G as an open and dense set. Choosing an arbitrary metric and taking
a finite cover of ∂BG made of balls of radius 1/k, k ∈ N, we construct a countable
collection of open sets Un such that the sets Un∩∂BG form a countable base for the
topology of ∂BG. Moreover, for each R ≥ 0, only finitely many sets Un intersect
the ball B(1, R) and for each sequence nk going to infinity, the intersection ∩kUnk

contains at most one point. For fixed R ≥ 0, say that a pair of open sets (U, V )
avoids the ball B(1, R) if there exist u ∈ U ∩ G and v ∈ V ∩ G and there exists
a geodesic γ from u to v such that the ball B(1, R) does not intersect Tr γ. Let
us define SR = {(Un, Um) such that (Un, Um) avoids the ball B(1, R)}. This is a
countable collection of pairs of open sets. By definition,

{(ξ, ζ) ∈ ∂BG× ∂BG, f̃(ξ, ζ) > R} ⊂
⋂
N≥1

⋃
min(n,m)≥N

(Un,Um)∈SR

Un × Um.

Conversely, consider (ξ, ζ) in this intersection and assume that f̃(ξ, ζ) < +∞. Then,
there are sequences of points gnk

, respectively hmk
, converging to ξ, respectively

ζ and there is a geodesic γk from gnk
to hnk

such that B(1, R) does not intersect

Tr γk. Now, since f̃(ξ, ζ) < +∞, there exists a geodesic from ξ to ζ intersecting
some big ball B(1, R′) for some R′ = R′

ξ,ζ . Moreover, up to taking R′ large enough,

all geodesics γk also enter B(1, R′). Thus, Arzelá-Ascoli Theorem allows us to
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choose a subsequence of geodesics γkl
converging to a geodesic γ from ξ to ζ, as

l tends to infinity. We can also assume that the subgeodesic of γkl
contained in

B(1, R′) is constant. In particular, the limit geodesic γ also satisfies that B(1, R)

does not intersect Tr γ. Hence, f̃(ξ, ζ) > R. This proves that

{(ξ, ζ) ∈ ∂BG× ∂BG, f̃(ξ, ζ) > R} =
⋂
N≥1

⋃
min(n,m)≥N

(Un,Um)∈SR

Un × Um

and so {(ξ, ζ) ∈ ∂BG× ∂BG, f̃(ξ, ζ) > R} is measurable. �
Note that f(Tnω) = d(ωn,Tr[ω−∞, ω∞]), so that |f(Tω)− f(ω)| ≤ d(1, ω1). We

deduce that the function ω �→ f(Tω) − f(ω) is integrable, since the random walk
has finite first moment. Thus, [56, Lemma 7] shows that 1

nf(T
nω) almost surely

converges to 0. Finally, consider a geodesic α0 from 1 to ω∞ and a geodesic α̂0

from ω−∞ to ω∞. Then, with probability one, there exists a transition point xn

on α̂0 such that 1
nd(ωn, xn) converges to 0. We now use that geodesic triangles

are thin along transition points. Precisely, according to [17, Lemma 2.4], xn is
within a uniformly bounded distance of a transition point either on α0 or on a
geodesic from 1 to ω−∞. Note that ωn converges to ω∞ and that 1

nd(1, ωn) almost
surely converges to l. Hence, xn also converges to ω∞ and so for large enough n,
it cannot be within a bounded distance of a geodesic from 1 to ω−∞. This proves
that 1

nd(ωn,Trα0) also almost surely converges to 0. Using again [17, Lemma 2.4],

we see that 1
n supα d(ωn,Trα) ≤ 1

nd(ωn,Trα0) + C for some uniform C. This
concludes the proof. �

We now deduce that the projection on parabolic subgroup is almost surely sub-
linear. We choose a full subset P0 of representatives of conjugacy classes of maximal
parabolic subgroups. According to [5, Proposition 6.10], such a set P0 is finite. In
the following, we will denote by P the set of all left cosets of elements of P0. Let
U ∈ P. Whenever x, y ∈ G, we set dU (x, y) = d(πU (x), πU (y)), where πU is the
projection on U and where d is the distance in the Cayley graph of G. Our goal is
to prove Corollary 3.4.

Corollary 3.4. With the above notations, we have

P

(
sup
U∈P

dU (1, ωn) = o(n)

)
= 1.

Before proving Corollary 3.4, note the following.

Lemma 3.5. The sequence fn = supU∈P dU (1, ωn) is subadditive. That is, for
every n,m ≥ 1, we have

fn+m ≤ fn + fm ◦ Tn.

Proof. Consider some U ∈ P. Then, dU (1, ωn+m) ≤ dU (1, ωn) + dU (ωn, ωn+m),
which we can rewrite dU (1, ωn+m) ≤ dU (1, ωn)+dω−1

n U (1, ω
−1
n ωn+m). In particular,

dU (1, ωn+m) ≤ sup
U∈P

dU (1, ωn) + sup
U∈P

d(1, ω−1
n ωn+m) = fn + fm ◦ Tn.

This is true for all U ∈ P, which concludes the proof. �
According to Kingman’s Theorem, 1

nfn almost surely converges to some constant
lP that we call the parabolic linear drift. We just need to prove that lP = 0 to
prove Corollary 3.4.
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Proof of Corollary 3.4. By definition,

sup
U∈P

dU (ωn, ω2n) = sup
U∈P

dω−1
n U (1, ω

−1
n ω2n) = sup

U∈P
dU (1, ω

−1
n ω2n)

and since ω−1
n ω2n and ωn follow the same law, 1

n supU∈P dU (ωn, ω2n) also almost
surely converges to lP .

Combining this with Proposition 3.2, we see that for every positive ε and η,
there exists Nε,η such that with probability at least 1− ε, for all n ≥ Nε,η , we have
simultaneously

(a) supα d(ωn,Trα) ≤ ηn, where the supremum is taken over all geodesics α
from 1 to ω∞,

(b) |supU∈P dU (ωn, ω2n)− lPn| ≤ ηn,
(c) |supU∈P dU (1, ωn)− lPn| ≤ ηn.

Fix ε and η and set N = Nε,η. For every n ≥ N , there exists a transition point (with
fixed parameters) xn on a geodesic αn from 1 to ω∞, such that d(ωn, xn) ≤ ηn.
Then, since for every U ∈ P and for every x, y, we have dU (x, y) ≤ d(x, y) + c for
some fixed c,

sup
U∈P

dU (1, xn) ≤ sup
U∈P

dU (1, ωn) + d(ωn, xn) + c ≤ lPn+ 2ηn+ c

and similarly,

sup
U∈P

dU (xn, x2n) ≤ lPn+ 3ηn+ 2c.

Also,

sup
U∈P

dU (1, ω2n) ≤ sup
U∈P

dU (1, x2n) + ηn+ c.

By definition, x2n is a transition point on a geodesic α2n from 1 to ω∞. Let δ > 0
and consider U ∈ P such that dU (1, x2n) ≥ supU∈P dU (1, x2n)−δ. Then, according
to [50, Lemma 1.13, Lemma 1.15], the geodesic α2n enters a fixed neighborhood
of U and the first point, respectively last point, in this neighborhood is within a
bounded distance of πU (1), respectively πU (x2n). Now, xn also is a transition point
on αn with the same endpoints as α2n, so it is within a uniformly bounded distance
of a transition point x̃n on α2n. There are two possibilities: the geodesic α2n enters
the neighborhood of U either before or after x̃n. In the former case, we see that
dU (1, x2n) ≤ dU (1, xn) + c′ for some fixed constant c′. In the latter case, we see
that dU (1, x2n) ≤ dU (xn, x2n) + c′. In any case, we have that

dU (1, x2n) ≤ max{dU (1, xn), dU (xn, x2n)}+ c′ ≤ lPn+ 3ηn+ 2c+ c′.

Since this is true for every δ > 0, we have supU∈P dU (1, x2n) ≤ lPn+3ηn+2c+ c′,
hence finally, with probability at least 1− ε,

sup
U∈P

dU (1, ω2n) ≤ lPn+ 4ηn+ 3c+ c′.

Since ε and η are arbitrary, this proves that almost surely,

lim sup
n→∞

1

2n
sup
U∈P

dU (1, ω2n) ≤
1

2
lP .

Therefore, lP ≤ 1
2 lP and so lP = 0. �
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3.2. Upper-bound for the Hausdorff dimension. In this subsection, we first
prove the following.

Proposition 3.6. Under the assumptions of Theorem 3.1, we have

Hdimδ̄λ(νB) ≤
−1

log λ

h

l

and

Hdimδλ(νF ) ≤
−1

log λ

h

l
.

The proof is inspired from the proof of Le Prince for hyperbolic groups [47]. We
first show that we only need to deal with the harmonic measure on the Floyd bound-
ary. Let φ be the map from the Floyd boundary to the Bowditch boundary given
by Theorem 2.5. This map is surjective, equivariant and continuous. Moreover, the
preimage of a conical limit point consists of a singleton.

Lemma 3.7. With the same notations, we have φ∗νF = νB.

Proof. Recall that a measure κ on a set X endowed with an action of G is called
μ-stationary if it satisfies that for every measurable set A ⊂ X,

κ(A) =
∑
g∈G

κ(g−1A)μ(g).

Combining [36, Section 6, Theorem] with [34, Theorem 2.4], we get that the har-
monic measure νF on the Floyd boundary is μ-stationary. Since the map φ is equi-
variant, φ∗νF also is μ-stationary. Now, νB is the only μ-stationary measure on the
Bowditch boundary, so that φ∗νF = νB. Indeed, this can be seen by verifying that
the Bowditch compactification satisfies the conditions of [34, Theorem 2.4], which
is done for some examples of relatively hyperbolic groups in [34, Section 9]. This
also follows immediately from the general results of Maher and Tiozzo [40, Theo-
rem 1.1] that νB is a unique μ-stationary probability measure, since the Bowditch
boundary is the Gromov boundary of a hyperbolic space on which G acts non-
elementarily. �

We deduce Lemma 3.8.

Lemma 3.8. With the above notations, we have

Hdimδ̄λ(νB) ≤ Hdimδλ(νF)

and

Hdimδ̄λ(νB) ≤ Hdimδλ(νF ).

Proof. By (6), δ̄λ ≤ δλ on the set of conical limit points. Hence, for every point ξ
such that φ(ξ) is a conical limit point,

νB (φ(B(ξ, r))) ≤ νB(B(φ(ξ), r)).

Since νB = φ∗νF , νB (φ(B(ξ, r))) = νF
(
φ−1 ◦ φ(B(ξ, r))

)
. We thus get

νF (B(ξ, r)) ≤ νF
(
φ−1 ◦ φ(B(ξ, r))

)
≤ νB(B(φ(ξ), r)).

This is true for every point ξ such that φ(ξ) is a conical limit point. Since the
map φ is surjective and νB gives full measure to the set of conical limit points, this
concludes the proof. �
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We thus only need to show that

Hdimδλ(νF ) ≤
−1

log λ

h

l

to prove Proposition 3.6.
We denote by ωn the random walk driven by μ at time n. Let Ω = GN≥0 be the

trajectory space of the random walk. We also denote by x = (e, ω1, . . . , ωn, . . . ) ∈ Ω
a sample path, i.e. a trajectory of the random walk starting from the identity 1.
Recall that the random walk ωn almost surely converges to a point ω∞ in the Floyd
boundary.

Lemma 3.9. For P-almost every x = (ωn), we have that

1

n
d(ωn, ωn+1) −→

n→+∞
0.

Proof. Note that d(ωn, ωn+1) = d(1, gn+1) where gn are the increments of the
random walk. In particular, the random variables d(ωn, ωn+1) are independent,
identically distributed and are integrable, since μ has finite first moment. It follows
from the law of large numbers that

1

n

n∑
k=0

d(ωk, ωk+1) −→
n→∞

L = E(d(1, ω1)) < +∞.

In particular,

1

n
d(ωn, ωn+1) =

1

n

n∑
k=0

d(ωk, ωk+1)−
1

n

n−1∑
k=0

d(ωk, ωk+1) −→
n→∞

L− L = 0.

This concludes the proof. �
As a corollary, we have the following.

Lemma 3.10. For P-almost every x = (ωn), we have that for every geodesic γn
from ωn to ωn+1,

1

n
d(1, γn) −→

n→∞
l.

Proof. Let γn be such a geodesic. Then, we have d(1, γn) ≤ d(1, ωn) + d(ωn, ωn+1)
and similarly, we have d(1, ωn) ≤ d(1, γn) + d(ωn, ωn+1). Since 1

nd(1, ωn) almost

surely converges to l by (2) and 1
nd(ωn, ωn+1) almost surely converges to 0 by

Lemma 3.9, we have that 1
nd(1, γn) also almost surely converges to l. �

For every ε,N > 0, we let ΩN
ε be the set of trajectories x such that for every

n ≥ N , we have

(a) d(1, γn) ≥ (l − ε)n
(b) − log μ∗n(ωn) ≤ (h+ ε)n, and
(c) d(ωn, ωn+1) ≤ n

Observe that for every δ > 0, there exists Nε,δ such that

P(Ω
Nε,δ
ε ) ≥ 1− δ.

Indeed, this follows immediately from the almost sure convergence of the following
limits

1

n
d(1, γn) −→

n→∞
l,

1

n
d(ωn, ωn+1) −→

n→∞
0,

−1

n
log μ∗n(ωn) −→

n→∞
h,
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where the last one is called the Shannon-McMillan-Breiman Theorem and is given
by (3).

To simplify, we set Ωε,δ = Ω
Nε,δ
ε . Also, for fixed x, we let Cn

x be the set of
trajectories x′ such that ω′

n = ωn. Finally, for ξ in the Floyd boundary and r > 0,
we set

D(ξ, r) = {x : δλ(ω∞, ξ) ≤ r}.

Lemma 3.11. There exists a set Λε,δ ⊂ Ωε,δ of measure at least 1 − 2δ on which
the quantity

P(Cn
x ∩ Ωε,δ)

μ∗n(ωn)

admits a positive limit. In particular, for every x = (ωn) ∈ Λε,δ, we have

lim sup
n→∞

1

n
logP(Cn

x ∩ Ωε,δ) = lim sup
n→∞

1

n
log μ∗n(ωn).

The proof can be found within the proof of [33, Theorem 1.4.1]. We rewrite it
for convenience.

Proof. First note that P(Cn
x ) = μ∗n(ωn). So

P(Cn
x∩Ωε,δ)

μ∗n(ωn)
is the conditional proba-

bility of Ωε,δ with respect to Cn
x that we denote by P(Ωε,δ|Cn

x ). We introduce the
σ-algebra A≥n of sample paths determined by the coordinates ωk, k ≥ n. The tail
σ-algebra A∞ is then the intersection of the non-increasing sequence of σ-algebras
A≥n. There is a projection from the path space to the tail boundary that we denote
by tail. We refer to [32] for more details. We let P(A|tail(x)) be the conditional
probability P(A|A∞) evaluated at the sample path x.

The Markov property and the conditional probabilities convergence theorem
show that P(Ωε,δ|Cn

x ) converges to P(Ωε,δ|tail(x)), see [33, (1.4.4)]. Now, let

Λε,δ = {x ∈ Ωε,δ,P(Ωε,δ|tail(x)) > 0}.
We have

E(P(Ωε,δ|tail(x))) = P(Ωε,δ).

Moreover,

E(P(Ωε,δ|tail(x))) = E(P(Ωε,δ|tail(x)) · 1Λε,δ
) + E(P(Ωε,δ|tail(x)) · 1Ωc

ε,δ
).

Since P(Ωε,δ|tail(x))) ≤ 1 for P-almost every x, we get

P(Ωε,δ) = E(P(Ωε,δ|tail(x))) ≤ P(Λε,δ) + 1− P(Ωε,δ)

that we rewrite as P(Λε,δ) ≥ 2P(Ωε,δ) − 1. Therefore, P(Λε,δ) ≥ 1 − 2δ, which
concludes the proof. �

Lemma 3.12. There exists M ≥ 0 such that the following holds. For fixed ε and
δ, for every x ∈ Λε,δ and every n ≥ Nε,δ, we have

Cn
x ∩ Ωε,δ ⊂ D(ω∞,Mnλn(l−ε)).

Proof. Fix x ∈ Λε,δ and let x′ ∈ Cn
x ∩ Ωε,δ. Then, ωn = ω′

n. Moreover, for every
m ≥ Nε,δ, letting γ′

m be a geodesic from ω′
m to ω′

m+1, we have d(1, γ′
m) ≥ (l− ε)m.

Thus there exists a path of length d(ω′
m, ω′

m+1) which stays at distance at least
(l − ε)m from 1. Since we also have d(ωm, ωm+1) ≤ m, this proves that

(7) δλ(ω
′
m, ω′

m+1) ≤ d(ω′
m, ω′

m+1)λ
(l−ε)m ≤ mλ(l−ε)m.
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Consequently, for any m > n,

δλ(ω
′
n, ω

′
m) ≤

m−1∑
k=n

kλ(l−ε)k ≤
∑
k≥0

(n+ k)λ(l−ε)(n+k).

Note that∑
k≥0

(n+ k)λ(l−ε)(n+k) = nλ(l−ε)n
∑
k≥0

λ(l−ε)k + λ(l−ε)n
∑
k≥0

kλ(l−ε)k.

Since λ < 1, both sums
∑

k≥0 λ
(l−ε)k and

∑
k≥0 kλ

(l−ε)k are finite. Hence, there
exists M0 such that ∑

k≥0

(n+ k)λ(l−ε)(n+k) ≤ M0nλ
(l−ε)n,

so that δλ(ωn, ωm) ≤ M0nλ
(l−ε)n. This holds for every m > n, so we have

δλ(ω
′
n, ω

′
∞) ≤ M0nλ

(l−ε)n.

Clearly, we also have x′ ∈ Cn
x ∩ Ωε,δ and so δλ(ωn, ω∞) ≤ M0nλ

(l−ε)n. Finally,
since by definition of Cn

x , ωn = ω′
n, we get

δλ(ω∞, ω′
∞) ≤ 2M0nλ

(l−ε)n.

This proves the lemma, setting M = 2M0. �
We can now finish the proof of Proposition 3.6.

Proof. Our goal is to prove that for νF -almost every ξ,

(8) lim sup
r→0

log νF (B(ξ, r))

log r
≤ −1

log λ

h

l
.

It is thus enough to prove that for P-almost every trajectory x = (ωn), we have

lim sup
r→0

log νF (B(ω∞, r))

log r
≤ −1

log λ

h

l
,

since νF is the law of the random variable ω∞. This shall follow from the statement
that for every ε and δ, for every x ∈ Λε,δ, we have

lim sup
r→0

log νF (B(ω∞, r))

log r
≤ −1

log λ

h+ ε

l − ε
.

Indeed, P(Λε,δ) ≥ 1− 2δ and ε and δ can be chosen arbitrarily small.

Let x ∈ Λε,δ. We need to estimate lim supr→0
log νF (B(ω∞,r))

log r . Since the function

x ∈ R �→ Mxλ(l−ε)x is eventually decreasing, we can replace r with Mnλ(l−ε)n and
make n go to infinity. Thus, it suffices to prove that

lim sup
n→∞

log P(D(ω∞,Mnλ(l−ε)n))

log λ(l − ε)n
≤ −1

log λ

h+ ε

l − ε
.

In other words, we will prove that for every x ∈ Λε,δ,

lim sup
n→∞

logP(D(ω∞,Mnλ(l−ε)n))

n
≥ −(h+ ε).

Using Lemma 3.12, we see that

lim sup
n→∞

logP(D(ω∞,Mnλ(l−ε)n))

n
≥ lim sup

n→∞

logP(Cn
x ∩ Ωε,δ)

n
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and using Lemma 3.11, we see that

lim sup
n→∞

logP(Cn
x ∩ Ωε,δ)

n
= lim sup

n→∞

log μ∗n(ωn)

n
.

Finally, since x ∈ Λε,δ ⊂ Ωε,δ, for large enough n, log μ∗n(xn)
n ≥ −(h+ ε), so finally

lim sup
n→∞

logP(D(ω∞,Mnλ(l−ε)n))

n
≥ −(h+ ε),

which concludes the proof. �

3.3. Lower-bound for the Hausdorff dimension. The goal of this subsection
is the following.

Proposition 3.13. Under the assumptions of Theorem 3.1, we have

Hdimδ̄λ(νB) ≥
−1

log λ

h

l

and

Hdimδλ(νF ) ≥
−1

log λ

h

l
.

Proof. We only prove the result for the measure νB on the Bowditch boundary. Ac-
cording to Lemma 3.8, the result for the harmonic measure on the Floyd boundary
will then follow.

Proposition 3.2 shows there almost surely exists a transition point on a geodesic
between 1 and ω∞ such that 1

nd(ωn, xn) converges to 0. Also, −1
n log μ∗n(ωn) almost

surely converges to h by (3) and 1
nd(1, ωn) almost surely converges to l by (2). For

every ε > 0 and N , we let ΩN
ε be the set of trajectories x such that for every n ≥ N ,

(a) d(ωn, xn) ≤ εn
(b) (l − ε)n ≤ d(1, xn) ≤ (l + ε)n
(c) − log μ∗n(ωn) ≥ (h− ε)n

Then, for every ε, P(∪NΩN
ε ) = 1. Hence, there exists Nε such that P(ΩNε

ε ) ≥ 1− ε.
We set Ωε = ΩNε

ε .
We will both need to deal with the set Ωε and the sets ΩN

ε in the following. We
fix N and we fix a trajectory x ∈ ΩN

ε and so we also fix the corresponding sequence
of transition points xn on the geodesic between 1 and ω∞. Let Π(g,R) be the big
shadow at g, that is, the set of boundary points ξ in the Bowditch boundary such
that there exists a geodesic ray [1, ξ] intersecting B(g,R).

First of all, observe that for all n large enough (i.e. bigger than N and Nε),

P(x′ ∈ Ωε ∩ {ω′
∞ ∈ Π(xn, R)}) ≤ P(x′ ∈ Ωε : ω

′
n ∈ B(xn, 2R+ 3nε)).

Indeed, if the limiting point ξ′ = ω′
∞ lies in the shadow Π(xn, R), then there is

a point gn on a geodesic from 1 to ξ′ entering the ball B(xn, R), so d(1, gn) is
between (l − ε)n − R and (l + ε)n + R. For every x′ ∈ ΩN

ε with transition points
x′
n on [1, ω′

∞], we also have that d(1, x′
n) is between (l − ε)n and (l + ε)n, so

we deduce that d(x′
n, gn) ≤ R + 2εn. By (a), d(ω′

n, x
′
n) ≤ εn, so we must have

d(ω′
n, xn) ≤ d(ω′

n, gn) + d(gn, xn) ≤ 2R+ 3εn as desired.
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By the defining property (c) of Ωε, we have μ∗n(ω′
n) ≤ exp(−n(h − ε)) for any

n > Nε, so

P(x′ ∈ Ωε, ω
′
n ∈ B(xn, 2R+ 3nε))

≤ P(μ∗n(ω′
n) ≤ exp(−n(h− ε)), ω′

n ∈ B(xn, 2R+ 3nε))

and since μ∗n is the law of ω′
n, the right-hand side of this inequality can be written

as the following sum ∑
u∈B(xn,2R+3nε),

μ∗n(u)≤exp(−n(h−ε))

μ∗n(u).

We thus get

P(x′ ∈ Ωε, ω
′
n ∈ B(xn, 2R+ 3nε)) ≤ �B(1, 2R+ 3nε) exp(−n(h− ε))

and since balls grow at most exponentially, there exists v such that

P(x′ ∈ Ωε, ω
′
n ∈ B(xn, 2R+ 3nε)) ≤ C exp(3nεv) exp(−n(h− ε)).

Hence, for any N and any fixed x in ΩN
ε , we have

(9) lim inf
n→∞

logP(Ωε ∩Π(xn, R))

−n
≥ h− ε− 3vε.

Following [54], we use conditional expectations with respect to the σ-algebra S,
which is the smallest σ-algebra such that the map bnd : x �→ ω∞ is measurable.
Beware that the σ-algebra S and the σ-algebra A∞ that we used in the proof
of Proposition 3.6 can be different. We refer to the discussion in the proof of [33,
Theorem 1.4.1] for more details. We let P(A|bnd(x)) be the conditional probability
P(A|S) evaluated at the sample path x. This is denoted by Pbnd(x)(A) in [54]. Since
the harmonic measure νB is the pushforward of the measure P by the map bnd,
one can define a family of conditional probabilities ξ ∈ ∂BG �→ P(A|ξ) such that
for every measurable set A ∈ ∂BG and every measurable set B in the path-space of
the random walk,

P(B|π−1(A)) =
1

ν(A)

∫
A

P(B|ξ)dνB(ξ).

We then define the set

Fε = {ξ ∈ ∂BG,P(Ωε|ξ) ≥ ε}.

Disintegrating along νB, we have

1− ε ≤ P(Ωε) =

∫
∂BG

P(Ωε|ξ)dνB(ξ)

=

∫
Fε

P(Ωε|ξ)dνB(ξ) +
∫
F c

ε

P(Ωε|ξ)dνB(ξ)

≤ νB(Fε) + ε.

Therefore, νB(Fε) ≥ 1− 2ε. We now evaluate νB(Fε ∩ Π(xn, R)):

νB(Fε ∩Π(xn, R)) = P(ω∞ ∈ Fε ∩Π(xn, R))

≤ P(Ωε ∩Π(xn, R)) + P(Ωc
ε ∩ {ω∞ ∈ Fε ∩ Π(xn, R)}).
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By definition, for ξ ∈ Fε, we have P(Ωc
ε|ξ) ≤ 1− ε, so

P(Ωc
ε ∩ {ω∞ ∈ Fε ∩ Π(xn, R)}) =

∫
Fε∩Π(xn,R)

P(Ωc
ε|ξ)dνB(ξ)

≤ (1− ε)νB(Fε ∩ Π(xn, R)).

Consequently,
ε · νB(Fε ∩ Π(xn, R)) ≤ P(Ωε ∩ Π(xn, R)).

Thus, (9) yields for every N and every x ∈ ΩN
ε

lim inf
n→∞

log νB(Fε ∩ Π(xn, R))

−n
≥ h− ε− 3vε.

According to Lemma 2.7, there exists some constant C > 0 such that

B(ω∞, Crn) ⊂ Π(xn, R),

where rn = λd(1,xn) satisfies λ(l+ε)n ≤ rn ≤ λn(l−ε). Therefore,

lim inf
n→∞

log νB(Fε ∩B(ω∞, Crn))

logCrn
≥ h− ε− 3vε

− log λ(l + ε)
.

Thus, for any N and any fixed x in ΩN
ε , we have

lim inf
r→0

log νB(Fε ∩B(ω∞, r))

log r
≥ h− ε− 3vε

− log λ(l + ε)
.

This is true for all N and P(∪NΩN
ε ) = 1. Hence, for νB-almost every ξ,

(10) lim inf
r→0

log νB(Fε ∩B(ξ, r))

log r
≥ h− ε− 3vε

− log λ(l + ε)
.

We can now conclude the proof, exactly like Theorem 1.1 is deduced from The-
orem 3.3 in [54]. Let us give the details for completeness.

Consider the restriction νB,ε of νB to Fε. Then, (10) yields

Hdim(νB,ε) ≥
h− ε− 3vε

− log λ(l + ε)

and so

Hdim(νB) ≥
h− ε− 3vε

− log λ(l + ε)
.

In particular, the set

Gε =

{
ξ ∈ ∂BG, lim inf

r→0

log νB(B(ξ, r))

log r
≥ h− ε− 3vε

− log λ(l + ε)
− ε

}

has positive νB-measure. We show that Gε is G-invariant. First, recall that the
measure νB is μ-stationary. Since μ generates G as a semi-group, for any g ∈ G,
there exists n such that μ∗n(g−1) > 0 and μ∗n(g) > 0. Note that νB also is μ∗n

stationary, so that for any measurable set A,∑
g∈A

νB(gA)μ∗n(g) = νB(A).

In particular, there exists cg,μ > 0 such that

c−1
g,μνB ≤ g−1νB ≤ cg,μνB.

Together with Lemma 2.8, this implies that

νB(B(ξ, r)) ≤ cg,μνB(B(gξ, cgr))
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for any ξ ∈ Gε. By taking the limit inf, the constant cg,μ disappears and thus
gξ ∈ Gε. Hence, Gε is indeed G-invariant.

The measure νB is ergodic and νB(Gε) > 0. Consequently, the set Gε has full
measure. We thus get that for νB-almost every ξ,

lim inf
r→0

log νB(B(ξ, r))

log r
≥ h− ε− 3vε

− log λ(l + ε)
− ε.

Since ε is arbitrary, this shows that for νB-almost every ξ,

(11) lim inf
r→0

log νB(B(ξ, r))

log r
≥ −1

log λ

h

l

and thus concludes the proof. �

We now conclude the proof of Theorem 3.1.

Proof. By Propositions 3.6 and 3.13, it remains to show the exact dimensionality
of νB and νF . According to (8) and Lemma 3.7, for νF -almost every ξ,

lim sup
r→0

log νB(B(φ(ξ), r))

log r
≤ lim sup

r→0

log νF (B(ξ, r))

log r
≤ −1

log λ

h

l
.

Similarly, (11) shows that for νB-almost every ξ,

lim inf
r→0

log νF (B(ξ, r))

log r
≥ lim inf

r→0

log νB(B(φ(ξ), r))

log r
≥ −1

log λ

h

l
.

This shows that both νB and νF are exact dimensional. �

4. Groups with infinitely many ends

In this section, we compute the Hausdorff dimension of the harmonic measure
on the end boundary equipped with a visual metric

4.1. The end compactification. Let Γ be an infinite, connected, locally finite
graph. For every edge e in Γ, we denote by e0 its endpoints. More generally, for
every set of edges E, we denote by E0 the set of vertices that are endpoints of an
edge in E. We will also write Γ0 for the set of all vertices of Γ.

Let E be a finite set of edges. Denote by Γ \E the spanning graph of the vertex
set of Γ0 \E0: removing all edges sharing one vertex with one edge in E. Let C(E)
be the set of infinite components of Γ \ E. By definition, there exists at least one
edge e for every component C ∈ C(E) such that e0 ∩C 	= ∅ and e0 ∩E0 	= ∅. Note
that two components C1, C2 in C(E) are distinct if and only if every path between
any two points x ∈ C1, y ∈ C2 intersects E0. Finally, two points x, y are called
separated by E if x and y lie in distinct components of Γ \ E.

We can define the end compactification of Γ as follows. Consider the directed
system F(Γ) of all finite sets of edges in Γ with E < F if E ⊂ F . There is a natural
map from C(F ) to C(E) induced by inclusions of infinite components. The end
boundary ∂EΓ is the inverse limit of the directed system C(E) over all finite sets of
edges E in Γ. By definition, a point ξ ∈ ∂EΓ is a collection of infinite components
CE(ξ) of Γ \ E for every E ∈ F(Γ), such that CE(ξ) ∩ CE′(ξ) is infinite for any
two E,E′. We call ξ an end of Γ. For every E, the component CE(ξ) of C(E) is
uniquely determined by ξ and by abuse of language, we say that CE(ξ) contains
ξ that we denote by ξ ∈ CE(ξ). We can then extend the definition of separated
pair of points to ends. Two ends ξ 	= ζ are separated by E if CE(ξ) 	= CE(ζ), or
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equivalently if ξ /∈ CE(ζ). Note that any two distinct ends are necessarily separated
by some E ∈ F(Γ).

The end boundary ∂EΓ defines a compactification of Γ in the following way. One
can extend the discrete topology on the set of vertices Γ0 to a metrizable topology

on Γ
E
= Γ ∪ ∂EΓ which makes it a compact space and such that Γ is dense in Γ

E
.

Moreover, a sequence of points xn ∈ Γ converges to an end ξ ∈ ∂EΓ if and only if
for every E ∈ F(Γ), we have that xn lies in CE(ξ) for all but finitely many n.

The topological closure C̄E(ξ) of a component CE(ξ) in the compactification
Γ ∪ ∂EΓ is the union of CE(ξ) with all ζ ∈ ∂EΓ for which CE(ξ) = CE(ζ). Hence,
a component C contains ξ if ξ ∈ C̄. Let CEi

(ξ) be a sequence of strictly shrink-
ing components, that is, CEi+1

(ξ) ⊂ CEi
(ξ). Then their closures C̄Ei

(ξ) yield a
neighborhood basis of ξ.

Let ξ be an end. By definition, there exists a sequence of finite subsets En such
that CEn+1

(ξ) ⊂ CEn
(ξ). Following Woess [58], we say that ξ is a thin end if the

sets En can be chosen so that supn diam(En) is finite. We say that it is M -thin if
supn diam(En) ≤ M .

Then end compactification of a finitely generated group G is the end compactifi-
cation of its Cayley graph with respect to a finite generating set. The quasi-isometry
extends to a homeomorphism between end boundary, so the topology of the end
boundary does not depend on the choice of this generating set and so it is well-
defined. We denote by ∂EG the end boundary of G. This compactification was first
introduced by Freudenthal and is also called the Freudenthal compactification. We
refer to [20] for more details.

An infinitely-ended group is called accessible if it admits a splitting over finite
edge groups as a finite graph of one ended or finite vertex groups. Finitely presented
groups are accessible [15]. The accessibility is a quasi-isometric invariant by the
following graphical characterization [55]. An infinitely-ended group is accessible if
and only if there exists k > 0 such that any two distinct ends are separated by k
edges in a Cayley graph.

Taking limits of geodesics and using Arzelá-Ascoli Theorem, we see that the end
boundary is a visual boundary: any end is connected to any point x in the group
by an infinite geodesic and any two distinct ends are connected by a bi-infinite
geodesic. Finally, by results of Stallings [53], G acts on ∂EG as a convergence
group, see also [4, Lemma 5.1].

4.2. Visual metrics. Let G be a finitely generated group with infinitely many
ends. In [6], Candellero, Gilch and Müller defined a visual metric on the set of
ends of a free product. We extend their definition to our situation. Fix a basepoint
o ∈ G and fix 0 < λ < 1. We define a distance ρo,λ on ∂EG as follows. Consider the
sequence of finite edge sets Bn, where Bn is the edge set of the subgraph spanned
by the vertices in the closed ball of radius n around o. The inverse limit of the
directed system {C(Bn)} is homeomorphic to ∂EΓ.

Let ξ, ζ be two distinct ends. Let n be the minimal integer such that ξ and ζ
belong to different components in C(Bn), then define ρλ,o(ξ, ζ) = λn. When the
basepoint is the neutral element 1 of the group, we will simply write ρλ(ξ, ζ).

By definition, the visual metric is ultrametric: for any triple of points x, y, z ∈
∂EΓ,

ρλ(x, y) ≤ max{ρλ(x, z), ρλ(z, y)}.
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Lemma 4.1 follows directly from the definition.

Lemma 4.1. For every x, y ∈ ∂EΓ in the end boundary and for any choice of
basepoints o, o′ ∈ G,

λd(o,o′) ≤ ρλ,o(x, y)

ρλ,o′(x, y)
≤ λ−d(o,o′).

As a consequence, we get the following, which is proved exactly like Lemma 2.8.

Lemma 4.2. For every g ∈ G, there exists a constant cg such that for every end ξ
and for every r ≥ 0,

Bρλ
(gξ, c−1

g r) ⊂ gBρλ
(ξ, r) ⊂ Bρλ

(gξ, cgr).

It is well known that the Floyd boundary covers the end boundary, see for
example [21, Proposition 11.1] and [37]. Lemma 4.3 allows us to compare the Floyd
distance with the visual distance.

Lemma 4.3. The identity of G extends to a 1-Lipschitz surjective equivariant map
φ from the Floyd boundary to the end boundary with the same parameter λ ∈ (0, 1):

ρλ(φ(ξ), φ(ζ)) ≤ δλ(ξ, η)

for any ξ, ζ ∈ ∂FG.

Proof. Consider x, y ∈ G such that ρλ(x, y) = λn, where n is the minimal integer
such that x, y are contained in distinct components of C(Bn). Then any path from
x to y has to intersect B(1, n), so δλ(x, y) ≥ λn. Hence, for any x, y ∈ G,

(12) δλ(x, y) ≥ ρλ(x, y).

Consider now ξ ∈ ∂FG and let xn be a sequence in G converging to ξ. Then, xn

is Cauchy for the Floyd distance and so (12) shows it is also Cauchy for the visual
distance. This proves that xn converges to a point φ(ξ) ∈ ∂EG, which is uniquely
determined by ξ. By construction, (12) extends to points in the boundary and φ is
equivariant. �

4.3. The end boundary of accessible groups. As explained in Section 1, any
infinitely-ended group is relatively hyperbolic. If it is accessible, the action on its
end boundary is geometrically finite. Precisely, the peripheral structure is given
by the “terminal” splitting of the accessible group as a finite graph of groups over
finite edge groups so that every vertex group is either one-ended or finite. So for
accessible groups, the end boundary is homeomorphic to the Bowditch boundary,
whose construction is briefly recalled below.

Let T be the corresponding Bass-Serre tree of the above terminal splitting. Fol-
lowing Bowditch [3], we can put a compact metrizable topology on T 0 ∪ ∂ET , for T
is a fine hyperbolic graph. A similar construction is also given for any (non-)locally
finite graph by Cartwright-Soardi-Woess [7].

As a perfect compact space, the Bowditch boundary or the end boundary is
homeomorphic to the subspace of T 0 ∪ ∂ET minus the isolated points coming from
the vertices with finite stabilizer. According to the definition of a geometrically
finite action, every point in the Bowditch boundary is either conical or bounded
parabolic. The set of conical points is exactly ∂ET and bounded parabolic points
are the vertices in T with infinite stabilizer, which are the subsets of ends in ∂EG
corresponding to the left cosets of stabilizer in the Caylay graph of G. Finally,
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let us remark that these two types of limit points are precisely thin end and thick
end introduced and studied in [55]. The proof of this fact can be found in [21,
Proposition 7.8]

4.4. Hausdorff dimension of the harmonic measure. In this section, we con-
sider a finitely generated group G with infinitely many ends and we consider a
probability measure μ with finite first moment on G. We denote by ωn the ran-
dom walk driven by μ. It is a classical fact that ωn almost surely converges to an
end ω∞, and that denoting by νE the law of ω∞, the end boundary (∂EG, νE) is a
model for the Poisson boundary. See for example [34, Theorem 8.4]. We call νE
the harmonic measure on ∂EG.

Proposition 4.4. There exists M > 0 such that νE gives full measure to the set of
M -thin ends.

Proof. It is proved in [58, Theorem 4.1] that the set of ends of a locally finite graph
with infinitely many ends can be decomposed into the union Ω0 ∪Ω′, where Ω0 is a
dense set in the set of ends consisting ofM -thin ends. When the graph is the Cayley
graph of a finitely generated group, the set Ω0 can be constructed as follows. As
explained in Section 1, the group G splits as an amalgamated product A∗C B or an
HNN extension A∗C . In the former case, G is hyperbolic relative to the conjugates
of A and B and in the latter case, it is hyperbolic relative to the conjugates of
A. In both cases, every element of G can be written with elements of A, B and
C with a normal form, see [58, (9.2),(9.4)] and Ω0 can be described as the set of
infinite words with respect to this normal form, see [58, (9.3),(9.5)]. Moreover, the
set Ω′ is constructed as the union of translates of the set of ends of A and B, see
the remarks after [58, (9.3),(9.5)]. We can thus construct a continuous, surjective
and equivariant map ψ from the set of ends ∂EG to the Bowditch boundary of G
with respect to the relatively hyperbolic structure described above. The map ψ
is obtained by collapsing the translate g∂EA of the set of ends of A to the point
gα in the Bowditch boundary, where α is the parabolic limit point fixed by A and
similarly with B. It follows from this construction that Ω0 is mapped to conical
limit points. Note that the measure νE is μ-stationary and since ψ is equivariant,
the pushforward ψ∗νE also is μ-stationary on the Bowditch boundary. As explained
in the proof of Lemma 3.7, the harmonic measure νB on the Bowditch boundary is
the unique μ-stationary measure, hence ψ∗νE = νB. Moreover, νB gives full measure
to conical limit points. Consequently,

νE(Ω
′) ≤ νE(ψ

−1(ψ(Ω′))) = νB(ψ(Ω
′)) = 0.

This concludes the proof. �

Definition 4.5 is inspired by the work of Derriennic [13] in free groups.

Definition 4.5. Let x, y ∈ G ∪ ∂EG and let M ≥ 0. We say that a set U ⊂ G is
an M -bottleneck between x and y if diam(U) ≤ M and any path from x to y has
to pass through U .

Similar sets are called transitional sets by Derriennic in [13]. However, to avoid
confusion with the terminology “transition points” in relatively hyperbolic groups,
we used the name bottleneck, which will also be more suited to our use later.
Lemma 4.6 follows from our definitions.
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Lemma 4.6. Let ξ be an M -thin end for M > 0. Then there exists an infinite
sequence of distinct sets En in G with supn≥1{diam(En)} ≤ M such that any path
from 1 to ξ has to pass successively through each En.

Moreover, for any x 	= ξ ∈ G∪ ∂EG, there exists n0 > 0 such that any path from
x to ξ has to pass successively through each En, for n ≥ n0. In particular, for all
but finitely many n > 0, the sets En are M -bottlenecks between x and ξ.

Our goal in the remainder of this section is to compute the Hausdorff dimension
of the harmonic measure with respect to the visual distance. Precisely, we prove
Theorem 4.7.

Theorem 4.7. Let (∂EG, νE) be as above and let h, l be the entropy and the rate
of escape of the μ-random walk on G. Then, for any λ ∈ (0, 1),

Hdimρλ
(νE) =

−1

log λ

h

l
.

Moreover, νE is exact dimensional.

We will follow the strategy that we used for the harmonic measures on the
Bowditch and the Floyd boundaries. We first give an upper bound.

Proposition 4.8. For νE -almost every ξ in ∂EG,

lim sup
r→0

log νE(Bρλ
(ξ, r))

log r
≤ −1

log λ

h

l
.

Proof. The proof of Proposition 3.6 for the Floyd distance again applies here. The
only place where the Floyd distance is used there is in the estimate (7), which states
that whenever x, x′ are joined by a geodesic which stays at distance at least m1

from 1 and which satisfies that d(x, x′) ≤ m2, we have

δλ(x, x
′) ≤ m2λ

m1 .

This is again true replacing the Floyd distance δλ by the visual distance ρλ, since
we have the better estimate

ρλ(x, x
′) ≤ λm1 .

Also note that for λ ≥ λ0, we can give a direct proof. We use the map φ given by
Lemma 4.3. By [34, Theorem 8.3], νE is the only μ-stationary measure on ∂EG.
Hence, φ∗νF = νE . The result thus follows from the same result for the measure
νF , which is given by (8). �

To obtain a lower bound, we will use the following result, which says that the
random walk almost surely sublinearly tracks bottlenecks.

Proposition 4.9. There exists M ≥ 0 such that for P-almost every x = (ωn) ∈ Ω,
there exists a sequence of M -bottlenecks Un between 1 and ω∞ satisfying that

1

n
d(ωn, Un) −→

n→∞
0.

Proof. We fix M ≥ 0 as in Proposition 4.4. For every x, y ∈ G ∪ ∂EG, we denote
by Bn(x, y) the set of M -bottlenecks between x and y. We introduce the function
f defined by f(ω) = d(1,Bn(ω−∞, ω∞)), where ω−∞ is the limit of the reflected
random walk in ∂EG. Since the measure νE is stationary, it is non-atomic. Indeed,
since G is non-amenable, it cannot fix any finite set on ∂EG (see [58, Theorem 2.3]).
The atomless of νE follows from the following well-known fact; we include a proof
for completeness.
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Claim 4.10. Let G be a group acting on a measured space (X,κ) such that κ is
μ-stationary and G does not fix any finite set on X. Then, κ has no atoms.

Proof of the claim. If this were the case, then we would choose an atom x ∈ X
of maximal measure. Since the support supp(μ) generates the group G as a semi-
group, we would necessarily have κ(g−1x) = κ(x) for every g, for κ is μ-stationary,
so

κ(x) =
∑
g∈G

κ(g−1x)μ(g) ≤
∑
g∈G

κ(x)μ(g).

Hence, the orbit of x would be finite, which is impossible since the group G does
not fix any finite set on X. �

Hence, ω−∞ and ω∞ are almost surely distinct. According to Proposition 4.4,
ω−∞ and ω∞ are almost surelyM -thin ends, so Lemma 4.6 shows that Bn(ω−∞, ω∞)
is non-empty. The proof of Claim 3.3 thus shows that f is measurable and is almost
surely finite.

Note that f(Tnω) = d(ωn,Bn(ω−∞, ω∞)) and so |f(Tω) − f(ω)| ≤ d(1, ω1).
Hence, [56, Lemma 7] shows that 1

nf(T
nω) almost surely converges to 0. Thus,

there almost surely exists a sequence of M -bottlenecks Un between ω−∞ and ω∞
such that 1

nd(ωn, Un) converges to 0.
To conclude, we just need to show that for large enough n, Un is also an M -

bottleneck between 1 and ω∞. Since d(1, ωn) almost surely converges to l, we can
assume that for large enough n, d(1, ωn) ≥ (l− ε)n and so d(1, Un) goes to infinity.
Fix a path α from ω−∞ to 1. Then for large enough n, say n ≥ n0, α does not
intersect Un. Consider now any path β from 1 to ω∞. Concatenating α and β yields
a path from ω−∞ to ω∞ which thus crosses Un. By construction, we necessarily
have that β intersects Un for n ≥ n0. �

We can now prove the following result.

Proposition 4.11. For νE -almost every ξ in ∂EG,

lim inf
r→0

log νE(Bρλ
(ξ, r))

log r
≥ −1

log λ

h

l
.

Proof. We choose a sequence of points xn ∈ Un, where Un is a sequence of M -
bottlenecks between 1 and ω∞ given by Proposition 4.9. For every ε > 0 and N ,
we let ΩN

ε be the set of trajectories x = (ωn) ∈ Ω such that for every n ≥ N ,

(a) d(ωn, xn) ≤ εn,
(b) (l − ε)n ≤ d(1, xn) ≤ (l + ε)n, and
(c) − log μ∗n(ωn) ≥ (h− ε)n.

Almost surely, 1
nd(ωn, xn) converges to 0, 1

nd(1, ωn) converges to l by (2), and
−1
n log μ∗n(ωn) converges to h by (3). Hence, there exists Nε such that P(ΩNε

ε ) ≥
1− ε. We set Ωε = ΩNε

ε .
We fix N and we fix a trajectory x ∈ ΩN

ε and so we also fix the corresponding
sequence of points xn. For g ∈ G, we define the partial shadow �(g,M) to be the
set of ξ ∈ ∂EG such that g lies in an M -bottleneck between 1 and ξ. For n ≥ N
and n ≥ Nε, we have

P(x′ ∈ Ωε ∩ {ω′
∞ ∈ �(xn,M)}) ≤ P(x′ ∈ Ωε, ω

′
n ∈ B(xn, 4M + 3nε)).

Indeed, assume that xn lies in anM -bottleneck V between 1 and ω′
∞. Fix a geodesic

from 1 to ω′
∞. This geodesic enters V at a point gn which satisfies d(gn, xn) ≤ M .
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In particular, d(1, gn) is between (l−ε)n−M and (l+ε)+M . There is also a point on
this geodesic that enters the bottleneck U ′

n at a point g′n, satisfying d(g′n, x
′
n) ≤ M ,

and so we also have that d(1, g′n) is between (l − ε)n −M and (l + ε) +M . Thus,
d(gn, g

′
n) ≤ 2M + 2εn and since d(ω′

n, x
′
n) ≤ εn, we get d(ω′

n, xn) ≤ 4M + 3εn as
required. On Ωε, we have μ∗n(ω′

n) ≤ exp(−n(h− ε)) for any n > Nε and μ∗n is the
law of ω′

n, so

P(x′ ∈ Ωε, ω
′
n ∈ B(xn, 4M + 3nε)) ≤ �B(1, 4M + 3nε) exp(−n(h− ε))

and since balls grow at most exponentially, there exists v such that

P(x′ ∈ Ωε, ω
′
n ∈ B(xn, 4M + 3nε)) ≤ exp(4vM) exp(3nεv) exp(−n(h− ε)).

Hence, for any N and any fixed x in ΩN
ε , we have

(13) lim inf
n→∞

logP(Ωε ∩ �(xn,M))

−n
≥ h− ε− 3vε.

We can conclude exactly like in the proof of Proposition 3.13, replacing Lemma 2.8
by Lemma 4.2 and replacing Lemma 2.7 by the following result, which asserts that
partial shadows are sandwiched by balls. �

As before, we define the big shadow Π(g,M) as the set of ξ ∈ ∂EG such that
there is a geodesic between 1 and ξ which intersects the ball of radius M centered
at g. By definition, �(g,M) ⊂ Π(g,M) for M > 0.

Lemma 4.12. Let ξ ∈ ∂EG and r ≥ 0. Let g be any point on a geodesic between 1
and ξ. Then for any M ≥ 0 there exist C1, C2 > 0 such that

Π(g,M) ⊂ Bρλ
(ξ, C1r)

and if, in addition, g lies in an M -bottleneck between 1 and ξ, then

Bρλ
(ξ, C2r) ⊂ �(g,M),

where r = λd(1,g).

Proof. Let ζ ∈ Π(g,M). Denote by h a point on a geodesic α from 1 to ζ such that
d(g, h) ≤ M . Also denote by β the geodesic from 1 to ξ in the statement of the
lemma. Consider the path γ connecting ζ to ξ obtained by following α from ζ to h,
then connecting h to g by a geodesic and following β from g to ξ. By construction,
d(1, α) ≥ d(1, g) − M . Hence, ξ and ζ must lie in the same component of C(Bn)
where n = d(1, g)−M . Therefore, ρλ(ξ, ζ) ≤ λn+1 ≤ C1r where C1 = λ−M−1 and
so ζ ∈ Bρλ

(ξ, C1r).
To prove the second inclusion, set C2 = λM+1 and consider ζ ∈ Bρλ

(ξ, C2r).
Write ρλ(ξ, ζ) = λn, where n is the minimal integer such that ξ and ζ lie in different
components of C(Bn), so that n ≥ d(1, g) + M + 1. Then, there exists a path
α from ξ to ζ that enters B(1, n) but not B(1, n − 1). In particular, we have
d(g, α) ≥ d(1, α) − d(1, g) > M . Let β be any path from 1 to ζ and consider the
path γ obtained by concatenating α and β, which needs to cross B(g,M), since g
is in a bottleneck between 1 and ξ. By construction of α, β necessarily intersects
B(g,M), so ζ ∈ �(g,M). �

Finally, note that Proposition 4.11 yields

Hdimρλ
(νE) ≥

−1

log λ

h

l
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and Proposition 4.8 yields

Hdimρλ
(νE) ≤ Hdimρλ

(νE) ≤
−1

log λ

h

l
.

Hence, Hdimρλ
(νE) =

−1
log λ

h
l . Moreover, combining these two propositions implies

that for νE -almost every ξ,

log νE(B(ξ, r))

log r
−→
r→0

Hdimρλ
(νE)

and so νE is exact dimensional. This concludes the proof of Theorem 4.7.

5. Dimension of the end boundary

Recall that G is a finitely generated group with infinitely many ends, and (Γ, d)
is the Cayley graph with respect to a finite generating set. In this section, we
compute the Hausdorff dimension of the end boundary ∂EG endowed with a visual
metric. Define the volume growth of a subgroup H < G as

vH = lim sup
n→∞

log �{g ∈ H : d(o, g) ≤ n}
n

.

We prove the following.

Theorem 5.1. Let G be a finitely generated group with infinitely many ends. Then,
for every λ ∈ (0, 1), we have

Hdimρλ
(∂EG) = − vG

log λ
.

By Lemma 4.3, we have Hdim(∂EG) ≤ Hdim(∂FG) and [46, Lemma 4.1] shows
that for any λ ∈ (0, 1), we have Hdim(∂FG) ≤ − vG

log λ . The remainder of the

section is devoted to proving Proposition 5.2, which will thus conclude the proof of
Theorem 5.1.

Proposition 5.2. With the same notations, we have

Hdimρλ
(∂EG) ≥ − vG

log λ
.

5.1. Preparatory lemmas. Recall that by [4, Lemma 5.1], the action of G on
the end boundary is a convergence action. Hence, we can consider conical points
in ∂EG and hyperbolic elements in the sense of [4] corresponding to this action.
Recall that an element is elliptic if it has finite order and that an infinite order
element is parabolic if it fixes exactly one point on ∂EG and hyperbolic if it fixes
exactly two points on ∂EG. Moreover, if g is parabolic and fixes ξ, then for any
ζ, gn · ζ converges to ξ as n → ±∞, see [3, Section 2] for more details. It follows
from Lemma 4.3 that if g is parabolic for the action on the Floyd boundary, then
it is parabolic for the action on the end boundary. Thus, an element g ∈ G which
is hyperbolic for the action on the end boundary is also hyperbolic for the action
on the Floyd boundary, and by [60, Lemma 7.2], such an element is contracting.

Lemma 5.3. Let f be a hyperbolic element with two fixed points ξ− 	= ξ+ ∈ ∂EG.
Then there exists a finite set Ef ∈ F(Γ) of edges such that for every large enough
n0 > 0 and for every n ≥ 2n0, the two elements 1 and fn are separated by fn0Ef .
Moreover, d(1, fn0Ef ) ≥ d(1, fn0)− c0 for some uniform constant c0.
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Proof. The two distinct ends ξ− 	= ξ+ are separated by a finite set Ef ∈ F(Γ), and
since they are fixed by any power of f , ξ− 	= ξ+ are separated by En := fnEf for
any n. Note that n ∈ Z �→ fn is a quasi-geodesic so that the two half-rays converge
to the corresponding ends ξ− and ξ+. Thus, whenever n0 is large enough, f−n0

and fn−n0 are separated by Ef for any n ≥ 2n0. Up to translation, 1 and fn are
thus separated by En0

. Moreover, d(1, fn0) ≤ d(1, fn0Ef ) + supx∈Ef
d(fn0x, fn0)

and since Ef is fixed, the second term on the right-hand side is uniformly bounded,
which concludes the proof. �

Let F be a set of three pairwise independent hyperbolic elements in G. We write
Fn = {fn : f ∈ F} for any n ≥ 1.

Lemma 5.4. There exists an integer n1 > 0 with the following property for every
n ≥ n1. For any g, h ∈ G, there exist f ∈ F and a finite set Ef of edges separating
1 and fn and such that any path between g−1 and fnh has to cross Ef .

Proof. Since hyperbolic elements are contracting, by [61, Lemma 2.14], there exist
n1, ε > 0 with the following property: for any n > n1 and fn ∈ Fn the points
1 and fn stay within the ε-neighborhood of any geodesic [g−1, fnh], so that the
path γ = [g−1, 1][1, fn][fn, fnh] is a (1, 4ε)-quasi-geodesic. Let E be provided by
Lemma 5.3 for the element f . Hence, for large enough n0, assuming that n ≥ 2n0,
the two elements 1 and fn are separated by Ef := fn0E.

For given λ, c, we choose n0 to satisfy d(1, Fn0) > c+ λdiam(Ef ) + c0.

Claim 5.5. If γ is a (λ, c)-quasi-geodesic path containing [1, fn] for some λ, c > 0,
then the endpoints of γ are separated by Ef .

Proof of the Claim. Denote by γ1 and γ2 the corresponding subpaths before and
after [1, fn]. Observe that γ1 and γ2 are disjoint with Ef . Indeed, assume by
contradiction that x ∈ γ1∩E 	= ∅, the case for γ2 being symmetric. By Lemma 5.3,
the elements 1, fn are separated by Ef and d(1, Ef ) ≥ d(1, fn0) − c0. We then
choose y ∈ [1, f ] ∩ Ef so that d(1, y) ≥ d(1, fn0) − c0. This yields a subpath α of
γ whose endpoints x and y are at most diam(Ef ) apart. Since x, 1, y are aligned
in this order on α, the quasi-geodesicity implies that d(1, y) ≤ λd(x, y) + c. This
contradicts the choice of n0 above.

As a consequence, any path between the two endpoints of γ passes through Ef .
Indeed, if there was such a path disjoint with Ef , we would obtain a path from 1
to fn disjoint with Ef , contradicting Lemma 5.3. �

The proof is concluded by Claim 5.5 applied to the (1, 4ε)-quasi-geodesic γ =
[g−1, 1][1, fn][fn, fnh]. �

Let r = max{diam(Ef ) : f ∈ F}, where Ef is given by Lemma 5.4. Definition
5.6 refines the notion of bottleneck given in the last section.

Definition 5.6. Let x, y ∈ G∪ ∂EG and let n1 be given by Lemma 5.4. An (r, F )-
bottleneck point between x, y is a point b ∈ G such that any path between x and y
has to cross the r-neighborhood of b[1, f ] for some f ∈ Fn1 .

Note that if b is an (r, F )-bottleneck point between x and y, then b is in b[1, f ]
so it lies in an M -bottleneck for M = (d(1, Fn1)+2r) in the sense of Definition 4.5.
An immediate result follows by the same argument as in Lemma 4.3.
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Lemma 5.7. If b is an (r, F )-bottleneck point between g, h, then the Floyd distance
δλ,b(g, h) based at b is bounded below by a positive constant depending on λ, r, F
only.

5.2. Construction of rooted geodesic trees with bottlenecking property.
The strategy in proving Proposition 5.2 is similar to that in [46]. We shall construct
a sequence of rooted quasi-geodesic trees so that the Hausdorff dimension of their
ends tends to the Hausdorff dimension of ∂EG.

Before getting into the construction, we introduce Definition 5.8 of ends with
the uniform bottlenecking property, which are uniform conical points in the sense
of [46]. We fix r, F and n1 as in Section 5.1.

Definition 5.8. A path γ in Γ has the L-bottlenecking property for some L > 0 if
there exists a sequence of (r, Fn1)-bottleneck points bi ∈ γ between the endpoints
of γ such that sup{d(bi, bi+1) : i ≥ 1} ≤ L and d(x, {bi+1 : i ≥ 1}) ≤ L/2 for any
x ∈ γ.

An end ξ has the L-bottlenecking property for some L > 0 if there exists a
geodesic ray [1, ξ] with the L-bottlenecking property.

Remark 5.9. By definition, an end with L-bottlenecking property must be thin,
but the converse is false.

If H is a free semi-group with a free basis B, then the standard Cayley graph T
of H with respect to B is a rooted tree at 1, where every edge with unit length is
labeled by a letter in B.

The construction of rooted trees in the proof of Proposition 5.2 will be given by
the standard Cayley graphs of a sequence of free semi-groups described in Lemma
5.10. Given n,Δ > 0, define the annulus set

A(n,Δ) = {g ∈ G : |d(1, g)− n| ≤ Δ}.

Lemma 5.10. For any 0 < v < vG, there exists a free semi-group H with a free
basis B and a constant L = L(v) > 0 with limv→vG L(v) = ∞ so that the following
hold.

(1) There exists a quasi-isometric embedding map Φ from the standard Cayley
graph T of H into the Cayley graph Γ of G, which is induced by the inclusion
H ⊂ G and such that each geodesic issuing from the identity in T is sent
to a path with the L-bottlenecking property.

(2) The map Φ extends to a topological embedding ∂Φ of the end boundary ∂EH
of H into ∂EG.

(3) We have vH > v and C1 exp(LvH) ≤ �H ∩ A(1, n,Δ) ≤ C2 exp(LvH) for
n ≥ 1, where C1 and C2 depend on Δ.

Proof. (1) We set L± = n ± (Δ + d(1, Fn1)). Let W(A) be the set of all finite
words over an alphabet set A. Given a set A ⊂ Γ, we can define an extension map
Φ : W(A) → G as follows: for any word W = a1a2 · · · an ∈ W(A), there exists a
sequence fi ∈ Fn1 such that the path γ labeled by

(14) Φ(W ) = a1 · f1 · a2 · f2 · · · · · an−1 · fn−1 · an · fn ∈ G

is a (λ, c)-quasi-geodesic for fixed constants λ, c > 0 depending only on F . More-
over, the path γ labeled by Φ(W ) has the L+-bottlenecking property. The choice of
the points fi is made by iterating the construction given by Lemma 5.4. Precisely,
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by [61, Lemma 2.16], one can choose the fi so that γ is a (λ, c)-quasi-geodesic with
fixed λ and c. Then, by Claim 5.5, the terminal endpoints of the segments labeled
by ai (1 ≤ i ≤ n) give n distinct (r, F )-bottleneck points between 1 and Φ(W ) with
pairwise distance between L− and L+. Those bottlenecks shall be called canonical.

To generate a free semi-group, we need the following property, proved in [61,
Lemma 2.19]. There exists a fixed constant C0 > 0 such that for every large
enough n and every C ≥ C0, there exists a C-separated set A⊂A(n,Δ) with the
following properties:

(a) �A �C �A(n,Δ),
(b) there is a common f ∈ Fn1 for each pair (a, a′) ∈ A × A in the path (14)

with the L-bottlenecking property.

If C is taken sufficiently large, then the map Φ : (Af)n → G as above is injective.
Indeed, consider two paths β1 = Φ(W1) and β′

1 = φ(W ′
1), where W1 = a1f · · · amf

and W ′
1 = a′1f · · · a′nf . We shall prove the following stronger fact, used later on

in Lemma 5.12. Denote by (β1)+, respectively (β′
1)+, the terminal endpoint of β1,

respectively β′
1.

Claim 5.11. If d((β1)+, (β
′
1)+) ≤ D, then d(a1, a

′
1) < C for some C = C(D).

By choosing C ≥ C(0) Claim 5.11 proves the injectivity of Φ. Hence, the set
B := Af generates a free semi-group denoted by H.

Proof of the Claim. Write g = Φ(W1) = (β1)+ and g′ = Φ(W ′
1) = (β′

1)+. Since
the point a1 in β1 is an (r, F )-bottleneck point between 1 and g, by Lemma 5.7
and Lemma 2.6 applied to the Floyd distance δλ,a1

based at a1, there exists a
constant C depending only on r, F such that d(a1, [1, g]) < C. Since d(g, g′) ≤ D,
concatenating the geodesic [1, g] with a geodesic from g to g′ yields a quasi-geodesic
α whose parameters only depend onD. Hence, Lemma 2.6 shows that d(a′1, α) < C ′

where C ′ only depends on r, F and D. Using again that d(g, g′) ≤ D, we finally
obtain that d(a′1, [1, g]) ≤ C ′′. By the choice of a1, a

′
1 ∈ A ⊂ A(n,Δ), we have

|d(1, a1)−d(1, a′1)| ≤ 2Δ. We deduce that d(a1, a
′
1) < C+C ′′+2Δ, which concludes

the proof. �

(2) Note that the image of each geodesic ray γ in T is a path with the bot-
tlenecking property which converges to an end in ∂EG. We deduce that the map
γ �→ φ(γ) induces the desired topological embedding.

(3) For a given v, one can choose n big enough such that vH > v for a free
semi-group H = 〈Af〉 constructed as above. This is possible since �A �C �A(n,Δ),
and

v = lim
n→∞

log �A(n,Δ)

n
.

See [61, Section 3] for the details. The purely exponential growth

�H ∩N(o, r) � exp(vHr)

follows by standard arguments using the fact that the subgroup H is contracting,
as stated there. See an argument in the proof of [46, Lemma 3.9]. �

5.3. Completion of proof of Proposition 5.2. We shall first prove that the
embedding ∂Φ : ∂EH → ∂EG is bi-Lipschitz with respect to visual metrics for
appropriate choice of parameters. The Hausdorff dimension of ∂EG will then be
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bounded from below by that of the ends of the rooted tree T which will be easier
to compute.

Recall T is the standard Cayley graph of H with respect to the free base B = Af
whose edges with unit length are labeled by a letter in B.

Lemma 5.12. Under the assumption of Lemma 5.10, assume that Φ(p) = ξ and
Φ(q) = η where p, q ∈ ∂ET . Let m be the length of the intersection [1, p] ∩ [1, q]
where [1, p], [1, q] are geodesic rays in T . Then

ρλ(ξ, η) �L λmL.

Proof. In the proof, let us write

[1, p] = (a1f)(a2f) · · · (amf)(am+1f) · · ·
and

[1, p] = (a′1f)(a
′
2f) · · · (a′mf)(a′m+1f) · · ·

and denote β1 = Φ([1, p]) and β2 = Φ([1, q]). Those are two rays with the L-
bottlenecking property ending at ξ and η. Let [1, p]∩ [1, q] = s1 · · · sm be a geodesic
of length m where si ∈ Af . In other words, ai = a′i for 1 ≤ i ≤ m.

By definition, ρλ(ξ, η) = λn where n is the minimal integer such that ξ and η
belong to different components of the complement of the ball Bn. Note that n ≥
mL/2. Indeed, the path τ = Φ(s1 · · · sm) issuing from 1 has the L-bottlenecking
property, ends at u = s1 · · · sm and is contained in both β1 and β2. Thus, there are
m bottleneck points between 1 and u with pairwise distance at least L/2, so that
the geodesic [1, u] in the Cayley graph Γ of G has to pass through them in order.
We then derive that d(1, u) ≥ mL/2. Since the path obtained from β1 ∪ β2 \ τ
connects ξ to η, the definition of n implies that n > mL/2.

We shall prove the upper-bound n ≤ R := (m + 1)L + r, which will conclude
the proof. By definition, it suffices to show that ξ and η belong to the distinct
components of G \BR.

Let b be the second (r, F )-bottleneck point on β1 after the initial subpath τ of
β1: it is the terminal endpoint of am+2 in β1. Thus, any path from 1 to ξ has to
cross the r-neighborhood of b[1, f ]. Let C = C(r+d(1, Fn1)) be the constant given
by Claim 5.11. If A is chosen to be C-separated, then d(b, β2) > r + d(1, Fn1) and
thus, β2 ∩Nr(b[1, f ]) = ∅.

It remains to prove that any path from ξ to η has to intersect the ball BR. If
not, let Q be a path from ξ to η so that Q∩BR = ∅. Recall that b is the (m+1)-th
(r, F )-bottleneck point and thus d(1, bf) ≤ (m+ 1)L. The value of R implies that
BR contains Nr(b[1, f ]). Also recall that β2 ∩ Nr(b[1, f ]) = ∅, so concatenating
Q and β2 yields a path Q · β2 from ξ to 1 avoiding the set Nr(b[1, f ]). This is a
contradiction, since b is an (r, F )-bottleneck point between 1 and ξ. As desired, ξ
and η lie in different components in the complement of BR. The proof of the upper
bound n ≤ R follows. �
Proposition 5.13. Let α = λL for given λ ∈ (0, 1). Then the embedding ∂Φ from
the ends boundary (∂ET, ρα) into the ends boundary (∂EG, ρλ) is bi-Lipschitz.

Proof. By Lemma 5.12, we see ρα(ξ, η) = αm = λmL �L ρλ(Φ(p),Φ(q)). Thus, the
map from ∂ET is bi-Lipschitz onto its image in ∂EG. �

Let T be any infinite rooted tree, with vertex set V partitioned by depth (distance
from the root vertex): V = ∪n=0Vn. Let Nn and Mn be increasing sequences of
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positive integers. Say that T is {Mn}-regular relative to {Nn} if for every n ≥ 1
every vertex x at depth Nn has exactly Mn+1 descendant vertices at depth Nn+1.

Lemma 5.14 ([38, Lemma 2]). Let T be an infinite rooted tree with space of ends
∂ET equipped with the visual metric of parameter α ∈ (0, 1). If there is an in-

creasing sequence of integers Nn satisfying limn→∞
Nn+1

Nn
= 1 such that, for some

sequence {Mn} of positive integers, T is {Mn}-regular with respect to {Nn}, then
the Hausdorff dimension of ∂ET (relative to the visual metric ρα) is given by

Hdimρα
(∂ET ) = lim inf

n→∞

log |VNn
|

−Nn logα
= lim inf

n→∞

log
∏n

j=1 Mj

−Nn logα
.

We apply Lemma 5.14 to the standard Cayley graph T of H, where Mn = �Af
and Nn = n. We obtain

Hdimρα
(∂ET ) = lim inf

n→∞

log
∏n

j=1 �Af

−n logα
=

log �Af

−L log λ
.

By Lemma 5.10, C1 exp(LvH) ≤ �Af ≤ C2 exp(LvH), so

Hdimρα
(∂T ) ≥ − logC2 + LvH

L log λ
,

where v < vH ≤ vG.
Since a bi-Lipschitz map preserves the Hausdorff dimension, by Proposition 5.13,

we have

Hdimρλ
(∂EΓ) ≥ − logC2 + Lv

L log λ
.

As v tends to vG, L goes to infinity, so we finally obtain

Hdimρλ
(∂EΓ) ≥ − vG

log λ
.

The proof of Proposition 5.2 and thus Theorem 5.1 is complete.

6. Characterizing the doubling property: Proof of Theorem 1.6

It is well known that a virtually free group is hyperbolic and that its end bound-
ary endowed with a visual metric is bi-Hölder to its Gromov boundary endowed with
a Gromov’s visual metric. The latter has the doubling property, since the Patterson-
Sullivan measure is doubling (even Ahlfors regular) by the work of Coorneart [8].
We prove here the following result.

Proposition 6.1. If a finitely generated group admits a splitting over finite edge
groups as a finite graph of groups with at least one one-ended vertex group, then
the visual metric is not doubling.

Theorem 1.6 is then a consequence of Proposition 6.1. Indeed, accessible groups
admit a splitting over finite edge groups as a finite graph of groups G, so that
the vertex groups either are finite or one-ended. In the former case, the group is
virtually free; in the latter case, it satisfies the assumptions of Proposition 6.1.

Proof. Consider a splitting over finite edge groups as a finite graph of groups G and
let H be a one-ended vertex group. Notice that a metric space (X, d) is doubling if
and only if for any (or some) θ ∈ (0, 1), there exists N = N(θ) > 0 such that every
ball of radius s > 0 can be covered by at most N balls of radius θs. To prove that
the end boundary is not doubling, our strategy will be as follows. We will consider
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for every n the ball of radius s = λn centered at the end ξ of G corresponding to the
unique end of H. We will prove that for some fixed θ, this ball cannot be covered
by N(n) balls of radius θs(n), where N(n) goes to infinity. This will conclude the
proof. We present the details below.

By the Bass-Serre theory, G is isomorphic to either an amalgamated product
H ∗F K or an HNN extension H∗F over a finite group F , where K might not
be one-ended. Since the visual metrics on the end boundary for different finite
generating sets are bi-Hölder, so share the same doubling property, it suffices to
prove the conclusion for a special generating set. In what follows, we only consider
the amalgamated product case, the HNN extension case being similar.

Let G = H ∗F K so that H and K are generated by two finite sets S and T
respectively and assume for simplicity that both sets S and T contain F . The
normal form given by [58, (9.2),(9.3)] shows that the Cayley graph Γ of G with
respect to S ∪ T is obtained as the disjoint union⊔

g∈G

{g · Cay(H,S), g · Cay(K,T )},

glued along cosets gF between g ·Cay(H,S), g ·Cay(K,T ). Recall that ξ is the end
corresponding to the one-ended subgroup H. For any end η 	= ξ, any path from η
to ξ has to pass through a finite set Fη corresponding to some F -coset in H and
any path from 1 to η also has to pass through Fη. Since we made the assumption
that F ⊂ S ∩ T , the diameter of Fη is at most 1, that is, any two distinct vertices
in Fη are connected by an edge.

Let Sn := {g ∈ G : d(1, g) = n} be the n-sphere in the Cayley graph Γ of G. By
definition of the visual metric, if ρλ(ξ, η) = λn for n ≥ 1, then every path from ξ
and η passes the closed ball B(1, n) of radius n at the identity and exits H at some
vertex in Fη. Moreover, there exists such a path from ξ to η which is disjoint from
the ball B(1, n− 1). Recalling that the diameter of Fη is at most 1, we see that
d(1, Fη) ≥ n − 1. On the other hand, if an end η 	= ξ satisfies d(1, Fη) = n + 1,
then ρλ(ξ, η) ≤ λn. Indeed, since Cay(H,S) is one-ended, one can join any vertex
g ∈ Fη to the end ξ corresponding to H by a path α in Cay(H,S) which stays
in the complement of B(1, n). By the tree-like construction of Cayley graph of G,
since d(1, Fη) = n + 1, there exists a path β connecting a vertex in Fη to the end
η which lies outside the ball B(1, n). So we can concatenate α with such a path β
to get a path from ξ to η outside B(1, n). By definition of visual metric, we have
ρλ(ξ, η) ≤ λn.

Set s = λn. We can reformulate the above discussion by the following inclusions:
(15)
{η 	= ξ ∈ ∂EΓ : d(1, Fη) ≥ n+1} ⊆ Bρλ(ξ, s)\ ξ ⊆ {η 	= ξ ∈ ∂EΓ : d(1, Fη) ≥ n−1}.

Since H is one-ended, it is infinite and it is not virtually cyclic. By Gromov’s
polynomial growth theorem, the growth function of H is at least quadratic, hence
super-linear. Therefore, fixing k ≥ 2, the number of elements in

Sn+k(H) := Sn+k ∩H

grows at least linearly in n and in particular goes to infinity as n goes to infinity.
For any point h ∈ Sn+k(H), choose an end η = η(h) 	= ξ ∈ ∂EΓ so that h lies

in Fη. By definition of h, d(1, Fη) ≤ n+ k and since the diameter of Fη is at most
1, we also have d(1, Fη) ≥ n+ k − 1. According to (15), ρλ(ξ, η) ≤ λn+k−1. Thus,
η ∈ Bρλ(ξ, s).
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Observe that for any two elements h1 	= h2 ∈ Sn+k(H) with d(h1, h2) ≥ 2, we
claim that

ρλ(η1, η2) ≥ λn+k+1,

where η1 = η(h1), η2 = η(h2). Indeed, d(h1, h2) ≥ 2 implies that Fη1
∩ Fη2

= ∅.
Notice that any path from η1 to η2 has to pass through both Fη1

and Fη2
, otherwise

one would produce a path from 1 to ηi not passing through Fηi
for some i ∈ {1, 2}.

Hence, any path from η1 to η2 has to intersect the ball Bn+k+1 and the claim
follows.

We are ready to finish the proof. Set θ = λk+1 and let N(n) be the maximal size
of a set Σ ⊂ Sn+k(H) such that any two elements h, h′ in Σ satisfy that d(h, h′) ≥ 2.
Then, N(n) goes to infinity as n goes to infinity. We can thus produce N(n) points
which are θs-separated in Bρλ

(ξ, s). In other words, the ball Bρλ
(ξ, s) cannot be

covered by N(n) balls of radius θs. Since k is fixed and N(n) goes to infinity as
n goes to infinity, this provides a contradiction with the definition of the doubling
property. This concludes the proof. �
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[1] Sébastien Blachère, Peter Häıssinsky, and Pierre Mathieu, Harmonic measures versus quasi-
conformal measures for hyperbolic groups (English, with English and French summaries),
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