Bubbling and extinction for some fast diffusion equations in bounded domains
HTML articles powered by AMS MathViewer
- by Tianling Jin and Jingang Xiong
- Trans. Amer. Math. Soc. Ser. B 10 (2023), 1287-1332
- DOI: https://doi.org/10.1090/btran/165
- Published electronically: September 15, 2023
- HTML | PDF
Abstract:
We study a Sobolev critical fast diffusion equation in bounded domains with the Brézis-Nirenberg effect. We obtain extinction profiles of its positive solutions, and show that the convergence rates of the relative error in regular norms are at least polynomial. Exponential decay rates are proved for generic domains. Our proof makes use of its regularity estimates, a curvature type evolution equation, as well as blow up analysis. Results for Sobolev subcritical fast diffusion equations are also obtained.References
- Goro Akagi, Rates of convergence to non-degenerate asymptotic profiles for fast diffusion via energy methods, Arch. Ration. Mech. Anal. 247 (2023), no. 2, Paper No. 23, 38. MR 4565026, DOI 10.1007/s00205-023-01843-2
- Thierry Aubin, Équations différentielles non linéaires et problème de Yamabe concernant la courbure scalaire, J. Math. Pures Appl. (9) 55 (1976), no. 3, 269–296. MR 431287
- A. Bahri and J.-M. Coron, On a nonlinear elliptic equation involving the critical Sobolev exponent: the effect of the topology of the domain, Comm. Pure Appl. Math. 41 (1988), no. 3, 253–294. MR 929280, DOI 10.1002/cpa.3160410302
- Melvin S. Berger, Nonlinearity and functional analysis, Pure and Applied Mathematics, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1977. Lectures on nonlinear problems in mathematical analysis. MR 488101
- James G. Berryman and Charles J. Holland, Stability of the separable solution for fast diffusion, Arch. Rational Mech. Anal. 74 (1980), no. 4, 379–388. MR 588035, DOI 10.1007/BF00249681
- Adrien Blanchet, Matteo Bonforte, Jean Dolbeault, Gabriele Grillo, and Juan Luis Vázquez, Asymptotics of the fast diffusion equation via entropy estimates, Arch. Ration. Mech. Anal. 191 (2009), no. 2, 347–385. MR 2481073, DOI 10.1007/s00205-008-0155-z
- Matteo Bonforte and Alessio Figalli, Sharp extinction rates for fast diffusion equations on generic bounded domains, Comm. Pure Appl. Math. 74 (2021), no. 4, 744–789. MR 4221933, DOI 10.1002/cpa.21887
- Matteo Bonforte, Gabriele Grillo, and Juan Luis Vazquez, Behaviour near extinction for the Fast Diffusion Equation on bounded domains, J. Math. Pures Appl. (9) 97 (2012), no. 1, 1–38 (English, with English and French summaries). MR 2863762, DOI 10.1016/j.matpur.2011.03.002
- Simon Brendle, Convergence of the Yamabe flow for arbitrary initial energy, J. Differential Geom. 69 (2005), no. 2, 217–278. MR 2168505
- H. Brezis and J.-M. Coron, Convergence of solutions of $H$-systems or how to blow bubbles, Arch. Rational Mech. Anal. 89 (1985), no. 1, 21–56. MR 784102, DOI 10.1007/BF00281744
- Haïm Brézis and Tosio Kato, Remarks on the Schrödinger operator with singular complex potentials, J. Math. Pures Appl. (9) 58 (1979), no. 2, 137–151. MR 539217
- Haïm Brézis and Louis Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math. 36 (1983), no. 4, 437–477. MR 709644, DOI 10.1002/cpa.3160360405
- Haïm Brézis and Walter A. Strauss, Semi-linear second-order elliptic equations in $L^{1}$, J. Math. Soc. Japan 25 (1973), 565–590. MR 336050, DOI 10.2969/jmsj/02540565
- Alessandro Carlotto, Otis Chodosh, and Yanir A. Rubinstein, Slowly converging Yamabe flows, Geom. Topol. 19 (2015), no. 3, 1523–1568. MR 3352243, DOI 10.2140/gt.2015.19.1523
- Ya Zhe Chen and Emmanuele DiBenedetto, On the local behavior of solutions of singular parabolic equations, Arch. Rational Mech. Anal. 103 (1988), no. 4, 319–345. MR 955531, DOI 10.1007/BF00251444
- Xuezhang Chen and Xingwang Xu, The scalar curvature flow on $S^n$—perturbation theorem revisited, Invent. Math. 187 (2012), no. 2, 395–506. MR 2885623, DOI 10.1007/s00222-011-0335-6
- Beomjun Choi, Robert J. McCann, and Christian Seis, Asymptotics near extinction for nonlinear fast diffusion on a bounded domain, Arch. Ration. Mech. Anal. 247 (2023), no. 2, Paper No. 16, 48. MR 4553941, DOI 10.1007/s00205-023-01850-3
- Carmen Cortázar, Manuel del Pino, and Monica Musso, Green’s function and infinite-time bubbling in the critical nonlinear heat equation, J. Eur. Math. Soc. (JEMS) 22 (2020), no. 1, 283–344. MR 4046015, DOI 10.4171/jems/922
- Panagiota Daskalopoulos, Manuel del Pino, and Natasa Sesum, Type II ancient compact solutions to the Yamabe flow, J. Reine Angew. Math. 738 (2018), 1–71. MR 3794888, DOI 10.1515/crelle-2015-0048
- Juan Dávila, Manuel del Pino, and Juncheng Wei, Singularity formation for the two-dimensional harmonic map flow into $S^2$, Invent. Math. 219 (2020), no. 2, 345–466. MR 4054257, DOI 10.1007/s00222-019-00908-y
- Manuel del Pino, Monica Musso, and Juncheng Wei, Existence and stability of infinite time bubble towers in the energy critical heat equation, Anal. PDE 14 (2021), no. 5, 1557–1598. MR 4307216, DOI 10.2140/apde.2021.14.1557
- Manuel del Pino and Mariel Sáez, On the extinction profile for solutions of $u_t=\Delta u^{(N-2)/(N+2)}$, Indiana Univ. Math. J. 50 (2001), no. 1, 611–628. MR 1857048, DOI 10.1512/iumj.2001.50.1876
- E. DiBenedetto, Y. Kwong, and V. Vespri, Local space-analyticity of solutions of certain singular parabolic equations, Indiana Univ. Math. J. 40 (1991), no. 2, 741–765. MR 1119195, DOI 10.1512/iumj.1991.40.40033
- Olivier Druet, Elliptic equations with critical Sobolev exponents in dimension 3, Ann. Inst. H. Poincaré C Anal. Non Linéaire 19 (2002), no. 2, 125–142 (English, with English and French summaries). MR 1902741, DOI 10.1016/S0294-1449(02)00095-1
- Lawrence C. Evans, Partial differential equations, 2nd ed., Graduate Studies in Mathematics, vol. 19, American Mathematical Society, Providence, RI, 2010. MR 2597943, DOI 10.1090/gsm/019
- Eduard Feireisl and Frédérique Simondon, Convergence for semilinear degenerate parabolic equations in several space dimensions, J. Dynam. Differential Equations 12 (2000), no. 3, 647–673. MR 1800136, DOI 10.1023/A:1026467729263
- Victor A. Galaktionov and John R. King, Fast diffusion equation with critical Sobolev exponent in a ball, Nonlinearity 15 (2002), no. 1, 173–188. MR 1877973, DOI 10.1088/0951-7715/15/1/308
- Zheng-Chao Han, Asymptotic approach to singular solutions for nonlinear elliptic equations involving critical Sobolev exponent, Ann. Inst. H. Poincaré C Anal. Non Linéaire 8 (1991), no. 2, 159–174 (English, with French summary). MR 1096602, DOI 10.1016/S0294-1449(16)30270-0
- Tianling Jin and Jingang Xiong, Optimal boundary regularity for fast diffusion equations in bounded domains, Amer. J. Math. 145 (2023), no. 1, 151–219. MR 4545845, DOI 10.1353/ajm.2023.0003
- S. Łojasiewicz, Une propriété topologique des sous-ensembles analytiques réels, Les Équations aux Dérivées Partielles (Paris, 1962) Colloq. Internat. CNRS, No. 117, CNRS, Paris, 1963, pp. 87–89 (French). MR 160856
- S. Łojasiewicz, Ensembles semi-analytiques, I.H.E.S. notes, Bures-sur-Yvette, 1965.
- Martin Mayer, A scalar curvature flow in low dimensions, Calc. Var. Partial Differential Equations 56 (2017), no. 2, Paper No. 24, 41. MR 3607494, DOI 10.1007/s00526-017-1118-8
- Olivier Rey, The role of the Green’s function in a nonlinear elliptic equation involving the critical Sobolev exponent, J. Funct. Anal. 89 (1990), no. 1, 1–52. MR 1040954, DOI 10.1016/0022-1236(90)90002-3
- Jie Qing and Gang Tian, Bubbling of the heat flows for harmonic maps from surfaces, Comm. Pure Appl. Math. 50 (1997), no. 4, 295–310. MR 1438148, DOI 10.1002/(SICI)1097-0312(199704)50:4<295::AID-CPA1>3.0.CO;2-5
- J.-C. Saut and R. Temam, Generic properties of nonlinear boundary value problems, Comm. Partial Differential Equations 4 (1979), no. 3, 293–319. MR 522714, DOI 10.1080/03605307908820096
- Richard Schoen, Conformal deformation of a Riemannian metric to constant scalar curvature, J. Differential Geom. 20 (1984), no. 2, 479–495. MR 788292
- Hartmut Schwetlick and Michael Struwe, Convergence of the Yamabe flow for “large” energies, J. Reine Angew. Math. 562 (2003), 59–100. MR 2011332, DOI 10.1515/crll.2003.078
- Yannick Sire, Juncheng Wei, and Youquan Zheng, Extinction behavior for the fast diffusion equations with critical exponent and Dirichlet boundary conditions, J. Lond. Math. Soc. (2) 106 (2022), no. 2, 855–898. MR 4477206, DOI 10.1112/jlms.12587
- Michael Struwe, A global compactness result for elliptic boundary value problems involving limiting nonlinearities, Math. Z. 187 (1984), no. 4, 511–517. MR 760051, DOI 10.1007/BF01174186
- Michael Struwe, Variational methods, 4th ed., Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 34, Springer-Verlag, Berlin, 2008. Applications to nonlinear partial differential equations and Hamiltonian systems. MR 2431434
- Juan Luis Vázquez, Smoothing and decay estimates for nonlinear diffusion equations, Oxford Lecture Series in Mathematics and its Applications, vol. 33, Oxford University Press, Oxford, 2006. Equations of porous medium type. MR 2282669, DOI 10.1093/acprof:oso/9780199202973.001.0001
- Juan Luis Vázquez, The porous medium equation, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, Oxford, 2007. Mathematical theory. MR 2286292
Bibliographic Information
- Tianling Jin
- Affiliation: Department of Mathematics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
- MR Author ID: 878128
- ORCID: 0000-0002-6739-1101
- Email: tianlingjin@ust.hk
- Jingang Xiong
- Affiliation: School of Mathematical Sciences, Laboratory of Mathematics and Complex Systems, MOE, Beijing Normal University, Beijing 100875, People’s Republic of China
- MR Author ID: 916322
- Email: jx@bnu.edu.cn
- Received by editor(s): April 16, 2023
- Published electronically: September 15, 2023
- Additional Notes: The first author was partially supported by Hong Kong RGC grants GRF 16302217, GRF 16302519, GRF 16306320 and NSFC 12122120. The second author was partially supported by the National Key R&D Program of China No. 2020YFA0712900, and NSFC grants 11922104.
- © Copyright 2023 by the authors under Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License (CC BY NC ND 4.0)
- Journal: Trans. Amer. Math. Soc. Ser. B 10 (2023), 1287-1332
- MSC (2020): Primary 35K57; Secondary 35B40, 53C21
- DOI: https://doi.org/10.1090/btran/165