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3-BRAID KNOTS WITH MAXIMAL 4-GENUS

SEBASTIAN BAADER, LUKAS LEWARK, FILIP MISEV, AND PAULA TRUÖL

Abstract. We classify 3-braid knots whose topological 4-genus coincides with
their Seifert genus, using McCoy’s twisting method and the Xu normal form.
In addition, we give upper bounds for the topological 4-genus of positive and
strongly quasipositive 3-braid knots.

1. Introduction

Four decades after Freedman’s celebrated work on 4-manifolds [Fre82], the topo-

logical 4-genus gtop4 (K) of knots K remains difficult to determine. The first chal-

lenge is posed by the figure-eight knot 41, which satisfies gtop4 (41) = 1, although
its second power 41#41 bounds an embedded disc in the 4-ball. This causes all
its additive lower bounds on the 4-genus to be trivial. In particular, the signature
invariant σ(41) is zero. Due to this example, there is little reason to believe that
the inequality

|σ(K)| � 2gtop4 (K)

has much to tell us about the (topological) 4-genus of knots in general. In this note,
we show that closures of 3-braids are exceptional in this respect. More precisely,
we will see that the figure-eight knot is exceptional among closed 3-braids in that
it is the only 3-braid knot K that satisfies |σ(K)| < 2g(K), yet gtop4 (K) = g(K),
where g(K) denotes the ordinary Seifert genus.

Theorem 1.1. Let K be a 3-braid knot other than the figure-eight knot. Then

|σ(K)| = 2g(K) ⇐⇒ gtop4 (K) = g(K).

These equalities hold precisely if K or its mirror is one of the following knots:

– T (2, 2m+ 1)#T (2, 2n+ 1), with m,n � 0,
– P (2p, 2q + 1, 2r + 1, 1), with p � 1, q, r � 0,
– T (3, 4), or T (3, 5).

The question arises whether the equivalence of |σ(K)| = 2g(K) and

gtop4 (K) = g(K) holds for other families of knots K. Indeed, it is also true for
braid positive knots K [Lie16]. Moreover, we do not know if there exists a knot K

of braid index 4 with gtop4 (K) = g(K), but |σ(K)| < 2g(K). One may check that
such a knot would have to be prime and have crossing number at least 13. For braid
index 5 however, there are several knots K in the table with σ(K) = 0 < 2g(K) = 2

and gtop4 (K) = g(K) = 1, such as K = 81 [LM].
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The proof of Theorem 1.1 is based on a technique called twisting, used by McCoy
for estimating the topological 4-genus from above [McC19]. We will also make use
of a special presentation for 3-braids called Xu normal form, which we will describe
in the next section. The third section contains the proof of Theorem 1.1, as well
as a complementary result (Theorem 3.2): a sharp lower bound on the difference

g(K) − gtop4 (K) of so-called strongly quasipositive 3-braid knots, in terms of two
characteristic quantities associated with their Xu normal form. In the last section,
we determine the topological 4-genus of various families of braid positive 3-braid
knots (almost) exactly, and display examples where our technique comes to a limit.

2. The Xu normal form of 3-braids

Our tool to handle 3-braids is what we call their Xu normal form. It was de-
veloped by Xu [Xu92] (who called it representative symbol), as a variation of the
Garside normal form [Gar69]. Using the Xu normal form, one may decide whether
two given 3-braids are conjugate [Xu92], and whether their closures are equivalent
links [BM93,BM08]. Later, the Xu normal form was generalized to braids on ar-
bitrarily many strands by Birman–Ko–Lee [BKL98]. The Garside, Xu and BKL
normal forms are all examples of Garside structures on (braid) groups [DDG+15].
In this section, we will introduce the Xu normal form and show how it determines
the signature invariant σ of its closure (Proposition 2.9), as well as strong quasi-
positivity and braid positivity (Proposition 2.11).

A 3-braid β is an element of the braid group B3 = 〈a, b | aba = bab〉. By closing
off the three strands of β and interpreting a and b as positive crossings between the
first two and last two strands, respectively, β gives rise to a link called closure of
β, denoted cl(β). Note that throughout the text, links are oriented. Let us write
x := a−1ba ∈ B3 and δ := ba = ax = xb ∈ B3. By a Xu word or simply word,

a b x δ Δ

Figure 1. The generators a and b of the braid group B3 and the
elements x = a−1ba, δ = ba and Δ = aba. The latter is used for
the Garside normal form (further down in the text).

we mean a word with letters a, b, x, δ (see Figure 1) and their inverses. We reserve
the equality sign = for equality of braids, and use a dotted equality sign

.
= for

equality of words. Moreover, we write β ∼ γ if the two braids β, γ are conjugate.
For efficiency, let us also introduce the following notation: for any i ∈ Z, set τi

.
= a

if i ≡ 1 (mod 3), τi
.
= b if i ≡ 2 (mod 3) and τi

.
= x if i ≡ 0 (mod 3).

Definition 2.1. Let w be a word of the form

(1) w
.
= δnτu1

1 τu2
2 . . . τut

t for n ∈ Z, t � 0, ui � 1.

We say that w is in Xu normal form if the tuple (−n, t, u1, . . . , ut) is lexicograph-
ically minimal among all words of the form (1) representing the same conjugacy
class of 3-braids.
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The condition of lexicographic minimality means, in particular, that the Xu
normal form maximizes n, and afterwards minimizes t. The term ‘normal form’ is
justified by the following.

Theorem 2.2. Every 3-braid is conjugate to a unique word in Xu normal form. �

Lemma 2.3 gives a criterion to easily decide whether a word is in Xu normal
form.

Lemma 2.3. A word w
.
= δnτu1

1 τu2
2 . . . τut

t for some n ∈ Z, t � 0, ui � 1 is in Xu
normal form if and only if one of the following conditions holds:

(a) t = 0. In this case w
.
= δn.

(b) t = 1, and if n ≡ 1 (mod 3) then u1 = 1. In this case, w
.
= δ3kau1 , or

w
.
= δ3k+1a, or w

.
= δ3k+2au1 .

(c) t � 2, n + t ≡ 0 (mod 3) and the tuple (u1, . . . , ut) is lexicographically
minimal among its cyclic permutations.

The proofs of Theorem 2.2 and Lemma 2.3 are essentially contained in Xu’s
paper [Xu92, Section 4], albeit with slightly different conventions. In our setup,
Theorem 2.2 is not actually hard to prove, and makes a good exercise to get ac-
quainted with the calculus of Xu words. The same is true for the ‘only if’ direction
of Lemma 2.3. Let us provide two hints. Firstly, the easily verifiable rules

(2) δ = τiτi−1, τiδ
n = δnτi+n, τ−1

i δn = δn−1τi+n+1

allow to find Xu words for every 3-braid without the letters a−1, b−1, x−1, and to
‘pull all δ±1 to the left’ in a Xu word. In this way, one can find a Xu word of the
form δnτu1

m+1 . . . τ
ut
m+t with m ∈ Z and ui � 1 for any 3-braid. Secondly, note that

δnτu1
1 . . . τut

t = τu1
1−nδ

nτu2
2 . . . τut

t ∼ δnτu2
2 . . . τut

t τu1
1−n

∼ δn+1τu2
2 . . . τut

t τu1
1−nδ

−1 = δnτu2
1 . . . τut

t−1τ
u1
−n.

So cyclically permuting the tuple (u1, . . . , ut) results in a conjugate braid if −n ≡ t
(mod 3).

Proof of the ‘if ’ direction of Lemma 2.3. Xu proves that condition (c) is sufficient
for w to be in Xu normal form (see the definition of the representative symbol and
Theorem 5 in [Xu92]), but omits a discussion of conditions (a) and (b). So suppose

w satisfies (a) or (b), w′ = δn
′
τ
u′
1

1 . . . τ
u′
t′

t′ is in Xu normal form, and w′ ∼ w. We
need to show that w

.
= w′. Let us distinguish the following cases.

– If w satisfies (a), then w
.
= δn. The words w and w′ must have the same

writhe, that is, the same image under the abelianisation homomorphism B3 → Z,
which maps both a and b to 1. Therefore, 2n = 2n′ + u′

1 + · · ·+ u′
t′ . But since w′

is in Xu normal form, n′ � n. Because u′
i � 0, it follows that n′ = n and t′ = 0,

thus w
.
= w′ as desired.

– If w satisfies (b) and w
.
= δna, a similar argument applies: the equality of

the writhes of w and w′ now reads as 2n+ 1 = 2n′ + u′
1 + · · ·+ u′

t′ . Since the left
hand side is odd, we must have t′ � 1 and u′

1 � 1, so 2n + 1 � 2n′ + 1. On the
other hand n′ � n, again because w′ is in Xu normal form, so 2n+ 1 � 2n′ + 1. It
follows that n′ = n, t′ = 1, u′

1 = 1 and w
.
= w′ as desired.

– The remaining case is that w
.
= δnau1 satisfies (b), u1 � 2, and n 
≡ 1

(mod 3). Now the so-called r-index of w defined below Lemma 5 in [Xu92] is 0,
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and so [Xu92, Theorem 4] implies that n is maximal. It follows that n′ = n, and
hence the minimality of t′ implies t′ � t = 1. Finally, from the equality of the
writhes of w and w′, it follows that t′ = 1 and u1 = u′

1, and thus w
.
= w′. �

To get a link invariant from the Xu normal form, we need to understand the rela-
tionship between conjugacy classes of 3-braids and link equivalence classes of their
closures. Birman–Menasco have shown that with a few well-understood exceptions,
this relationship is one-to-one:

Theorem 2.4 ([BM93, BM08]). Two 3-braids are conjugate if their closures are
equivalent links, except in the following cases:

(1) The non-conjugate braids ab, ab−1, a−1b−1 have the unknot as closure.
(2) For n ∈ Z \ {±1}, the non-conjugate braids anb, anb−1 have the T (2, n)

torus link as closure.
(3) For pairwise distinct integers p, q, r ∈ Z\{0,−1,−2}, the two non-conjugate

braids β = apbqxr and γ = apbrxq have the P (p, q, r, 1) pretzel link as
closure (see Figure 2); and the two non-conjugate braids β−1 and γ−1 have
the P (−p,−q,−r,−1) pretzel link as closure.

Corollary 2.5 allows us to sidestep the exceptional cases (1), (2), (3) in the above
theorem by focusing on links of braid index 3 instead of 3-braid links (the latter
class of links includes links with braid index 1 and 2, i.e. 2-stranded torus links).
Let the reverse of a braid β ∈ B3, denoted by rev(β), be the braid given by reading
β backwards and switching a with b, and a−1 with b−1. Note that cl(rev(β)) is
obtained from cl(β) by reversing the link’s orientation.

Corollary 2.5. Let L be a link of braid index 3.

(1) Either there is a unique conjugacy class of 3-braids with closure L, or there
are two of them, such that one consists of the reverses of the braids con-
tained in the other.

(2) The numbers n, t, and U = u1 + · · ·+ ut of the Xu normal form of a braid
with closure L do not depend on the choice of braid. Thus n, t and U are
link invariants of links with braid index 3.

≈

≈

a4b3x5

P (4, 1, 3, 5)

Figure 2. Isotopy (denoted ≈) from the closure of the braid
au1bu2xu3 to the pretzel knot P (u1, 1, u2, u3) ≈ P (u1, u2, u3, 1);
here (u1, u2, u3) = (4, 3, 5).
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Proof. Claim (1) follows quickly from Theorem 2.4, since the unknot and the two-
stranded torus links have braid index less than 3, and rev(apbqxr) = xrapbq which
is conjugate to apbrxq. For (2), note that rev(x) = x and so rev(τi) = τ−i.
Also rev(δ) = δ. Thus the reverse of δnτu1

1 τu2
2 . . . τut

t is τut
−t . . . τ

u1
−1δ

n, which

has Xu normal form δnτut
1 τ

ut−1

2 . . . τu1
t (up to cyclically permuting the exponents

ut, . . . , u1). So the numbers n, t and U do not change under braid reversal.
Together with (1), this implies (2). �

Xu calls n and t the power and syllable length, while Birman–Ko–Lee use the
terms infimum and canonical length, respectively.

Since the Xu normal form determines the link type, all link invariants may be
read off it. Let us first prove a formula for the signature invariant. We will need the
Garside normal form [Gar69], which we introduce now. The reader will note many
parallels between the Garside and Xu normal forms. Let Δ := aba, as in Figure 1 on
the right. A Garside word is a word with letters a, b,Δ and their inverses. Again,
we use

.
= for equality of words. We also use the following notation: for any i ∈ Z,

set σi
.
= a if i ≡ 1 (mod 2) and σi

.
= b if i ≡ 0 (mod 2).

Proposition 2.6 ([Tru23, Proposition 3.2]). Every 3-braid contains in its conju-
gacy class a unique Garside word v in Garside normal form, i.e. a word

v
.
= Δ�σp1

1 σp2

2 . . . σpr
r ,

with � ∈ Z, r � 0, pi � 1, satisfying one of the following conditions:

(A) � is even and r ∈ {0, 1}, i.e. v .
= Δ2ka�0,

(B) � is even, r = 2, p1 ∈ {1, 2, 3} and p2 = 1, i.e. v
.
= Δ2ka{1,2,3}b,

(C)/(D) r � 1, pi � 2, � ≡ r (mod 2), and the tuple (p1, . . . , pr) is lexicographically
minimal among its cyclic permutations.

We refer by (C) and (D) to the case that � is even and odd, respectively.

Lemma 2.7 tells us how to convert between the Xu and the Garside normal
forms.

Lemma 2.7. Let a word w
.
= δnτu1

1 τu2
2 . . . τut

t in Xu normal form be given. Then
the unique word v in Garside normal form representing the same conjugacy class
of 3-braids as w is given by the following table.

Case in
Lemma 2.3

Xu normal
form w

Garside normal
form v

Case in
Proposition 2.6

(a) δ3k Δ2k (A)

(a) δ3k+1 Δ2kab (B)

(a) δ3k+2 Δ2ka3b (B)

(b) δ3kau1 Δ2kau1 (A)

(b) δ3k+1a Δ2ka2b (B)

(b) δ3k+2au1 Δ2k+1a1+u1 (D)

(c) δnτu1
1 . . . τut

t Δ(2n−t)/3σ1+u1
1 . . . σ1+ut

t (C)/(D)
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Proof. All rows in the table except for the last one may be checked quickly, using
δ3 = Δ2. Let us now prove w ∼ v for the words w and v in the last row. Let
n = 3k +m and t = 3s + 3 −m for k, s ∈ Z, s � 0,m ∈ {1, 2, 3}. In the Xu word
w, replace δn by (ba)mΔ2k. Moreover, replace every xu by Δ−1ab1+ua. These
replacements yield a Garside word v1 with v1 = w and

v1
.
= (ba)mΔ2kau1bu2(Δ−1ab1+u3a)au4 . . . (Δ−1ab1+u3sa)au3s+1bu3s+2 ,

where we set ui = 0 if i > t. Now proceed by ‘pulling all the Δ−1 to the right’, i.e. re-
placing Δ−1a by bΔ−1 and Δ−1b by aΔ−1 as long as possible. These replacements
produce a word v2 with v2=v1, where v2 starts with (ba)mΔ2kau1bu2(ba1+u3b)bu4 . . ..
Using the σi-notation and noting that there are precisely s occurrences of Δ−1 in
v1, we have

v2
.
= (ba)mΔ2kσu1

1 σ1+u2
2 σ1+u3

3 σ1+u4
4 . . . σ1+u3s

3s σ
1+u3s+1

3s+1 σ
u3s+2

3s+2 Δ−s

∼ v3
.
= Δ−s(ba)mΔ2kσu1

1 σ1+u2
2 . . . σ1+u3s

3s σ
1+u3s+1

3s+1 σ
u3s+2

3s+2 .

Let us now consider the three possibilities for m case by case.

– If m = 3, then u3s+2 = u3s+1 = 0 and

v3
.
= Δ−s(ba)3Δ2kσu1

1 σ1+u2
2 . . . σ1+u3s

3s σ3s+1

= Δ2k+2−sσu1
1 σu2+1

2 . . . σ1+u3s
3s σ3s+1

∼ v4 = Δ2k+2−sσ1+u1
1 σu2+1

2 . . . σ1+u3s
3s .

We have v4
.
= v as desired, since 2k + (m− 1)− s = (2n− t)/3.

– If m = 2, then u3s+2 = 0 and

v3
.
= Δ−s(ba)2Δ2kσu1

1 σ1+u2
2 . . . σ1+u3s

3s σ
1+u3s+1

3s+1

= Δ2k+1−sσ1+u1
1 σ1+u2

2 . . . σ1+u3s
3s σ

1+u3s+1

3s+1
.
= v.

– If m = 1, then

v3
.
= Δ−sbaΔ2kσu1

1 σ1+u2
2 . . . σ1+u3s

3s σ
1+u3s+1

3s+1 σ
u3s+2

3s+2

= σsΔ
2k−sσ1+u1

1 σ1+u2
2 . . . σ

1+u3s+1

3s+1 σ
u3s+2

3s+2 ∼ v.

�
We rely on the signature formula for 3-braids in Garside normal form deduced by

the fourth author [Tru23, Remark 1.6, Proposition 4.2, Remark 4.3] from a result
by Erle [Erl99, Theorem 2.6].

Proposition 2.8 ([Tru23]). Let K be a knot that is the closure of a Garside normal
form Δ�σp1

1 . . . σpr
r in case (C)/(D) of Proposition 2.6. Then

σ(K) = −2�+ r −
r∑

i=1

pi.

We are now ready to state and prove our signature formula for 3-braids in Xu
normal form.

Proposition 2.9. Let δnτu1
1 τu2

2 . . . τut
t be the Xu normal form of a 3-braid whose

closure is a knot K of braid index 3. Set U = u1 + · · ·+ ut. If t > 0 (equivalently,
if K is not a torus knot), then

σ(K) = −U − 4

3
n+

2

3
t.
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In the case t = 0, i.e. U = 0 and K = T (3, n), the value σ(K) = − 4
3n given by the

above formula is only approximately true, with an error of at most 4
3 . In fact, in

that case we have

σ(K) = −4

3
n+

(
2 + 4

⌊
1

6
n

⌋
− 2

3
n

)
= 2− 2n+ 4

⌊
1

6
n

⌋
.

Proof. Our signature formula for torus knots may be seen to agree with the formula
given e.g. in [Mur74, Proposition 9.1]. So we are left with the case t � 1, i.e. cases
(b) and (c) in Lemma 2.3. Denote the Xu normal form in question by w. Let us
first consider case (c). Then w has Garside normal form Δ(2n−t)/3σ1+u1

1 . . . σ1+ut
t ,

see Lemma 2.7. By Proposition 2.8, we have σ(K) = −4n/3 + 2t/3 + t − (U + t),
which is equal to the claimed formula. In case (b), since the closure of w is a
knot, the only possibility is w

.
= δ3k+2au1 . Then the Garside normal form of w is

Δ2k+1a1+u1 , which has the desired signature, again by Proposition 2.8. �

Next, let us give complete criteria to decide braid positivity and strong quasipos-
itivity for links of braid index 3. A braid positive link is the closure of some positive
word, i.e. a word in positive powers of the standard generators a1, . . . , ak−1 of the
braid group Bk on some number k of strands. Similarly, a link is called strongly
quasipositive [Rud83,Rud90] if it is the closure of a strongly quasipositive word in
some Bk, i.e. a word in positive powers of

aij = a−1
i a−1

i+1 . . . a
−1
j−1ajaj−1 . . . ai

with 1 � i � j � k − 1. Note that for k = 3, positive words are words in a = a1,
b = a2 and strongly quasipositive words are words in a = a11, b = a22 and x = a12.
It is well-known and straightforward to show that a k-braid can be written as a
(strongly quasi-)positive braid word if and only if the power of Δ (δ) in its Garside
(Birman–Ko–Lee) normal form is non-negative, respectively. This makes (strong
quasi-)positivity decidable for braids. For links however, the problem is harder
because a priori, a braid positive (strongly quasipositive) link with braid index k
need not be the closure of a (strongly quasi-)positive word on k strands. For k = 3,
however, this is the case:

Theorem 2.10 ([Sto17, Theorem 1.1 and 1.3]). The following hold.

(1) If a strongly quasipositive link is the closure of some 3-braid, then it is the
closure of a strongly quasipositive 3-braid.

(2) If a braid positive link is the closure of some 3-braid, then it is the closure
of a positive 3-braid.

We are now ready to prove our positivity characterizations. For braid positivity,
we will once again need the Garside normal form introduced above.

Proposition 2.11. Let δnτu1
1 τu2

2 . . . τut
t be in Xu normal form, with closure a link

L of braid index 3. Then the following hold.

(1) L is a strongly quasipositive link if and only if n � 0.
(2) L is a braid positive link if and only if n � t/2 or n = 0, t = 1.

Proof. Part (1). If n � 0, then the Xu normal form yields a strongly quasipositive
word for L, so L is strongly quasipositive. For the other direction, assume L
is strongly quasipositive and a Xu normal form w with closure L is given. By
Theorem 2.10, there is a strongly quasipositive word in B3 representing L. It
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may be transformed to its Xu normal form w′ just by replacing τi+1τi → δ and
τiδ ↔ δτi+1, and by passing from yτi to τiy for y a word in positive powers of
a, b, x, δ. None of these transformations create negative powers of δ, and so we find
that the Xu normal form w′ has n � 0. By Corollary 2.5(2), all Xu normal forms
with closure L have the same n, so w has n � 0 as well, which was to be proven.

Part (2). If n � t/2, then one may check using Lemma 2.7 that the Garside
normal form of δnτu1

1 τu2
2 . . . τut

t starts with a non-negative power of Δ, and thus
yields a positive word with closure L. If n = 0 and t = 1, then the Xu normal form
is au1 , which is already a positive word with closure L. In both cases, it follows
that L is braid positive. For the other direction, assume L is braid positive and let
a Xu normal form w with closure L be given. By Theorem 2.10, there is a positive
word in B3 representing L. Similarly as in the proof of part (1), one sees that the
Garside normal form of this positive word starts with Δ� with � � 0. By going
through the rows of the table in Lemma 2.7, one sees that this implies that n � t/2,
with the sole exception in the fourth row if k = 0 and u1 
= 0: then, the Xu normal
form is au1 , so n = 0 and t = 1. Again using Corollary 2.5(2), it follows that w
also satisfies n � t/2, or n = 0 and t = 1. �

If a knot K is the closure of a strongly quasipositive 3-braid in Xu normal form
δnτu1

1 . . . τut
t , there is also a simple formula for the Seifert genus of K:

(3) g(K) =
U

2
+ n− 1,

where U = u1 + · · ·+ ut. This follows from the Bennequin inequality [Ben83].

3. Proofs of main theorems

Before beginning with the proof of Theorem 1.1, we describe a technique that
we use to detect topological 4-genus defect in a given knot K, that is, to show
gtop4 (K) < g(K). The main ingredient is the so-called generalized crossing change,
also known as null-homologous twist, or simply twist. A null-homologous twist
consists in performing a ±1 Dehn surgery on the boundary circle of an embedded
disc D ⊂ S3, such that D intersects K transversely in a finite number of interior
points, with total algebraic intersection count 0. While ±1 Dehn surgery on an
unknot in S3 gives back S3, the effect on K is that a (left- or right-handed) full
twist is introduced into the strands of K that cross D (cf. Figure 3). The untwisting
number tu(K) of K, introduced by Ince [Inc16], is defined as the minimal number of
null-homologous twists needed to turn K into the unknot. Clearly, tu(K) � u(K),
since crossing changes are special cases of null-homologous twists. McCoy [McC19]

� → � →

Figure 3. Two examples of twists, at the locations marked by �.
Here, the boundary of the respective disc D is drawn in blue; in
subsequent figures, it will be omitted.
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↔ ↔

α

α

↔

Figure 4. Left: Saddle move. Middle: How to use isotopy and a
saddle move to add or remove a braid crossing. Right: Example
of a cobordism between cl(α) and cl(α · abx) that consists of three
saddle moves, for some 3-braid α.

showed that gtop4 (K) � tu(K), that is, the untwisting number of K is an upper
bound on the topological 4-genus of K. His result is based on Freedman’s theorem,
which states that knots of Alexander polynomial 1 are topologically slice [Fre82,
FQ90]. This bound can now be used to find topological 4-genus defect: If we find a
way to turn a knot K into the unknot with strictly less than g(K) null-homologous

twists, this will show gtop4 (K) < g(K). This method was already applied by Baader–
Banfield–Lewark [BBL20] to 3-stranded torus knots. For the proof of Theorem 1.1
below, we use a slightly refined version of the method, as follows.

Assume we find a cobordism C ⊂ S3×[0, 1] from a given knot K to some knot K ′

such that g(C) = g(K)− g(K ′). If such a C exists, we will write K � K ′. Assume

that further tu(K ′) < g(K ′). Then, by McCoy’s result, gtop4 (K ′) � tu(K ′) < g(K ′).
Composing the cobordism C with a topological slice surface for K ′, we obtain

gtop4 (K) � gtop4 (K ′) + g(C) < g(K ′) + g(C) = g(K).

In particular, for the topological 4-genus defect we find

(4) g(K)− gtop4 (K) � g(K ′)− gtop4 (K ′) � g(K ′)− tu(K ′).

One way to construct cobordisms is to apply saddle moves to knot diagrams, as
in Figure 4. Note that such cobordisms will always be smooth. Suppose the knot K
is the closure of a strongly quasipositive 3-braid of the form β = δnτu1

1 · · · τut
t with

n � 0 and u1, . . . , ut � 1. Out of saddle moves, one may build a cobordism C that
lowers the exponents ui and n (one saddle move per letter τi, two saddle moves per
letter δ), or transforms δ into τi (one saddle move). Suppose the exponents remain
non-negative, and C is a cobordism from K to another knot K ′. Then K ′ is also
strongly quasipositive, and it follows from the Bennequin inequality, see (3), that
g(C) = g(K)− g(K ′), i.e. K � K ′.
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Proof of Theorem 1.1. We organize the proof into two parts, which consist in veri-
fying the following statements.

(1) |σ(K)| = 2g(K) for all K in the list of Theorem 1.1 and their mirrors,

(2) gtop4 (K) < g(K) for all other 3-braid knots except the figure-eight.

In light of Kauffman and Taylor’s signature bound |σ(J)| � 2gtop4 (J), valid for
all knots J , see [KT76,Pow17], these two statements together imply the theorem.

Part (1). The genera and signatures of torus knots are well understood [Lit79];
in particular, we know that the torus knots K with |σ(K)| = 2g(K) are pre-
cisely the knots T (3, 4), T (3, 5), T (2, 2n + 1), n � 0, and their mirrors. In fact,
the signature of T (2, 2n + 1), n � 0, is known to be −2n. Both Seifert genus
and signature are additive under connected sum of knots; hence |σ(K)| = 2g(K)
for all knots K of the first type listed. If K is one of the listed pretzel knots
K = P (2p, 2q + 1, 2r + 1, 1) with p � 1, q, r � 0, then K has a positive and
alternating, hence special alternating diagram; see Figure 2. Murasugi shows in
this case that |σ(K)| = 2g(K); see [Mur65, Corollary 10.3].

Part (2). Let K be a 3-braid knot other than the figure-eight knot such that
neither K nor its mirror appears in the list of Theorem 1.1. The goal is to show
that gtop4 (K) < g(K). We distinguish several cases.

– IfK is the closure of a positive 3-braid, this is a special case of the analogous
statement about all positive braids, on any number of strands, by Liechti [Lie16,
Theorem 1, Corollary 2].

– Next, we consider the case in which K is strongly quasipositive with-
out being braid positive; this is the main part of the proof. By Lemma 2.3 and
Proposition 2.11, K is the closure of a 3-braid β in Xu normal form
β = δnτu1

1 τu2
2 · · · τut

t with u1, . . . , ut � 1, n � 0, t � 2, n + t ≡ 0 mod 3, and
2n < t (note that the case n = 0, t = 1 is excluded since we assume that cl(β) is a
knot). These conditions on n and t leave the following possibilities: (n, t) = (0, 3),
or (n, t) = (1, 5), or t � 6. First, if (n, t) = (0, 3), then K = P (u1, u2, u3, 1); see
Figure 2. If more than one of u1, u2, u3 is even, K is a link of more than one com-
ponent; the same is true if all three parameters are odd. We may therefore assume
that u1 = 2p is even and u2 = 2q + 1, u3 = 2r + 1 are odd, with p � 1, q, r � 0, in
which case K is a pretzel knot from the list, which we excluded.

Secondly, if (n, t) = (1, 5), we have β = δau1bu2xu3au4bu5 . If the exponents ui

are all odd, β closes to a two component link, a contradiction to K being a knot.
Therefore at least one of the ui is even. We may assume that u1 is even, because the
exponents u1, u2, . . . , ut may be cyclically permuted without changing the braid
closure, as explained in Section 2 after Lemma 2.3. In particular, we may assume
that u1 � 2. Then, since δ = xb,

β ∼ au1bu2xu3au4bu5xb � a2bxabxb = a(abx)2b � ab,

where ‘∼’ denotes conjugation, ‘�’ denotes the existence of a cobordism whose
genus equals the difference of the Seifert genera of the knots it connects and ‘�’
is shown in Figure 5. Here, the cobordism ‘�’ is built from saddles decreasing the
exponents ui. Since the closure of a(abx)2b has Seifert genus 3 by (3), while only 2

twists are used in ‘�’, we obtain gtop4 (K) � g(K)− 1 < g(K).
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Finally, if t � 6, we proceed similarly as in the previous case. Again, the parity
of the exponents u1, u2, . . . , ut determines whether β closes to a knot or a multi-
component link. Indeed, a brief case study shows that the closure K of β is a link
of two or three components whenever all the ui are odd. We may therefore assume
via conjugation that u1 is even. If t > 6 or n > 0, then

β � au1bu2xu3au4bu5xu6b � a(abx)2b � ab.

If t = 6 and n = 0, then β = au1bu2xu3au4bu5xu6 . In this case, in order for K
to be a knot, at least two of the exponents u1, . . . , u6, say ui and uj , need to
be even. We may assume that (i, j) = (1, 2) or (i, j) = (1, 4). To see this, use
cyclic permutation (as in the case (n, t) = (1, 5)) and the fact that u1, u3 cannot be
the only even exponents, again because β would not close to a knot if they were.
Therefore, smooth cobordisms bring us to a2b2xabx or to a2bxa2bx, whose closures
have Seifert genus 3 by (3). In the first case,

a2b2xabx = a2bδ−1δbxabx = a2bδ−1b(abx)2 � a2bδ−1b = a2ba−1 ∼ ab.

For the second case, Figure 6 shows how to turn a(abxa2bx) into aγ using two
twists. Here, γ is the tangle shown in the top right corner of the figure. Note that
aγ describes the unknot when closed like a braid. Since the closure of a2bxa2bx has
Seifert genus 3 (see (3)), we obtain gtop4 (K) � g(K) − 1 < g(K). This concludes
the case that K is strongly quasipositive.

– If the mirror of K is strongly quasipositive, we apply the above argument
to the mirror of K; since both gtop4 and g are invariant under taking mirror images,

we obtain gtop4 (K) < g(K) again.
– If K or its mirror is the knot T (2, 2m+1)#T (2,−2n−1), with m � n � 1,

it has a Seifert surface S of genus m + n = g(K) that contains a copy of the
ribbon knot R := T (2, 2n+1)#T (2,−2n− 1), bounding a subsurface of S of genus
g(R) = 2n. A surgery that cuts this subsurface off S and replaces it with a slice disk
for R gives rise to a smooth surface of genus m+ n− 2n = m− n embedded in the
four-ball, with boundary K. This shows that g4(K) � m− n � m+ n− 2 < g(K),
because n � 1 by assumption. Here, we use the standard notation g4(K) for the

smooth 4-genus. In particular, we obtain gtop4 (K) < g(K).

→

→

≈

�

�

Figure 5. abxabx � ∅ using one twist on four strands, followed
by another twist on two strands, at the locations marked � (cf. Fig-
ure 3). The first step is an isotopy, moving the blue strand. The
last step is a crossing change near �, followed by an isotopy fixing
the endpoints of the braid strands.
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– What remains are the 3-braid knots K such that neither K nor its mir-
ror is among the following: strongly quasipositive, a connected sum of the form
T (2, 2m + 1)#T (2,−2n − 1), m � n � 1, or the figure-eight knot. For such K,
Lee–Lee [LL13] prove the following bound on the unknotting number:

u(K) < g(K). Since gtop4 (J) � g4(J) � u(J) holds for all knots J , this implies

gtop4 (K) < g(K) and completes the proof. �

For comparison, we note the following analog of Theorem 1.1, in which the
smooth 4-genus g4(K) replaces gtop4 (K), and Rasmussen’s invariant s(K) from
Khovanov homology [Ras10] (or any other slice-torus invariant [Liv04], e.g. the
Heegaard–Floer τ -invariant) plays the role of the signature σ(K).

Proposition 3.1. Let K be a 3-braid knot other than the figure-eight knot. Then

|s(K)| = 2g(K) ⇐⇒ g4(K) = g(K).

These equalities hold precisely when K or its mirror is strongly quasipositive.

Proof. If K or its mirror is strongly quasipositive, then |s(K)| = 2g(K) by [Shu07,
Proposition 1.7]. Moreover, the implication |s(K)| = 2g(K) ⇒ g4(K) = g(K)
holds for all knots K, because of the inequalities |s(K)| � 2g4(K) � 2g(K). It
remains to prove that if K is a 3-braid knot other than the figure-eight knot with
g4(K) = g(K), then K or its mirror is strongly quasipositive. This follows from
Lee–Lee’s results [LL13]. More precisely, for a 3-braid knot K with g4(K) = g(K)
Theorem 1.1 in [LL13] implies u(K) = g(K). By Theorem 1.3 of the same paper, K
or its mirror is either strongly quasipositive or a connected sum of two-strand torus
knots T (2, 2m+ 1)#T (2,−2n− 1) with m � n � 1. The latter can be excluded as

→
≈

�

�

→

≈
≈

abxa2bx γ

Figure 6. How to turn the braid abxa2bx (top left) into the tangle
γ (top right) using one twist on four strands, followed by another
twist on two strands, at the locations marked � (cf. Figure 3).
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in the proof of our Theorem 1.1 by showing g4(K) � m− n � m+ n− 2 < g(K),
a contradiction to g4(K) = g(K). �

Theorem 3.2. Let K be a strongly quasipositive 3-braid knot, written as the closure
of a 3-braid β in Xu normal form β = δnτu1

1 τu2
2 · · · τut

t , with u1, . . . , ut � 1 and
n � 0. Then the topological 4-genus defect of K is bounded as follows:

n

3
+

t

3
− 1 � g(K)− gtop4 (K) � n

3
+

t

6
− 3.

The constants 1
3 and 1

6 in the second inequality are optimal in the following sense:

Whenever C > 1
3 or D > 1

6 , and E ∈ R, there exists a 3-braid in Xu normal form
as above with n � 0 such that its braid closure K satisfies

g(K)− gtop4 (K) < Cn+Dt− E.

The case t = 0 in Theorem 3.2, in which K = T (3, n), is covered by [BBL20,
Theorem 1]. The equality

g(K)− gtop4 (K) = n− 1−
⌈
2n

3

⌉
directly implies the claimed upper and lower bounds in this case.

Proof. We only consider the case t > 0 and begin with the upper bound
n
3 + t

3 − 1 � g(K)− gtop4 (K). We first use Proposition 2.9 to compute the absolute

value of the signature |σ(K)| = −σ(K) = U + 4
3n − 2

3 t, where U = u1 + · · · + ut,

and recall that g(K) = U
2 + n − 1 from (3), Section 2. The bound then follows

directly from Kauffman and Taylor’s classical bound |σ(K)| � 2gtop4 (K).
To establish the lower bound, we first apply a smooth cobordism from K to a

knot K ′, by suitably lowering the exponents n, u1, u2, . . . , ut in β, as explained in
Figure 4. First, assume n > 0. We set K ′ := cl(δm(abx)

s
3 ), where

s = 6

⌊
t

6

⌋
and m =

⎧⎪⎨⎪⎩
n− 2 if n ≡ 0 mod 3

n− 1 if n ≡ 2 mod 3

n if n ≡ 1 mod 3.

We have K � K ′, and so this is a smooth cobordism which does not increase the
topological 4-genus defect. In other words,

g(K)− gtop4 (K) � g(K ′)− gtop4 (K ′),

as in (4). Next, we apply the untwisting move (abx)2 � ∅ from Figure 5 exactly
s
6 times to the knot K ′, resulting in cl(δm) = T (3,m). Since m ≡ 1 mod 3, this

is a knot again. For m � 4, [BBL20, Lemma 5 (1)] yields tu(T (3,m)) � 2
3m + 1

3 .
This inequality still holds for m = 1 and adds up to

gtop4 (K ′) � tu(K ′) � 2 · s
6
+

2

3
m+

1

3
.

Since g(K ′) = s
2 +m− 1 by (3), and since s

6 � t
6 − 5

6 and m � n− 2, we obtain

g(K)− gtop4 (K) � s

6
+

m

3
− 4

3
� t

6
+

n

3
− 3.

In the case n = 0, the above procedure fails because m, as defined above, is nega-
tive and the smooth cobordism to K ′ might therefore increase the 4-genus defect.
However, a simple cosmetic modification allows for a cobordism that only increases
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the 4-genus defect by at most one. Specifically, we set m = 1 (instead of m = −2)
and K ′ = cl(δ(abx)

s
3 ). The cobordism from K to K ′ is then given by lowering the

exponents u1, u2, . . . , ut in β as above while increasing the exponent of δ from 0
to 1. This gives

g(K)− gtop4 (K) � g(K ′)− gtop4 (K ′)− 1.

Now we apply the s
6 untwisting moves (abx)2 � ∅ as above. The result is the

unknot cl(δ). Since n = 0, we again obtain the claimed bound

g(K)− gtop4 (K) � s

6
− 1 � t

6
− 5

6
− 1 � t

6
+

n

3
− 3.

In order to demonstrate optimality of the constants, we consider the two spe-
cial families of 3-braids δn and (abx)n, which we slightly modify to δ3k+1 and
(abx)2kabx2abx2, to make sure that their braid closures are connected.

– For K = T (3, 3k + 1) with k � 1, the closure of the braid δ3k+1 in Xu

normal form with n = 3k + 1 and t = 0, we have g(K) = 3k and gtop4 (K) = 2k + 1

by [BBL20], hence g(K)−gtop4 (K) = k−1. Whenever C > 1
3 and D,E are arbitrary

constants, we will therefore have

g(K)− gtop4 (K) = k − 1 < C · (3k + 1) +D · 0− E

for sufficiently large k.
– If K is the closure of (abx)2kabx2abx2, which is in Xu normal form with

n = 0 and t = 6k + 6, then g(K) = 3k + 3. We will now invoke the
Levine–Tristram signature function [Lev69,Tri69], which associates to each knot J a
function [0, 1] → Z, t �→ σe2πit(J) with σ1(J) = 0 for t = 0. By
Gambaudo–Ghys [GG05, Corollary 4.4], for any 3-braid β with closure J , the
Levine–Tristram signature function of J grows linearly on (0, 13 ) with slope −2
times the writhe of β, up to a pointwise error of at most 2 (see e.g. Figure 7 at
the end of the paper). For strongly quasipositive β with J a knot, that slope is
−4(g(J) + 1), see (3), and hence

(5) σ̂(J) := max
ω∈S1\Δ−1

J (0)
|σω(J)| �

4

3
(g(J) + 1)− 2.

Since 1
2 |σω(J)| � gtop4 (J) if ω ∈ S1 is not a root of the Alexander polynomial of J

(see [KT76,Pow17]), we obtain 2
3 (g(K)+1)−1 = 2k+ 5

3 � gtop4 (K). Hence, if C,E

are arbitrary constants and D > 1
6 , we have

g(K)− gtop4 (K) � 3k + 3− 2k − 5

3
= k +

4

3
< C · 0 +D · (6k + 6)− E,

for sufficiently large k. In this case, it does not suffice to consider the (classical) sig-

nature bound on gtop4 (K). Indeed, |σ(K)| = 2k+4 (see Proposition 2.9) is roughly
half the Levine–Tristram signature σe2πi/3(K). Substituting σ(K) for σe2πi/3(K) in
the above argument would therefore not work. �

Remark 3.3. The proof of Theorem 3.2 shows that for K the closure of
(abx)2kabx2abx2, k � 0, we have

2k +
5

3
� 1

2
|σe2πi/3(K)| � 1

2
σ̂(K) � gtop4 (K).

On the other hand, from K we obtain the closure of abx2abx2 ∼ a2bxa2bx using 2k
twists (using k times our trick abxabx � ∅ from Figure 5), which can be untwisted
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with two twists (compare the case t = 6, n = 0 in the proof of Theorem 1.1). Thus

gtop4 (K) � tu(K) � 2k + 2 and we obtain

1

2
|σe2πi/3(K)| = 1

2
σ̂(K) = gtop4 (K) = tu(K) = 2k + 2.

4. The 4-genus of closures of positive 3-braids

Our results so far provide infinitely many strongly quasipositive 3-braid knots
K satisfying 1

2 σ̂(K) = gtop4 (K), see Theorem 1.1 and Remark 3.3. This leads us to
the following.

Question 4.1. Does the equality 1
2 σ̂(K) = gtop4 (K) hold for all strongly quasi-

positive 3-braid knots? If not, does it at least hold for all braid positive 3-braid
knots?

In this section, we exhibit large families of positive 3-braid knots for which
1
2 σ̂(K) = gtop4 (K) holds up to an error of 1, see Proposition 4.4. In certain cases,

we can even determine gtop4 exactly (see Examples 4.2 and 4.3 and Remark 4.5).
For the knots covered by Proposition 4.4, σ̂ equals |σ| or |σ| + 2, whereas in the
example discussed in Remark 3.3, σ̂ equals |σe2πi/3 |. However, as we will see in
Remark 4.7, the differences σ̂ − |σ| and σ̂ − |σe2πi/3 | can be arbitrarily large for
positive 3-braid knots. This fact contributes to the difficulty of Question 4.1.

Throughout, we will use the Xu normal form of 3-braids from Section 2. Recall
that we write δ = ba = ax = xb such that aδ = δb, bδ = δx and xδ = δa (see (2) in
Section 2).

Example 4.2. Let K be a knot that is the closure of a 3-braid in Xu normal form
β = δ3�+2au1 for � � 0, u1 � 1. Note that u1 must be even for K to be a knot. We
claim that

gtop4 (K) = tu(K) =
|σ(K)|

2
=

u1

2
+ 2�+ 1.(6)

The last equality follows directly from Proposition 2.9. To prove Equation (6),

using 1
2 |σ(K)| � gtop4 (K) � tu(K) (as explained in the beginning of Section 3) it

is enough to show that tu(K) � 1
2 |σ(K)|. By u1−2

2 crossing changes from positive

crossings of β to negative crossings we obtain the braid δ3�+2a2. We will prove
by induction that this braid can be untwisted with 2� + 2 twists, which implies
tu(K) � u1

2 + 2� + 1. For � = 0, we have δ2a2 = baba3 = aba4 which becomes ab
(with closure the unknot) by two crossing changes. For � = 1, we have

δ5a2 = δ4axa2 = δ3x2bxa2 = δ2b3abxa2 = δa4xabxa2 = x5bxabxa2

∼ b5abxabxx � b5x,

which turns into bx ∼ δ using two crossing changes. Recall that the two twists
needed to untwist abxabx � ∅ are shown in Figure 5 of Section 3. Now, for � � 2,
we have

δ3�+2a2 = δ3�−3x5bxabxa2 ∼ δ3�−3b5abxabxx � δ3�−3b5x

∼ δ3�−3δb4 = δ3�−3aδb3 ∼ δ3�−1b2 ∼ δ3(�−1)+2a2,

where we again used two twists for ‘�’. Inductively this shows that δ3�+2a2 can
be untwisted with 2�+ 2 twists as claimed.
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Example 4.2 combined with the results from [BBL20] for 3-strand torus knots

shows that the equalities gtop4 = tu = σ̂
2 hold for all strongly quasipositive 3-braid

knots in Xu normal form (a) or (b) from Lemma 2.3, where σ̂ = |σ| except for
certain torus knots of braid index 3; see also Remark 4.7. We next consider a
sub-case of case (c) from Lemma 2.3.

Example 4.3. Let K be a knot that is the closure of a 3-braid in Xu normal form
β = δ3�+1au1bu2 for � � 0, u1, u2 � 1. Note that u1 and u2 must both be even for
K to be a knot. We claim that

gtop4 (K) = tu(K) =
|σ(K)|

2
=

u1 + u2

2
+ 2�.

The proof works as in Example 4.2. After u1+u2−4
2 positive to negative crossing

changes in β we obtain the braid δ3�+1a2b2, which we can untwist with 2�+2 twists
as follows. For � = 0, the braid δa2b2 turns into δ by two crossing changes. For
� = 1, we have

δ4a2b2 = δ3xaxab2 = δ2bx2bxab2 = δab3abxab2 = xa4xabxab2

∼ ab4abxabxx � ab4x,

which can be untwisted using two crossing changes. For � � 2, we have

δ3�+1a2b2 = δ3�−3xa4xabxab2 ∼ δ3�−3ab4abxabxx � δ3�−3ab4x

= δ3�−4xa3babx = δ3�−5bx3a2xabx = δ3�−6ab3x3bxabx

∼ δ3�−6a3b3abxabx � δ3�−6a3b3 ∼ δ3�−5a2b2 = δ3(�−2)+1a2b2,

which we can untwist inductively using the two base cases above.

Proposition 4.4 improves the statement from Theorem 3.2 for braid positive
3-braid knots under the additional assumption ui � 2 for the exponents in the Xu
normal form of their braid representatives. In fact, we can determine gtop4 (K) in
this case up to an error of 1, using 1

2 |σ(K)| as a lower bound.

Proposition 4.4. Let K be a knot that is the closure of a 3-braid in Xu normal
form

δnτu1
1 τu2

2 . . . τut
t for t � 1, n � t

2
, u1, . . . , ut � 2.

Then K is a braid positive knot and

n+ t

3
− 1 = g(K)− |σ(K)|

2
� g(K)− gtop4 (K) � n+ t

3
− 2.(7)

Proof. Set U = u1 + · · · + ut. Proposition 2.11 implies that K is braid positive.

Moreover, we have |σ(K)|
2 = U

2 + 2n
3 − t

3 by Proposition 2.9 and g(K) = U
2 + n− 1

by (3). Using 1
2 |σ(K)| � gtop4 (K), it remains to show that gtop4 (K) � |σ(K)|

2 + 1.
We distinguish two cases depending on the parity of t. First, let t = 2r be even

for r � 1. The conditions 2n � t and n + t ≡ 0 (mod 3) imply that we can write
n = 3�+ r for � � 0, and K is the closure of

β = δ3�+rτu1
1 τu2

2 . . . τu2r
2r .
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The case r = 1 (t = 2) is covered by Example 4.3, so we can further assume that
r � 2. There is a smooth cobordism of Euler characteristic 4r − U − 4 from K to
the knot that is the closure of

β′ = τ1−rδ
3�+r−1

r−2∏
i=1

τ2i τr−1τrτr+1

2r∏
i=r+2

τ2i .

Indeed, we can use U−4r+3 saddle moves to replace all but three of the exponents
ui by 2 and the other three by 1. We use a last saddle move to replace δ by τ1−r.
We will prove by induction on r that β′ turns into δ3�+1 by 2r− 2 twists. Since the
closure of δ3�+1 is the torus knot T (3, 3�+ 1), this will imply

tu (cl (β′)) � tu(T (3, 3�+ 1)) + 2r − 2 =

{
2�+ 2r − 1 if � � 1,

2r − 2 if � = 0,
(8)

where the equality follows from [BBL20, Lemma 5 and Theorem 1]. Recall that
δ = τi+1τi, τiδ = δτi+1 (see (2)) and τi = τi+3m for all m ∈ Z, i ∈ Z. For r = 2, we
thus have τ1−r = τ2 and

β′ = τ2δ
3�+1τ1τ2τ3τ

2
4 = δ3�τ2τ1τ0τ1τ2τ3τ

2
4 = δ3�τ0τ−1τ0τ1τ2τ3τ

2
4

∼ δ3�τ2τ1τ2τ3τ4τ5τ
2
6 � δ3�τ2τ6 ∼ δ3�+1,

so β′ indeed turns into δ3�+1 using 2r − 2 = 2 twists in this case. Now, for r � 3,
consider

β′ = τ1−rδ
3�+r−2

r−3∏
i=1

τ2i−1δτ
2
r−2τr−1τrτr+1τ

2
r+2

2r∏
i=r+3

τ2i

= τ1−rδ
3�+r−2

r−3∏
i=1

τ2i−1τr−3τr−2τr−3τr−2τr−1τrτr+1τ
2
r+2

2r∏
i=r+3

τ2i

∼ τ(1−r)−(r−4)δ
3�+r−2

r−3∏
i=1

τ2i−1−(r−4)τ1τ2τ1τ2τ3τ4τ5τ
2
6

2r∏
i=r+3

τ2i−(r−4)

� τ(1−r)−r+1δ
3�+r−2

r−3∏
i=1

τ2i−rτ1τ2τ3

2r∏
i=r+3

τ2i−r+1

∼ τ(1−r)+1δ
3�+r−2

r−3∏
i=1

τ2i τr−2τr−1τr

2(r−1)∏
i=r+1

τ2i .

The braid β′ hence turns into τ(1−r)+1δ
3�+r−2

∏r−3
i=1 τ2i τr−2τr−1τr

∏2(r−1)
i=r+1 τ2i by two

twists and inductively we get that β′ turns into

τ(1−r)+r−2δ
3�+1τ1τ2τ3τ

2
4

by 2(r−2) twists. Since τ(1−r)+r−2 = τ2, this braid is the same as the one from the
base case r = 2 and therefore can be untwisted with two twists. We obtain that β′
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becomes δ3�+1 by 2r − 2 twists. Equation (8) follows and we get

gtop4 (K) � gtop4 (cl (β′)) +
U − 4r + 4

2
� tu (cl (β′)) +

U

2
− 2r + 2

�
{

U
2 + 2�+ 1 = |σ(K)|

2 + 1 if � � 1,
U
2 = |σ(K)|

2 if � = 0.

Next, let t = 2r + 1 be odd for r � 0. The conditions 2n � t and n + t ≡ 0
(mod 3) imply that we can write n = 3�+ r + 2 for � � 0, and K is the closure of

β = δ3�+r+2τu1
1 τu2

2 . . . τ
u2r+1

2r+1 .

The case t = 1 is covered by Example 4.2, so we can further assume that r � 1.
There is a smooth cobordism of Euler characteristic 4r−U − 2 from K to the knot
that is the closure of

β′ = τ1−rδ
3�+r+1

r−1∏
i=1

τ2i τrτr+1τr+2

2r+1∏
i=r+3

τ2i ,

similar to the cobordism considered in the above case. We prove by induction on r
that β′ turns into δ3(�+1)+1 by 2r − 2 twists, hence

tu (cl (β′)) � tu(T (3, 3(�+ 1) + 1)) + 2r − 2 = 2�+ 2r + 1.

For r = 1, we have

β′ = τ0δ
3�+2τ1τ2τ3 = δ3�+3τ2τ3 ∼ δ3(�+1)+1.(9)

For r = 2, we have

β′ = τ2δ
3�+3τ21 τ2τ3τ4τ

2
5 = τ2δ

3�+2τ0τ1τ0τ1τ2τ3τ4τ
2
5

∼ τ0δ
3�+2τ1τ2τ1τ2τ3τ4τ5τ

2
6 � τ0δ

3�+2τ1τ2τ6 ∼ δ3(�+1)+1

using Equation (9) in the last step. Now, for r � 3, consider

β′ = τ1−rδ
3�+r

r−2∏
i=1

τ2i−1δτ
2
r−1τrτr+1τr+2τ

2
r+3

2r+1∏
i=r+4

τ2i

= τ1−rδ
3�+r

r−2∏
i=1

τ2i−1τr−2τr−1τr−2τr−1τrτr+1τr+2τ
2
r+3

2r+1∏
i=r+4

τ2i

∼ τ(1−r)−(r−3)δ
3�+r

r−2∏
i=1

τ2i−1−(r−3)τ1τ2τ1τ2τ3τ4τ5τ
2
6

2r+1∏
i=r+4

τ2i−(r−3)

� τ(1−r)−rδ
3�+r

r−2∏
i=1

τ2i−r−1τ1τ2τ3

2r+1∏
i=r+4

τ2i−r

∼ τ(1−r)+1δ
3�+r

r−2∏
i=1

τ2i τr−1τrτr+1

2(r−1)+1∏
i=r+2

τ2i .

Inductively we get that β′ turns into

τ(1−r)+r−2δ
3�+3τ21 τ2τ3τ4τ

2
5 = τ2δ

3�+3τ21 τ2τ3τ4τ
2
5
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by 2(r − 2) twists, so into δ3(�+1)+1 by 2r − 2 twists. We obtain

gtop4 (K) � gtop4 (cl (β′)) +
U − 4r + 2

2
� tu (cl (β′)) +

U

2
− 2r + 1

� U

2
+ 2�+ 2 =

|σ(K)|
2

+ 1.

�
Remark 4.5. The proof of Proposition 4.4 (more precisely, the first case with � = 0)
shows that the first inequality in (7) is an equality when 2n = t.

Example 4.6. For knots K of low Seifert genus arising as closure of positive
3-braids, we can often apply the untwisting moves shown in Section 3 and show
1
2 σ̂(K) = tu(K), thus determining gtop4 (K). Here is a selection of positive 3-braids
that close off to knots of Seifert genus 6 and 7, for which that strategy did not
succeed:

δ3a2b2xabx ∼ a3b3a2b2a2b2

δ4a2bxab ∼ Δa3b2a2b2a2

δ4a4bxab ∼ Δa5b2a2b2a2

δ4a2b2xa2b ∼ Δa3b3a2b3a2

δ6a2bx ∼ Δ3a3b2a2.

First, we note that for all of these knots K, we have the lower bound
1
2 σ̂(K) = 1

2 |σ(K)| = g(K) − 2 � gtop4 (K). Second, in the search for upper
bounds, we are able to find a knot J such that K � J and tu(J) = g(J) − 1,

thus proving gtop4 (K) � g(K) − 1, for each of these knots K. However, we are
unable to find J with K � J and tu(J) = g(J) − 2. Nevertheless, we can prove

gtop4 (K) = g(K)−2 for all of these knots K in a different way, which is practical for
individual knots with low Seifert genus. Namely, a computer search [Lew23] reveals
that the algebraic genus galg(K), which is defined in terms of Seifert matrices of K

and provides an upper bound gtop4 (K) � galg(K) [FL18], satisfies galg(K) � g(K)−2
for all our knots K. Yet it remains an open question whether tu(K) = g(K)− 1 or
tu(K) = g(K)− 2 for those knots K.

Remark 4.7. The maximal Levine–Tristram signature, see (5) in Section 3, provides

a good computable lower bound for gtop4 :

σ̂(K) = max
ω∈S1\Δ−1

K (0)
|σω(K)| � 2gtop4 (K).

The function S1 → Z, ω �→ σω(K), is piecewise constant and jumps only at zeroes
of the Alexander polynomial ΔK . A priori, its maximum absolute value may be
assumed anywhere on S1 \ {1}.

In the above examples and Proposition 4.4 we have seen that for certain families
of 3-braid knots, σ̂ = |σ| = 2gtop4 , where σ = σ−1 = σeπi is the classical knot
signature. This also holds for the T (3, 3k + m) torus knots with m ∈ {1, 2} and
odd k � 1 [BBL20]. For even k on the other hand, e.g. for T (3, 7), one finds
σ̂ = |σω| = |σ| + 2 for ω chosen only one jump-point of the Levine–Tristram
signature away from eπi, i.e. ω = e2πit for

t ∈
(
1

2
− 5

18k + 6m
,
1

2
− 1

18k + 6m

)
.



3-BRAID KNOTS WITH MAXIMAL 4-GENUS 619
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0.3826

0.4 0.5
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−60

Figure 7. In blue, the graph of the Levine–Tristram signa-
ture σe2πit(K) for t ∈

[
0, 1

2

]
and K the closure of the 3-braid(

a2b2
)8 (

a5b5
)4 ∼ δ12

(
a4b4x4

)2
a4b4(xab)5x. In black, the linear

approximation by [GG05, Corollary 4.4] for t ∈ [0, 13 ]. The maxi-
mum absolute value σ̂(K) of σe2πit(K), which equals |σ(K)|+4 =
|σe2πi/3(K)|+4, is assumed between 0.3599 and 0.3826 (rounded).
This graph was drawn with sage [Sag23], by computing the sig-
natures of the Hermitian matrices (1− ω)A+ (1− ω)A�, for A a
Seifert matrix of K, and ω between the roots of ΔK on S1.

This observation relies on the fact that the jumps of the Levine–Tristram signatures
of torus knots are well understood [Lit79,Ban22]. We have also seen examples where
σ̂ = |σe2πi/3 |, namely the closures of (abx)2kabx2abx2 for k � 0; see Remark 3.3.
Overall, whenever we could precisely determine the topological 4-genus of a 3-braid
knot K, then the maximum absolute value of σe2πit was either assumed at t = 1

3 ,

or at t = 1
2 , or close to t = 1

2 .
However, σ̂(K)−max (|σe2πi/3(K)|, |σ(K)|) is unbounded for K ranging over

positive 3-braid knots. Indeed, let Kn be the closure of
(
a2b2

)2n (
a5b5

)n
, which is

a knot if n is not a multiple of 3. The Levine–Tristram signatures of K4 are shown
in Figure 7. Using Proposition 2.8 and [GG05, Corollary 4.4] (as in (5)), we find

(10) σ(Kn) = −12n, σe2πi/3(Kn) ≈ −12n,

with an error of at most 2. Let us now estimate σ̂(Kn). We use the fact that Kn

can be transformed by n+ 10 saddle moves into the link

Jn = T (2, 10)#(n−1)#T (3, 6n)#T (2,−4n).

The latter satisfies, up to a constant error (i.e. an error that is independent of n),

σe6πi/7(Jn) ≈ −9n− 8n+
6

7
· 4n = −(13 +

4

7
)n,

which implies that (again with constant error)

σ̂(Kn) � |σe6πi/7(Kn)| � |σe6πi/7(Jn)| − n− 10 ≈ (12 +
4

7
)n.
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This estimate, combined with (10), shows that

lim
n→∞

σ̂(Kn)−max (|σe2πi/3(Kn)|, |σ(Kn)|) = +∞.

This last example shows that determining σ̂ and gtop4 for all 3-braid knots, or
even just closures of positive 3-braids, could be a hard problem.
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Email address: paulagtruoel@gmail.com
URL: https://people.math.ethz.ch/~ptruoel/

https://mathscinet.ams.org/mathscinet-getitem?mr=2057779
https://mathscinet.ams.org/mathscinet-getitem?mr=3105306
https://knotinfo.math.indiana.edu
https://knotinfo.math.indiana.edu
https://mathscinet.ams.org/mathscinet-getitem?mr=4294766
https://mathscinet.ams.org/mathscinet-getitem?mr=171275
https://mathscinet.ams.org/mathscinet-getitem?mr=0356023
https://mathscinet.ams.org/mathscinet-getitem?mr=3604490
https://mathscinet.ams.org/mathscinet-getitem?mr=2729272
https://mathscinet.ams.org/mathscinet-getitem?mr=699004
https://mathscinet.ams.org/mathscinet-getitem?mr=1027784
http://www.sagemath.org
https://mathscinet.ams.org/mathscinet-getitem?mr=2384833
https://mathscinet.ams.org/mathscinet-getitem?mr=3729301
https://mathscinet.ams.org/mathscinet-getitem?mr=248854
https://mathscinet.ams.org/mathscinet-getitem?mr=4665283
https://mathscinet.ams.org/mathscinet-getitem?mr=1180404

	1. Introduction
	2. The Xu normal form of 3-braids
	3. Proofs of main theorems
	4. The 4-genus of closures of positive 3-braids
	Acknowledgment
	References

