Quadratic enrichment of the logarithmic derivative of the zeta function
HTML articles powered by AMS MathViewer
- by Margaret Bilu, Wei Ho, Padmavathi Srinivasan, Isabel Vogt and Kirsten Wickelgren;
- Trans. Amer. Math. Soc. Ser. B 11 (2024), 1183-1225
- DOI: https://doi.org/10.1090/btran/201
- Published electronically: October 2, 2024
- HTML | PDF
Abstract:
We define an enrichment of the logarithmic derivative of the zeta function of a variety over a finite field to a power series with coefficients in the Grothendieck–Witt group. We show that this enrichment is related to the topology of the real points of a lift. For cellular schemes over a field, we prove a rationality result for this enriched logarithmic derivative of the zeta function as an analogue of part of the Weil conjectures. We also compute several examples, including toric varieties, and show that the enrichment is a motivic measure.References
- Aravind Asok and Jean Fasel, Algebraic vector bundles on spheres, J. Topol. 7 (2014), no. 3, 894–926. MR 3252968, DOI 10.1112/jtopol/jtt046
- A. Asok, J. Fasel, and M. J. Hopkins, Algebraic vector bundles and $p$-local $\mathbb {A}^1$-homotopy theory, Preprint, arXiv:2008.03363v1, 2020.
- Aravind Asok, Jean Fasel, and Ben Williams, Motivic spheres and the image of the Suslin-Hurewicz map, Invent. Math. 219 (2020), no. 1, 39–73. MR 4050101, DOI 10.1007/s00222-019-00907-z
- Aravind Asok, Kirsten Wickelgren, and Ben Williams, The simplicial suspension sequence in $\Bbb {A}^1$-homotopy, Geom. Topol. 21 (2017), no. 4, 2093–2160. MR 3654105, DOI 10.2140/gt.2017.21.2093
- Joseph Ayoub, Les six opérations de Grothendieck et le formalisme des cycles évanescents dans le monde motivique. II, Astérisque 315 (2007), vi+364 pp. (2008) (French, with English and French summaries). MR 2438151
- Tom Bachmann, Motivic and real étale stable homotopy theory, Compos. Math. 154 (2018), no. 5, 883–917. MR 3781990, DOI 10.1112/S0010437X17007710
- Tom Bachmann, $\eta$-periodic motivic stable homotopy theory over Dedekind domains, J. Topol. 15 (2022), no. 2, 950–971. MR 4441609, DOI 10.1112/topo.12234
- Tom Bachmann and Kirsten Wickelgren, Euler classes: six-functors formalism, dualities, integrality and linear subspaces of complete intersections, J. Inst. Math. Jussieu 22 (2023), no. 2, 681–746. MR 4557905, DOI 10.1017/S147474802100027X
- J. Borger, Lambda-rings and the field with one element, Preprint, arXiv:0906.3146v1, 2009.
- Anders Buch, Jesper F. Thomsen, Niels Lauritzen, and Vikram Mehta, The Frobenius morphism on a toric variety, Tohoku Math. J. (2) 49 (1997), no. 3, 355–366. MR 1464183, DOI 10.2748/tmj/1178225109
- Christophe Cazanave, Algebraic homotopy classes of rational functions, Ann. Sci. Éc. Norm. Supér. (4) 45 (2012), no. 4, 511–534 (2013) (English, with English and French summaries). MR 3059240, DOI 10.24033/asens.2172
- Baptiste Calmès, Emanuele Dotto, Yonatan Harpaz, Fabian Hebestreit, Markus Land, Kristian Moi, Denis Nardin, Thomas Nikolaus, and Wolfgang Steimle, Hermitian K-theory for stable $\infty$-categories I: Foundations, Selecta Math. (N.S.) 29 (2023), no. 1, Paper No. 10, 269. MR 4514986, DOI 10.1007/s00029-022-00758-2
- B. Calmès and J. Fasel, Finite Chow–Witt correspondences, Preprint, arXiv:1412.2989v2, 2017.
- A. Dubouloz, F. Déglise, and P. A. Østvaer, Punctured tubular neighborhoods and stable homotopy at infinity, Preprint, arXiv:2206.01564v1, 2022.
- Daniel Dugger and Daniel C. Isaksen, Motivic cell structures, Algebr. Geom. Topol. 5 (2005), 615–652. MR 2153114, DOI 10.2140/agt.2005.5.615
- David Eisenbud and Joe Harris, 3264 and all that—a second course in algebraic geometry, Cambridge University Press, Cambridge, 2016. MR 3617981, DOI 10.1017/CBO9781139062046
- Jordan S. Ellenberg, Akshay Venkatesh, and Craig Westerland, Homological stability for Hurwitz spaces and the Cohen-Lenstra conjecture over function fields, Ann. of Math. (2) 183 (2016), no. 3, 729–786. MR 3488737, DOI 10.4007/annals.2016.183.3.1
- William Fulton, Intersection theory, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 2, Springer-Verlag, Berlin, 1984. MR 732620, DOI 10.1007/978-3-662-02421-8
- S. M. Gusein-Zade, I. Luengo, and A. Melle-Hernández, Power structure over the Grothendieck ring of varieties and generating series of Hilbert schemes of points, Michigan Math. J. 54 (2006), no. 2, 353–359. MR 2252764, DOI 10.1307/mmj/1156345599
- J. Heller and K. Ormsby, Galois equivariance and stable motivic homotopy theory, Trans. Amer. Math. Soc. 368 (2016), no. 11, 8047–8077. MR 3546793, DOI 10.1090/tran6647
- Jens Hornbostel, $A^1$-representability of Hermitian $K$-theory and Witt groups, Topology 44 (2005), no. 3, 661–687. MR 2122220, DOI 10.1016/j.top.2004.10.004
- Marc Hoyois, A quadratic refinement of the Grothendieck-Lefschetz-Verdier trace formula, Algebr. Geom. Topol. 14 (2014), no. 6, 3603–3658. MR 3302973, DOI 10.2140/agt.2014.14.3603
- Po Hu, On the Picard group of the stable $\Bbb A^1$-homotopy category, Topology 44 (2005), no. 3, 609–640. MR 2122218, DOI 10.1016/j.top.2004.12.001
- X. Hu, Rationality of $\operatorname {dlog}\mathbb {A}^1$-zeta functions, Preprint, arXiv:2311.06793v1, 2023.
- Jeremy A. Jacobson, Real cohomology and the powers of the fundamental ideal in the Witt ring, Ann. K-Theory 2 (2017), no. 3, 357–385. MR 3658988, DOI 10.2140/akt.2017.2.357
- M. Kapranov, The elliptic curve in the S-duality theory and Eisenstein series for Kac-Moody groups, Preprint, arXiv:math/0001005v2, 2000.
- Jesse Leo Kass and Kirsten Wickelgren, An arithmetic count of the lines on a smooth cubic surface, Compos. Math. 157 (2021), no. 4, 677–709. MR 4247570, DOI 10.1112/s0010437x20007691
- Marc Levine, Aspects of enumerative geometry with quadratic forms, Doc. Math. 25 (2020), 2179–2239. MR 4198841, DOI 10.4171/dm/797
- Michael Larsen and Valery A. Lunts, Motivic measures and stable birational geometry, Mosc. Math. J. 3 (2003), no. 1, 85–95, 259 (English, with English and Russian summaries). MR 1996804, DOI 10.17323/1609-4514-2003-3-1-85-95
- Marc Levine, Yaping Yang, Gufang Zhao, and Joël Riou, Algebraic elliptic cohomology theory and flops I, Math. Ann. 375 (2019), no. 3-4, 1823–1855. MR 4023393, DOI 10.1007/s00208-019-01880-x
- Saunders MacLane, Categories for the working mathematician, Graduate Texts in Mathematics, Vol. 5, Springer-Verlag, New York-Berlin, 1971. MR 354798
- M. Florian, Des ouverts Zariski et des morphismes lisses en géométrie relative, PhD diss., Université de Toulouse, 2009.
- J. S. Milne, Lectures on étale cohomology, 2013, available at https://www.jmilne.org/math/CourseNotes/lec.html.
- Fabien Morel, On the motivic $\pi _0$ of the sphere spectrum, Axiomatic, enriched and motivic homotopy theory, NATO Sci. Ser. II Math. Phys. Chem., vol. 131, Kluwer Acad. Publ., Dordrecht, 2004, pp. 219–260. MR 2061856, DOI 10.1007/978-94-007-0948-5_{7}
- Fabien Morel, $\Bbb A^1$-algebraic topology over a field, Lecture Notes in Mathematics, vol. 2052, Springer, Heidelberg, 2012. MR 2934577, DOI 10.1007/978-3-642-29514-0
- F. Morel, On the cellular $\mathbb {A}^1$-homology of smooth varieties: some computations and open problems, Talk on joint work with Anand Sawant at Motivic Geometry Conference, University of Oslo, August 8, 2022.
- Fabien Morel and Anand Sawant, Cellular $\Bbb {A}^1$-homology and the motivic version of Matsumoto’s theorem, Adv. Math. 434 (2023), Paper No. 109346, 110. MR 4656524, DOI 10.1016/j.aim.2023.109346
- Fabien Morel and Vladimir Voevodsky, $\textbf {A}^1$-homotopy theory of schemes, Inst. Hautes Études Sci. Publ. Math. 90 (1999), 45–143 (2001). MR 1813224, DOI 10.1007/BF02698831
- Bjorn Poonen, Rational points on varieties, Graduate Studies in Mathematics, vol. 186, American Mathematical Society, Providence, RI, 2017. MR 3729254, DOI 10.1090/gsm/186
- Kate Ponto and Michael Shulman, Traces in symmetric monoidal categories, Expo. Math. 32 (2014), no. 3, 248–273. MR 3253568, DOI 10.1016/j.exmath.2013.12.003
- I. Panin and C. Walter, On the motivic commutative ring spectrum $\textbf {BO}$, Algebra i Analiz 30 (2018), no. 6, 43–96; English transl., St. Petersburg Math. J. 30 (2019), no. 6, 933–972. MR 3882540, DOI 10.1090/spmj/1578
- Niranjan Ramachandran, Zeta functions, Grothendieck groups, and the Witt ring, Bull. Sci. Math. 139 (2015), no. 6, 599–627. MR 3395874, DOI 10.1016/j.bulsci.2014.11.004
- Joël Riou, Dualité de Spanier-Whitehead en géométrie algébrique, C. R. Math. Acad. Sci. Paris 340 (2005), no. 6, 431–436 (French, with English and French summaries). MR 2135324, DOI 10.1016/j.crma.2005.02.002
- N. Rozenblyum, Motivic homotopy theory and power operations in motivic cohomology, Senior thesis, Harvard, 2006.
- Revêtements étales et groupe fondamental (SGA 1), Documents Mathématiques (Paris) [Mathematical Documents (Paris)], vol. 3, Société Mathématique de France, Paris, 2003 (French). Séminaire de géométrie algébrique du Bois Marie 1960–61. [Algebraic Geometry Seminar of Bois Marie 1960-61]; Directed by A. Grothendieck; With two papers by M. Raynaud; Updated and annotated reprint of the 1971 original [Lecture Notes in Math., 224, Springer, Berlin; MR0354651 (50 #7129)]. MR 2017446
- Burt Totaro, Chow groups, Chow cohomology, and linear varieties, Forum Math. Sigma 2 (2014), Paper No. e17, 25. MR 3264256, DOI 10.1017/fms.2014.15
- Vladimir Voevodsky, $\mathbf A^1$-homotopy theory, Proceedings of the International Congress of Mathematicians, Vol. I (Berlin, 1998), 1998, pp. 579–604. MR 1648048
Bibliographic Information
- Margaret Bilu
- Affiliation: Institut de Mathématiques de Bordeaux, F33405 Talence, France
- MR Author ID: 1071088
- ORCID: 0000-0002-8361-8951
- Email: margaret.bilu@math.u-bordeaux.fr
- Wei Ho
- Affiliation: School of Mathematics, IAS, Princeton, New Jersey 08540; Department of Mathematics, Princeton University, Princeton, New Jersey 08544; and Department of Mathematics, University of Michigan, Ann Arbor, Michigan 48109
- MR Author ID: 770878
- ORCID: 0000-0002-9272-7244
- Email: who.math@gmail.com
- Padmavathi Srinivasan
- Affiliation: Department of Mathematics and Statistics, Boston University, Boston, Massachusetts 02215
- MR Author ID: 1193003
- Email: padmask@bu.edu
- Isabel Vogt
- Affiliation: Department of Mathematics, Brown University, Providence, Rhode Island 02912
- MR Author ID: 1091812
- ORCID: 0000-0003-1152-9244
- Email: ivogt.math@gmail.com
- Kirsten Wickelgren
- Affiliation: Department of Mathematics, Duke University, Durham, North Carolina 27708
- MR Author ID: 776836
- Email: kirsten.wickelgren@duke.edu
- Received by editor(s): December 13, 2023
- Received by editor(s) in revised form: May 2, 2024
- Published electronically: October 2, 2024
- Additional Notes: The second author was partially supported by NSF CAREER DMS-1844763 and the Minerva Research Foundation. The third author was supported by the Simons Collaboration in Arithmetic Geometry, Number Theory, and Computation via the Simons Foundation grant 546235. The fourth author was partially supported by NSF MSPRF DMS-1902743 and by NSF DMS-2200655. The fifth author was partially supported by NSF CAREER DMS-2001890 and NSF-DMS 2103838.
- © Copyright 2024 by the authors under Creative Commons Attribution 3.0 License (CC BY 3.0)
- Journal: Trans. Amer. Math. Soc. Ser. B 11 (2024), 1183-1225
- MSC (2020): Primary 14G10, 14F42; Secondary 19D45, 55P25, 11G25
- DOI: https://doi.org/10.1090/btran/201
- MathSciNet review: 4803605