Conjugacy classes of derangements in finite groups of Lie type
HTML articles powered by AMS MathViewer
- by Sean Eberhard and Daniele Garzoni;
- Trans. Amer. Math. Soc. Ser. B 12 (2025), 536-575
- DOI: https://doi.org/10.1090/btran/193
- Published electronically: April 22, 2025
- HTML | PDF
Abstract:
Let $G$ be a finite almost simple group of Lie type acting faithfully and primitively on a set $\Omega$. We prove an analogue of the Boston–Shalev conjecture for conjugacy classes: the proportion of conjugacy classes of $G$ consisting of derangements is bounded away from zero. This answers a question of Guralnick and Zalesski. The proof is based on results on the anatomy of palindromic polynomials over finite fields (with either reflective symmetry or conjugate-reflective symmetry).References
- M. Aschbacher, Finite group theory, 2nd ed., Cambridge Studies in Advanced Mathematics, vol. 10, Cambridge University Press, Cambridge, 2000. MR 1777008, DOI 10.1017/CBO9781139175319
- M. Aschbacher, On the maximal subgroups of the finite classical groups, Invent. Math. 76 (1984), no. 3, 469–514. MR 746539, DOI 10.1007/BF01388470
- Omran Ahmadi and Gerardo Vega, On the parity of the number of irreducible factors of self-reciprocal polynomials over finite fields, Finite Fields Appl. 14 (2008), no. 1, 124–131. MR 2381481, DOI 10.1016/j.ffa.2006.09.004
- L. Carlitz, Some theorems on irreducible reciprocal polynomials over a finite field, J. Reine Angew. Math. 227 (1967), 212–220. MR 215815, DOI 10.1515/crll.1967.227.212
- Peter J. Cameron and Arjeh M. Cohen, On the number of fixed point free elements in a permutation group, Discrete Math. 106/107 (1992), 135–138. A collection of contributions in honour of Jack van Lint. MR 1181907, DOI 10.1016/0012-365X(92)90540-V
- J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, and R. A. Wilson, $\Bbb {ATLAS}$ of finite groups, Oxford University Press, Eynsham, 1985. Maximal subgroups and ordinary characters for simple groups; With computational assistance from J. G. Thackray. MR 827219
- Stephen D. Cohen, On irreducible polynomials of certain types in finite fields, Proc. Cambridge Philos. Soc. 66 (1969), 335–344. MR 244202, DOI 10.1017/s0305004100045023
- Sean Eberhard, Kevin Ford, and Ben Green, Permutations fixing a $k$-set, Int. Math. Res. Not. IMRN 21 (2016), 6713–6731. MR 3579977, DOI 10.1093/imrn/rnv371
- P. Erdős and M. Szalay, On some problems of J. Dénes and P. Turán, Studies in pure mathematics, Birkhäuser, Basel, 1983, pp. 187–212. MR 820222
- Jason Fulman and Robert Guralnick, Derangements in simple and primitive groups, Groups, combinatorics & geometry (Durham, 2001) World Sci. Publ., River Edge, NJ, 2003, pp. 99–121. MR 1994962, DOI 10.1142/9789812564481_{0}006
- Jason Fulman and Robert Guralnick, Bounds on the number and sizes of conjugacy classes in finite Chevalley groups with applications to derangements, Trans. Amer. Math. Soc. 364 (2012), no. 6, 3023–3070. MR 2888238, DOI 10.1090/S0002-9947-2012-05427-4
- Jason Fulman and Robert Guralnick, The number of regular semisimple conjugacy classes in the finite classical groups, Linear Algebra Appl. 439 (2013), no. 2, 488–503. MR 3089699, DOI 10.1016/j.laa.2013.03.031
- Jason Fulman and Robert Guralnick, Derangements in subspace actions of finite classical groups, Trans. Amer. Math. Soc. 369 (2017), no. 4, 2521–2572. MR 3592520, DOI 10.1090/tran/6721
- Jason Fulman and Robert Guralnick, Derangements in finite classical groups for actions related to extension field and imprimitive subgroups and the solution of the Boston-Shalev conjecture, Trans. Amer. Math. Soc. 370 (2018), no. 7, 4601–4622. MR 3812089, DOI 10.1090/tran/7377
- Kevin Ford, The distribution of integers with a divisor in a given interval, Ann. of Math. (2) 168 (2008), no. 2, 367–433. MR 2434882, DOI 10.4007/annals.2008.168.367
- Kevin Ford, Cycle type of random permutations: a toolkit, Discrete Anal. (2022), Paper No. 9, 36. MR 4481406
- Jason Fulman, Cycle indices for the finite classical groups, J. Group Theory 2 (1999), no. 3, 251–289. MR 1696313, DOI 10.1515/jgth.1999.017
- Patrick X. Gallagher, The number of conjugacy classes in a finite group, Math. Z. 118 (1970), 175–179. MR 276318, DOI 10.1007/BF01113339
- Robert M. Guralnick and Frank Lübeck, On $p$-singular elements in Chevalley groups in characteristic $p$, Groups and computation, III (Columbus, OH, 1999) Ohio State Univ. Math. Res. Inst. Publ., vol. 8, de Gruyter, Berlin, 2001, pp. 169–182. MR 1829478
- Daniel Gorenstein, Richard Lyons, and Ronald Solomon, The classification of the finite simple groups. Number 3. Part I. Chapter A, Mathematical Surveys and Monographs, vol. 40, American Mathematical Society, Providence, RI, 1998. Almost simple $K$-groups. MR 1490581, DOI 10.1090/surv/040.3
- Daniele Garzoni and Eilidh McKemmie, On the probability of generating invariably a finite simple group, J. Pure Appl. Algebra 227 (2023), no. 6, Paper No. 107284, 37. MR 4521747, DOI 10.1016/j.jpaa.2022.107284
- Ofir Gorodetsky, A polynomial analogue of Landau’s theorem and related problems, Mathematika 63 (2017), no. 2, 622–665. MR 3706601, DOI 10.1112/S0025579317000092
- Robert M. Guralnick, Conjugacy classes of derangements in finite transitive groups, Tr. Mat. Inst. Steklova 292 (2016), no. Algebra, Geometriya i Teoriya Chisel, 118–123; English transl., Proc. Steklov Inst. Math. 292 (2016), no. 1, 112–117. MR 3628456, DOI 10.1134/S0371968516010076
- Scott Harper, Shintani descent, simple groups and spread, J. Algebra 578 (2021), 319–355. MR 4234804, DOI 10.1016/j.jalgebra.2021.02.021
- Peter Kleidman and Martin Liebeck, The subgroup structure of the finite classical groups, London Mathematical Society Lecture Note Series, vol. 129, Cambridge University Press, Cambridge, 1990. MR 1057341, DOI 10.1017/CBO9780511629235
- Tomasz Łuczak and László Pyber, On random generation of the symmetric group, Combin. Probab. Comput. 2 (1993), no. 4, 505–512. MR 1264722, DOI 10.1017/S0963548300000869
- Martin W. Liebeck, Jan Saxl, and Gary M. Seitz, Subgroups of maximal rank in finite exceptional groups of Lie type, Proc. London Math. Soc. (3) 65 (1992), no. 2, 297–325. MR 1168190, DOI 10.1112/plms/s3-65.2.297
- Patrick Meisner, Erdős’ multiplication table problem for function fields and symmetric groups, arXiv:1804.08483v2 (2018).
- Gunter Malle and Donna Testerman, Linear algebraic groups and finite groups of Lie type, Cambridge Studies in Advanced Mathematics, vol. 133, Cambridge University Press, Cambridge, 2011. MR 2850737, DOI 10.1017/CBO9780511994777
- G. Navarro, Characters and blocks of finite groups, London Mathematical Society Lecture Note Series, vol. 250, Cambridge University Press, Cambridge, 1998. MR 1632299, DOI 10.1017/CBO9780511526015
- G. M. Seitz, Generation of finite groups of Lie type, Trans. Amer. Math. Soc. 271 (1982), no. 2, 351–407., DOI 10.1090/S0002-9947-1982-0654839-1
- J.P. Serre, On a theorem of Jordan, Bull. Amer. Math. Soc. 40 (2003), no. 4, 429–440., DOI 10.1090/S0273-0979-03-00992-3
Bibliographic Information
- Sean Eberhard
- Affiliation: Mathematical Sciences Research Centre, Queen’s University Belfast, Belfast BT7 1NN, United Kingdom
- Address at time of publication: Mathematics Institute, University of Warwick, Coventry CV4 7AL, United Kingdom
- MR Author ID: 1030124
- ORCID: 0000-0003-3347-0976
- Email: sean.eberhard@warwick.ac.uk
- Daniele Garzoni
- Affiliation: Department of Mathematics, University of Southern California, Los Angeles, California 90089-2532
- MR Author ID: 1333768
- Email: garzoni@usc.edu
- Received by editor(s): February 24, 2023
- Received by editor(s) in revised form: February 10, 2024
- Published electronically: April 22, 2025
- Additional Notes: The first author was supported by the Royal Society. The second author has been partially supported by a grant of the Israel Science Foundation No. 702/19, and has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No. 850956).
- © Copyright 2025 by the authors under Creative Commons Attribution 3.0 License (CC BY 3.0)
- Journal: Trans. Amer. Math. Soc. Ser. B 12 (2025), 536-575
- MSC (2020): Primary 20E45, 20D06, 20G40, 20B15
- DOI: https://doi.org/10.1090/btran/193
- MathSciNet review: 4896204