Overconvergent modular forms and their explicit arithmetic
Author:
Jan Vonk
Journal:
Bull. Amer. Math. Soc.
MSC (2010):
Primary 11F33, 11G18, 11S40
DOI:
https://doi.org/10.1090/bull/1700
Published electronically:
August 19, 2020
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: In these notes we aim to give a friendly introduction to the theory of overconvergent modular forms and some examples of recent arithmetic applications. The emphasis is on explicit examples and computations.
- [AIP18] Fabrizio Andreatta, Adrian Iovita, and Vincent Pilloni, Le halo spectral, Ann. Sci. Éc. Norm. Supér. (4) 51 (2018), no. 3, 603–655 (French, with English and French summaries). MR 3831033, https://doi.org/10.24033/asens.2362
- [AIS14] Fabrizio Andreatta, Adrian Iovita, and Glenn Stevens, Overconvergent modular sheaves and modular forms for 𝐺𝐿_{2/𝐹}, Israel J. Math. 201 (2014), no. 1, 299–359. MR 3265287, https://doi.org/10.1007/s11856-014-1045-8
- [Bar78] Daniel Barsky, Fonctions zeta 𝑝-adiques d’une classe de rayon des corps de nombres totalement réels, Groupe d’Etude d’Analyse Ultramétrique (5e année: 1977/78), Secrétariat Math., Paris, 1978, pp. Exp. No. 16, 23 (French). MR 525346
- [BC04] Kevin Buzzard and Frank Calegari, A counterexample to the Gouvêa-Mazur conjecture, C. R. Math. Acad. Sci. Paris 338 (2004), no. 10, 751–753 (English, with English and French summaries). MR 2059481, https://doi.org/10.1016/j.crma.2004.03.016
- [BC05] Kevin Buzzard and Frank Calegari, Slopes of overconvergent 2-adic modular forms, Compos. Math. 141 (2005), no. 3, 591–604. MR 2135279, https://doi.org/10.1112/S0010437X04001034
- [BC06] Kevin Buzzard and Frank Calegari, The 2-adic eigencurve is proper, Doc. Math. Extra Vol. (2006), 211–232. MR 2290588
- [BCD$^+$] Massimo Bertolini, Francesc Castella, Henri Darmon, Samit Dasgupta, Kartik Prasanna, and Victor Rotger, 𝑝-adic 𝐿-functions and Euler systems: a tale in two trilogies, Automorphic forms and Galois representations. Vol. 1, London Math. Soc. Lecture Note Ser., vol. 414, Cambridge Univ. Press, Cambridge, 2014, pp. 52–101. MR 3444223
- [BCDT01] Christophe Breuil, Brian Conrad, Fred Diamond, and Richard Taylor, On the modularity of elliptic curves over 𝐐: wild 3-adic exercises, J. Amer. Math. Soc. 14 (2001), no. 4, 843–939. MR 1839918, https://doi.org/10.1090/S0894-0347-01-00370-8
- [BCP97] Wieb Bosma, John Cannon, and Catherine Playoust, The Magma algebra system. I. The user language, J. Symbolic Comput. 24 (1997), no. 3-4, 235–265. Computational algebra and number theory (London, 1993). MR 1484478, https://doi.org/10.1006/jsco.1996.0125
- [BG16] Kevin Buzzard and Toby Gee, Slopes of modular forms, Families of automorphic forms and the trace formula, Simons Symp., Springer, [Cham], 2016, pp. 93–109. MR 3675164
- [BK05] Kevin Buzzard and L. J. P. Kilford, The 2-adic eigencurve at the boundary of weight space, Compos. Math. 141 (2005), no. 3, 605–619. MR 2135280, https://doi.org/10.1112/S0010437X05001314
- [BP16] John Bergdall and Robert Pollack, Arithmetic properties of Fredholm series for 𝑝-adic modular forms, Proc. Lond. Math. Soc. (3) 113 (2016), no. 4, 419–444. MR 3556487, https://doi.org/10.1112/plms/pdw031
- [Buz05] Kevin Buzzard, Questions about slopes of modular forms, Astérisque 298 (2005), 1–15 (English, with English and French summaries). Automorphic forms. I. MR 2141701
- [BV07] Johannes Buchmann and Ulrich Vollmer, Binary quadratic forms, Algorithms and Computation in Mathematics, vol. 20, Springer, Berlin, 2007. An algorithmic approach. MR 2300780
- [Cal08] Frank Calegari, The Coleman-Mazur eigencurve is proper at integral weights, Algebra Number Theory 2 (2008), no. 2, 209–215. MR 2377369, https://doi.org/10.2140/ant.2008.2.209
- [Cal13]
F. Calegari,
Congruences between modular forms,
Arizona Winter School, 2013. - [CD14] Pierre Charollois and Samit Dasgupta, Integral Eisenstein cocycles on 𝐺𝐿_{𝑛}, I: Sczech’s cocycle and 𝑝-adic 𝐿-functions of totally real fields, Camb. J. Math. 2 (2014), no. 1, 49–90. MR 3272012, https://doi.org/10.4310/CJM.2014.v2.n1.a2
- [CDG15] Pierre Charollois, Samit Dasgupta, and Matthew Greenberg, Integral Eisenstein cocycles on 𝐆𝐋_{𝐧}, II: Shintani’s method, Comment. Math. Helv. 90 (2015), no. 2, 435–477. MR 3351752, https://doi.org/10.4171/CMH/360
- [CE05] Frank Calegari and Matthew Emerton, On the ramification of Hecke algebras at Eisenstein primes, Invent. Math. 160 (2005), no. 1, 97–144. MR 2129709, https://doi.org/10.1007/s00222-004-0406-z
- [CGJ95] Robert F. Coleman, Fernando Q. Gouvêa, and Naomi Jochnowitz, 𝐸₂, Θ, and overconvergence, Internat. Math. Res. Notices 1 (1995), 23–41. MR 1317641, https://doi.org/10.1155/S1073792895000031
- [Cla40] T. Clausen, Theorem, Astronomische Nachrichten, 17 (1840), no. 22, 351-352.
- [CM98] R. Coleman and B. Mazur, The eigencurve, Galois representations in arithmetic algebraic geometry (Durham, 1996) London Math. Soc. Lecture Note Ser., vol. 254, Cambridge Univ. Press, Cambridge, 1998, pp. 1–113. MR 1696469, https://doi.org/10.1017/CBO9780511662010.003
- [CN79] Pierrette Cassou-Noguès, Valeurs aux entiers négatifs des fonctions zêta et fonctions zêta 𝑝-adiques, Invent. Math. 51 (1979), no. 1, 29–59 (French). MR 524276, https://doi.org/10.1007/BF01389911
- [Coh76] Henri Cohen, Variations sur un thème de Seigel et Hecke, Acta Arith. 30 (1976/77), no. 1, 63–93 (French). MR 422215, https://doi.org/10.4064/aa-30-1-63-93
- [Col96] Robert F. Coleman, Classical and overconvergent modular forms, Invent. Math. 124 (1996), no. 1-3, 215–241. MR 1369416, https://doi.org/10.1007/s002220050051
- [Col97a] Robert F. Coleman, On the coefficients of the characteristic series of the 𝑈-operator, Proc. Nat. Acad. Sci. U.S.A. 94 (1997), no. 21, 11129–11132. Elliptic curves and modular forms (Washington, DC, 1996). MR 1491972, https://doi.org/10.1073/pnas.94.21.11129
- [Col97b] Robert F. Coleman, 𝑝-adic Banach spaces and families of modular forms, Invent. Math. 127 (1997), no. 3, 417–479. MR 1431135, https://doi.org/10.1007/s002220050127
- [Con08] Brian Conrad, Several approaches to non-Archimedean geometry, 𝑝-adic geometry, Univ. Lecture Ser., vol. 45, Amer. Math. Soc., Providence, RI, 2008, pp. 9–63. MR 2482345, https://doi.org/10.1090/ulect/045/02
- [CR72] P. Cartier and Y. Roy, Certains calculs numériques relatifs à l’interpolation 𝑝-adique des séries de Dirichlet, Modular functions of one variable, III (Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972) Springer, Berlin, 1973, pp. 269–349. Lecture Notes in Math., Vol. 350 (French). MR 0330113
- [Das07] Samit Dasgupta, Computations of elliptic units for real quadratic fields, Canad. J. Math. 59 (2007), no. 3, 553–574. MR 2319158, https://doi.org/10.4153/CJM-2007-023-0
- [Das08] Samit Dasgupta, Shintani zeta functions and Gross-Stark units for totally real fields, Duke Math. J. 143 (2008), no. 2, 225–279. MR 2420508, https://doi.org/10.1215/00127094-2008-019
- [DDLR15] Henri Darmon, Michael Daub, Sam Lichtenstein, and Victor Rotger, Algorithms for Chow-Heegner points via iterated integrals, Math. Comp. 84 (2015), no. 295, 2505–2547. MR 3356037, https://doi.org/10.1090/S0025-5718-2015-02927-5
- [DDP11] Samit Dasgupta, Henri Darmon, and Robert Pollack, Hilbert modular forms and the Gross-Stark conjecture, Ann. of Math. (2) 174 (2011), no. 1, 439–484. MR 2811604, https://doi.org/10.4007/annals.2011.174.1.12
- [Del71] Pierre Deligne, Formes modulaires et représentations 𝑙-adiques, Séminaire Bourbaki. Vol. 1968/69: Exposés 347–363, Lecture Notes in Math., vol. 175, Springer, Berlin, 1971, pp. Exp. No. 355, 139–172 (French). MR 3077124
- [DHH$^+$16] Evan P. Dummit, Márton Hablicsek, Robert Harron, Lalit Jain, Robert Pollack, and Daniel Ross, Explicit computations of Hida families via overconvergent modular symbols, Res. Number Theory 2 (2016), Paper No. 25, 54. MR 3572014, https://doi.org/10.1007/s40993-016-0052-8
- [DL16] Hansheng Diao and Ruochuan Liu, The eigencurve is proper, Duke Math. J. 165 (2016), no. 7, 1381–1395. MR 3498869, https://doi.org/10.1215/00127094-3450536
- [DPV19]
H. Darmon, A. Pozzi, and J. Vonk,
Gross-Stark units, Stark-Heegner points, and derivatives of-adic Eisenstein families,
Preprint, 2019. - [DPV20]
H. Darmon, A. Pozzi, and J. Vonk,
On the RM values of the Dedekind-Rademacher cocycle,
Preprint, 2020. - [DR80] Pierre Deligne and Kenneth A. Ribet, Values of abelian 𝐿-functions at negative integers over totally real fields, Invent. Math. 59 (1980), no. 3, 227–286. MR 579702, https://doi.org/10.1007/BF01453237
- [DR14] Henri Darmon and Victor Rotger, Diagonal cycles and Euler systems I: A 𝑝-adic Gross-Zagier formula, Ann. Sci. Éc. Norm. Supér. (4) 47 (2014), no. 4, 779–832 (English, with English and French summaries). MR 3250064, https://doi.org/10.24033/asens.2227
- [DS74] Pierre Deligne and Jean-Pierre Serre, Formes modulaires de poids 1, Ann. Sci. École Norm. Sup. (4) 7 (1974), 507–530 (1975) (French). MR 379379
- [DS05] Fred Diamond and Jerry Shurman, A first course in modular forms, Graduate Texts in Mathematics, vol. 228, Springer-Verlag, New York, 2005. MR 2112196
- [DV]
H. Darmon and J. Vonk,
Singular moduli for real quadratic fields,
Preprint. - [Dwo62] Bernard Dwork, On the zeta function of a hypersurface, Inst. Hautes Études Sci. Publ. Math. 12 (1962), 5–68. MR 159823
- [Eme98] Matthew James Emerton, 2-adic modular forms of minimal slope, ProQuest LLC, Ann Arbor, MI, 1998. Thesis (Ph.D.)–Harvard University. MR 2697462
- [Eme11] Matthew Emerton, 𝑝-adic families of modular forms (after Hida, Coleman, and Mazur), Astérisque 339 (2011), Exp. No. 1013, vii, 31–61. Séminaire Bourbaki. Vol. 2009/2010. Exposés 1012–1026. MR 2906349
- [Gau01] Carl Friedrich Gauss, Disquisitiones arithmeticae, Translated into English by Arthur A. Clarke, S. J, Yale University Press, New Haven, Conn.-London, 1966. MR 0197380
- [GM92] F. Gouvêa and B. Mazur, Families of modular eigenforms, Math. Comp. 58 (1992), no. 198, 793–805. MR 1122070, https://doi.org/10.1090/S0025-5718-1992-1122070-1
- [GZ86] Benedict H. Gross and Don B. Zagier, Heegner points and derivatives of 𝐿-series, Invent. Math. 84 (1986), no. 2, 225–320. MR 833192, https://doi.org/10.1007/BF01388809
- [Hec24] E. Hecke, Analytische funktionen und algebraische zahlen, Abh. Math. Sem. Univ. Hamburg 3 (1924), no. 1, 213–236 (German). MR 3069428, https://doi.org/10.1007/BF02954625
- [Hec26] E. Hecke, Zur Theorie der elliptischen Modulfunktionen, Math. Ann. 97 (1927), no. 1, 210–242 (German). MR 1512360, https://doi.org/10.1007/BF01447866
- [Hid86a] Haruzo Hida, Galois representations into 𝐺𝐿₂(𝑍_{𝑝}[[𝑋]]) attached to ordinary cusp forms, Invent. Math. 85 (1986), no. 3, 545–613. MR 848685, https://doi.org/10.1007/BF01390329
- [Hid86b] Haruzo Hida, Iwasawa modules attached to congruences of cusp forms, Ann. Sci. École Norm. Sup. (4) 19 (1986), no. 2, 231–273. MR 868300
- [Kat73] Nicholas M. Katz, 𝑝-adic properties of modular schemes and modular forms, Modular functions of one variable, III (Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972) Springer, Berlin, 1973, pp. 69–190. Lecture Notes in Mathematics, Vol. 350. MR 0447119
- [KL64] Tomio Kubota and Heinrich-Wolfgang Leopoldt, Eine 𝑝-adische Theorie der Zetawerte. I. Einführung der 𝑝-adischen Dirichletschen 𝐿-Funktionen, J. Reine Angew. Math. 214(215) (1964), 328–339 (German). MR 163900
- [Kli62] Helmut Klingen, Über die Werte der Dedekindschen Zetafunktion, Math. Ann. 145 (1961/62), 265–272 (German). MR 133304, https://doi.org/10.1007/BF01451369
- [KM85] Nicholas M. Katz and Barry Mazur, Arithmetic moduli of elliptic curves, Annals of Mathematics Studies, vol. 108, Princeton University Press, Princeton, NJ, 1985. MR 772569
- [Kum51] E. E. Kummer, Über eine allgemeine Eigenschaft der rationalen Entwickelungscoefficienten einer bestimmten Gattung analytischer Functionen, J. Reine Angew. Math. 41 (1851), 368–372 (German). MR 1578727, https://doi.org/10.1515/crll.1851.41.368
- [Lau11] Alan G. B. Lauder, Computations with classical and 𝑝-adic modular forms, LMS J. Comput. Math. 14 (2011), 214–231. MR 2831231, https://doi.org/10.1112/S1461157011000155
- [Lec18] Emmanuel Lecouturier, On the Galois structure of the class group of certain Kummer extensions, J. Lond. Math. Soc. (2) 98 (2018), no. 1, 35–58. MR 3847231, https://doi.org/10.1112/jlms.12123
- [Leh49] Joseph Lehner, Further congruence properties of the Fourier coefficients of the modular invariant 𝑗(𝜏), Amer. J. Math. 71 (1949), 373–386. MR 27802, https://doi.org/10.2307/2372252
- [Loe07] David Loeffler, Spectral expansions of overconvergent modular functions, Int. Math. Res. Not. IMRN 16 (2007), Art. ID rnm050, 17. MR 2353090, https://doi.org/10.1093/imrn/rnm050
- [Loe14]
D. Loeffler,
Lecture notes for TCC course ``Modular Curves",
https://warwick.ac.uk/fac/sci/maths/people/staff/david_loeffler/teaching/modularcurves/, 2014. - [LV19]
A. Lauder and J. Vonk,
Computing-adic L-functions of totally real fields,
Preprint, 2019. - [LWX17] Ruochuan Liu, Daqing Wan, and Liang Xiao, The eigencurve over the boundary of weight space, Duke Math. J. 166 (2017), no. 9, 1739–1787. MR 3662443, https://doi.org/10.1215/00127094-0000012X
- [Maz77] B. Mazur, Modular curves and the Eisenstein ideal, Inst. Hautes Études Sci. Publ. Math. 47 (1977), 33–186 (1978). With an appendix by Mazur and M. Rapoport. MR 488287
- [Maz11] Barry Mazur, How can we construct abelian Galois extensions of basic number fields?, Bull. Amer. Math. Soc. (N.S.) 48 (2011), no. 2, 155–209. MR 2774089, https://doi.org/10.1090/S0273-0979-2011-01326-X
- [Mer96] Loïc Merel, L’accouplement de Weil entre le sous-groupe de Shimura et le sous-groupe cuspidal de 𝐽₀(𝑝), J. Reine Angew. Math. 477 (1996), 71–115 (French). MR 1405312, https://doi.org/10.1515/crll.1996.477.71
- [MST06] Barry Mazur, William Stein, and John Tate, Computation of 𝑝-adic heights and log convergence, Doc. Math. Extra Vol. (2006), 577–614. MR 2290599
- [NT19]
J. Newton and J. Thorne,
Symmetric power functoriality for holomorphic modular forms,
ArXiv preprint (2019). - [Pil13] Vincent Pilloni, Overconvergent modular forms, Ann. Inst. Fourier (Grenoble) 63 (2013), no. 1, 219–239 (French, with English and French summaries). MR 3097946, https://doi.org/10.5802/aif.2759
- [Ram16]
S. Ramanujan,
On certain arithmetical functions,
Trans. Cambridge Phil. Soc., 22 (1916), 159-184. - [Rob15] Xavier-François Roblot, Computing 𝑝-adic 𝐿-functions of totally real number fields, Math. Comp. 84 (2015), no. 292, 831–874. MR 3290966, https://doi.org/10.1090/S0025-5718-2014-02889-5
- [Roe14] David Roe, The 3-adic eigencurve at the boundary of weight space, Int. J. Number Theory 10 (2014), no. 7, 1791–1806. MR 3256852, https://doi.org/10.1142/S1793042114500560
- [S$^+$20]
W.A. Stein et al.,
Sage Mathematics Software (Version 9.0),
The Sage Development Team, 2020.
http://www.sagemath.org. - [Ser62] Jean-Pierre Serre, Endomorphismes complètement continus des espaces de Banach 𝑝-adiques, Inst. Hautes Études Sci. Publ. Math. 12 (1962), 69–85 (French). MR 144186
- [Ser73] Jean-Pierre Serre, Formes modulaires et fonctions zêta 𝑝-adiques, Modular functions of one variable, III (Proc. Internat. Summer School, Univ. Antwerp, 1972) Springer, Berlin, 1973, pp. 191–268. Lecture Notes in Math., Vol. 350 (French). MR 0404145
- [Shi66] Goro Shimura, A reciprocity law in non-solvable extensions, J. Reine Angew. Math. 221 (1966), 209–220. MR 188198, https://doi.org/10.1515/crll.1966.221.209
- [Shi76] Takuro Shintani, On evaluation of zeta functions of totally real algebraic number fields at non-positive integers, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 23 (1976), no. 2, 393–417. MR 427231
- [Shi78] Goro Shimura, The special values of the zeta functions associated with Hilbert modular forms, Duke Math. J. 45 (1978), no. 3, 637–679. MR 507462
- [Sie68] Carl Ludwig Siegel, Berechnung von Zetafunktionen an ganzzahligen Stellen, Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. II 1969 (1969), 87–102 (German). MR 252349
- [Sla07]
K. Slavov,
Gross-stark units for totally real number fields,
Master's thesis, Harvard University, 2007. - [Ste07] William Stein, Modular forms, a computational approach, Graduate Studies in Mathematics, vol. 79, American Mathematical Society, Providence, RI, 2007. With an appendix by Paul E. Gunnells. MR 2289048
- [Tat95] John Tate, A review of non-Archimedean elliptic functions, Elliptic curves, modular forms, & Fermat’s last theorem (Hong Kong, 1993) Ser. Number Theory, I, Int. Press, Cambridge, MA, 1995, pp. 162–184. MR 1363501
- [TW95] Richard Taylor and Andrew Wiles, Ring-theoretic properties of certain Hecke algebras, Ann. of Math. (2) 141 (1995), no. 3, 553–572. MR 1333036, https://doi.org/10.2307/2118560
- [Von15] Jan Vonk, Computing overconvergent forms for small primes, LMS J. Comput. Math. 18 (2015), no. 1, 250–257. MR 3349318, https://doi.org/10.1112/S1461157015000042
- [vS40] K. G. C. Staudt, Beweis eines Lehrsatzes, die Bernoullischen Zahlen betreffen, J. Reine Angew. Math. 21 (1840), 372–374 (German). MR 1578267, https://doi.org/10.1515/crll.1840.21.372
- [Wan98] Daqing Wan, Dimension variation of classical and 𝑝-adic modular forms, Invent. Math. 133 (1998), no. 2, 449–463. MR 1632794, https://doi.org/10.1007/s002220050251
- [Was97] Lawrence C. Washington, Introduction to cyclotomic fields, 2nd ed., Graduate Texts in Mathematics, vol. 83, Springer-Verlag, New York, 1997. MR 1421575
- [Wil30] J. R. Wilton, Congruence Properties of Ramanujan’s Function tau(n), Proc. London Math. Soc. (2) 31 (1930), no. 1, 1–10. MR 1577449, https://doi.org/10.1112/plms/s2-31.1.1
- [Wil95] Andrew Wiles, Modular elliptic curves and Fermat’s last theorem, Ann. of Math. (2) 141 (1995), no. 3, 443–551. MR 1333035, https://doi.org/10.2307/2118559
- [WWE20] Preston Wake and Carl Wang-Erickson, The rank of Mazur’s Eisenstein ideal, Duke Math. J. 169 (2020), no. 1, 31–115. MR 4047548, https://doi.org/10.1215/00127094-2019-0039
Retrieve articles in Bulletin of the American Mathematical Society with MSC (2010): 11F33, 11G18, 11S40
Retrieve articles in all journals with MSC (2010): 11F33, 11G18, 11S40
Additional Information
Jan Vonk
Affiliation:
Institute for Advanced Study, Princeton, New Jersey 08540
MR Author ID:
858428
ORCID:
0000-0002-7775-8843
Email:
vonk@ias.edu
DOI:
https://doi.org/10.1090/bull/1700
Received by editor(s):
March 12, 2020
Published electronically:
August 19, 2020
Additional Notes:
The author was supported by NSF Grant No. DMS-1638352.
Article copyright:
© Copyright 2020
American Mathematical Society