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ON THE STABILITY OF A SLEEPING TOP. 

Abstract of a Lecture before the American Mathematical Society at the 
Princeton Meeting, October 17, 1896. 

BY PBOFESSOR FELIX KLEIN. 

I N the four lectures* of the earlier part of the week I have 
attempted to simplify the formulae for the motion of a top 
by turning to account the methods of the modern theory of 
functions. In treating this problem I have been largely 
influenced by the consideration that it is desirable on both 
sides to reinforce the relationships between pure mathe
matics and mechanics. 

To-day I consider from the same standpoint a much 
more elementary question, which, however, for this very 
reason serves as a type for many related problems, viz., the 
stability of a top rotating about an axis directed vertically 
upward. The point of support we will assume to be fixed. 
If it were moveable in a horizontal plane, the formulae 
would be somewhat more complicated, but the final result 
would be quite similar to that in the special case. 

When the rotation is very rapid the behavior of the top 
is as if its axis were held fixed by a special force. This idea 
was employed, for instance, by Foucault (1851); to regard 
it, however, as an independent mechanical principle, as is 
done in many presentations of the subject, is, of course, 
absurd. 

The usual mode of attacking the problem is by means of 
the method of small oscillations. If x, y are the horizontal 
coordinates of the point of support of the top, n its rotational 
velocity, and P the moment of its weight, then, rejecting 
higher powers of x and y, we obtain the linear homoge
neous differential equations with constant coefficients 

x" + ny( — Px = 0, 
y" — nx' — Py = 0. 

The terms in x' and y' in these equations are known as the 
gyroscopic terms. The solutions of the equations involve 
the characteristic exponent 

* Four lectures " On the theory of the top,'' delivered at the invita
tion of Princeton University in connection with its sesquicentennial 
celebration. 
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With respect to the form of this exponent two cases are 
customarily distinguished: the stable case, n2 > 4P, and the 
unstable case n2 = 4P, the conclusion then being drawn that 
in the former case actual oscillations take place about the 
position of equilibrium, while in the latter case the axis 
moves away indefinitely from the position of equilibrium. 

For the stable case we obtain 

nt . Iw^TzTp 
x == a cos — • sm |_ zz_ t, sin Ë 

y = a sin —- • sin *x f 
* 2 -\J 4 7 

where a is a constant of integration. 
I will retain the designations 'i stable' 7 and 'c unstable 'y 

for the cases w 2 > 4 P a n d n 2 = 4 P , and will then examine 
whether the motion actually corresponds to the common 
use of these terms. 

From the start this method of small oscillations lies open 
to severe criticism. In the so-called unstable case it is 
directly self-contradictory, since the quantities, which in 
the construction of the differential equation are assumed to 
be small, become after its integration large. There is no 
reason whatever, therefore, for regarding the results as an 
approximation to the actual conditions. Even in the stable 
case the method lacks an accurate basis. 

Poincaré, in the corresponding questions of astronomy, 
carries out the development in series to higher terms. But, 
supposing that these series converge at all, will their re
gion of convergence extend far enough so that the actual 
character of the motion can be deduced from them ? In the 
case of the top we are relieved of the laborious investiga
tion of this question, inasmuch as the complete integra
tion can be carried out in explicit form. 

I propose the following mode of treating the problem. 
For the sake of simplicity, the moments of inertia of the top 
about its principal axes are all assumed equal to 1. The 
axis, being originally vertical, let the polar angles at any 
time to be #, <p, and let cos ft=u. The formulse of integra
tion are then 

,m_m (* du /• du 

~~J V i f ~" J (u+l)s/U' 

where U= 2(u - 1) (n2 + {Pu - 2)(w + 1)) 



1897.] STABILITY OF A SLEEPING TOP. 131 

The upper end of the axis (apex) of the top describes 
in all cases on the surface of the circumscribed sphere a 
rosette consisting of a number of congruent loops. This is 
still the case when w=0, a loop being then identical with a 
great circle of the sphere. Our interest centres in the ques
tion, how long these loops are, i. e», to what value u=e does 
u diminish, beginning with u=-l. Here u=e is that root 
of [7=0 which lies between i t = + l and u = — 1. In order 
to obtain the width of the loops it would be necessary to 
discuss the integral <f>. 

Introducing v to denote the value when u = 1 of the an
gular velocity d$ / dt of the axis of the top, this being equal 
to the measure of the lateral impulse by which the axis is 
carried out of the vertical position, we have from JJ = 0, on 
writing e for u, 

* = ( * - * ) ( n a - 2 f ) ( 6 + l ) 
6+1 

When e and u are rectangular coordinates, this equation 
properly interpreted, represents a plane cubic, symmetric 
to the axis of e, with a vertical tangent at e = 1, v = 0, and 
having e + 1 = 0 as an asymptote. This curve has a certain 
difference of position according as 

n2 — 4 P > 0 or n2 — 4 P < 0 , 
(the case n2 — 4 P = 0 may be disregarded for the sake of 
hrevity). In the former (stable) case, the odd branch of 
the curve passes through e = + 1, v = 0, while in the latter 
(unstable) case, it is the even branch which passes through 
this point. 

In both cases it is the odd branch which is of account for 
the real motion of the top since u = cos ft lies, for real #, be
tween —• 1 and + 1. In both cases, too, the difference 1—e, 
i.e., the length of the loops of the rosette, diminishes with v. 
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The characteristic distinction between the two cases is 
this: that for ri2 — 4 P > 0, the difference 1 — e diminishes 
with v to 0, while if n2 — 4 P < 0 this difference never passes 
a certain lower limit different from 0. Accordingly, in the 
unstable case, the loops of the rosette take at once a certain 
finite length even for the smallest lateral impulse given the 
top. 

Theoretically, this furnishes a sharp distinction between 
the two cases ; practically, however, this may become un-
noticeable, if n2 — 4 P while < 0, becomes very small in ab
solute value. The rosette in the unstable case can become 
as small as we please ; and given a stable rosette, a proper 
choice of the constants n and v will give for the unstable 
case a rosette smaller than the stable one. 

Our result is therefore discordant with the common ac
ceptation of the terms i 6 stable '? and ' ' unstable.? ' Besides 
that it does not substantiate the pretensions of the method 
of small oscillations. If the apex of the top in an unstable 
case describes a " s m a l l " rosette, why does not this fact 
appear from the method of small oscillations ? 

The answer to this last question will be apparent, if we 
introduce the quantity e in the integral t : 

ƒ du 

I 2(tt—e)(l-*Q /W2_4p__p(^__1)(c__1)+2(w—l)+2(o—1)) 

The method of small oscillations neglects in the paren
thesis 

n » _ 4 P _ - P ( w _ l ) ( 0 _ . l ) + 2 0 - 1 ) + 2 ( e - l ) 

the terms containing u — 1 and e — 1 in comparison with 
u2 — 4P. This is admissible when and only when u — 1 
and e — 1 being small, ri2 — 4 P is not small,—and therefore 
those cases, stable or unstable, where n2 — 4Pis itself a small 
quantity are incapable of approximate treatment by the 
method of small oscillations. 

PRINCETON, October 18, 1896. 


