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As is well known, the n quantities 

2 2 ( 0 (« = 1,2, - , n ) , 

where i? denotes any rational function, satisfy an equation 
of the nth. degree 

KH) = o, 
whose coefficients are rational in A0J Av •••, An. This, 
however, no longer holds when we consider, instead of 
rational functions of the roots, rational functions of the 
real and imaginary parts of the roots ; but if we consider 
the n2 quantities 

-#Oa/3, y ai), 

they will satisfy an equation of the n2 degree with coefficients 
which are rational in terms of the coefficients of <p and 
0, i. e., in terms of b0, •••, bnJ c0, •••, cn. Therefore, 

THEOREM XV. The n quantities 

E(xv yx), E(x2J t/2),..., E(xn, yn), 

are the real roots of an equation of degree n2 with coefficients 
which are rational in terms of the real and imaginary parts of the 
coefficients in (1) ; the remaining roots of the equation being 

\ Zi A Ji A f 

This result may easily be extended to functions of any 
number of roots E(xv yv x2, y2, •••)>

 a n d Theorem X I V 
may be extended to any system of simultaneous equations. 

COLUMBIA UNIVERSITY, 
February 25, 1901. 

ALTERNATING CURRENT PHENOMENA. 

Alternating Current Phenomena. Bv C. P. STEINMETZ. New 
York, Office of the Electrical"World. Third Edition, 
1900. Pp. xx + 525. 
Toelectrical engineers Mr. Steinmetz's book is immediately 

conspicuous by reason of two distinguishing characteristics : 
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the first is the employment of a definite mathematical 
method of presentation, consistently maintained through­
out the course of the work, and the second the employment 
of this method in the analysis of practically every problem 
in the application of alternating currents of electricity. A 
glance over the literature of applied electricity reveals no 
other work which stands forth so prominently in either of 
these characteristics, and the value of a treatment embrac­
ing them both can only be rightly estimated by those who 
have worked out their basic conceptions of alternating cur­
rent phenomena and their applications from the conglomer­
ate mass of trigonometry, differential equations, and inac­
curate diagrams presented by earlier writers, and, found 
how inadequate it is for the solution of the problems con­
fronting the engineer of today. 

I t is the first of these characteristics, namely the method 
of treatment that is the more interesting to mathematicians, 
and it is the purpose of this article to review the application 
of this method ; a critical discussion of the complete work 
from the standpoint of the electrical engineer is not aimed 
at, and so all reference is omitted to much of the matter that 
is most valuable but hardly of interest in this place. Briefly 
stated, the method is the use of the algebra of the complex 
number in combination with a reference to polar coordi­
nates of the alternating or periodic functions of current and 
electromotive force. A short consideration of a simple 
electric circuit carrying an alternating current will facilitate 
a review of the use to which this method has been put. 

Threading or looping with a circuit carrying a current, 
there is a number of lines of magnetic force due to the pas­
sage of the current around the circuit ; and this number 
rises, falls, and reverses with the varying values of the cur­
rent ; the induction or total number of these lines is thus 
also a periodically varying function ' ' in phase ' ' with the 
current. Due to this alternating field of force there is in­
duced in the circuit an alternating electromotive force, which 
is shown by the law of Lenz to have its maximum one-quar­
ter of the time of one complete period later than the inducing 
field, and so 90° later than that of the current, 360° rep­
resenting a complete period ; this is the counter electro­
motive force of self-induction. Due to the resistance of the 
conductor there is a consumption of electromotive force 
when the current flows, proportional to the current at each 
instant and so alternating and in phase with the current ; 
this may be considered a counter electromotive force, 180° 
away from the current. If there is a condenser or electrical 
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capacity in the circuit there is a third electromotive force 
which may be shown to have its phase 90° in advance of the 
current. I t is the presence of these several angularly sepa­
rated electromotive forces which causes the apparent failure 
of Ohm's law in the case of alternating current circuits. The 
impressed electromotive force necessary to cause the current 
to flow must overcome these several electromotive forces, 
i. e., must have components angularly separated, and so in 
general will not be in phase with the current. I t is to be 
noted that the difference in phase between current and 
counter electromotive force is either 0° or plus or minus 
90°. 

The fundamental principles suggested in the foregoing 
paragraph are assumed in the opening chapter of Mr. Stein-
metz's book, as is also the form of the expression giv­
ing the value of the i l impedance ' ' or ratio of impressed 
E.M.F. to current. This expression for the impedance is 
z == Vr2 -f x2, r being the resistance or ratio of the in-phase 
component of the E.M.F. to the total current, and x the 
4 ' reactance ' ' or ratio of the out-of-phase component of the 
E.M.F. to the total current ; since as indicated above there 
are two out-of-phase E.M.F.'s, one 90° in advance of, the 
other lagging 90° behind the current, x will take its value 
from the difference between the two E.M.F.7s due to self-
induction and capacity, since they differ in phase by 180° or 
are opposed to each other. The values of x for self-induc­
tion and for capacity are calculated in terms of the fre­
quency or number of periods per second and the constants 
of the circuit. 

Passing now to chapter IV, the alternating or sinusoidal 
wave, represented by time as abscissa and instantaneous 
value as ordinate, is referred to polar coordinates, giving 
the circle as the curve ; and for each complete period the 
circle is traversed twice, negative values of the function 
being taken when a reverse direction musfc be taken by the 
radius vector in order to intersect the curve. Thus the in­
tercept on any radius vector gives the instantaneous value 
of the wave at the time represented by the amplitude of the 
vector. Since any particular value determines the wave, 
the step is then made of letting the diameter of the charac­
teristic circle represent the wave, by its length the inten­
sity and by its amplitude the phase ; thus on the same 
diagram any number of E.M.F. 's and currents in a circuit 
differing in intensity and in phase may be represented by 
radii vectors of different lengths and amplitudes. The author 
here tacitly assumes that the current has at any instant 
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the same value throughout the whole length of the circuit, 
i. e., that the phase of the current wave does not change 
from point to point ; cases in which this is unwarranted 
are considered in chapter X I I I . The possibility of combin­
ing or resolving vectors of the same nature by the parallel­
ogram law is then shown by considering combined instan­
taneous values on any chosen radius vector ; thus the 
resultant of two electromotive forces, for instance, is rep­
resented by the diagonal of the parallelogram formed on the 
two radii representing their intensities and phases. The 
graphical method here clearly developed gives perhaps the 
clearest insight possible into the mutual relations of the 
several alternating sine waves entering into any problem. 

Owing to the widely differing magnitudes of the alternat­
ing waves to be represented in the same diagram, the graph­
ical method is not well suited for numerical calculation, 
and in chapter Y the author extends the graphical treat­
ment into the symbolic method, which, instead of denoting 
the vector representing the sine wave by the polar coordi­
nates of intensity I and amplitude w, uses the rectangular 
coordinates a = J cos M and b = I sin w7 thus avoiding the 
use of trigonometric functions in the combination or resolu­
tion of waves. Extending the relations of the parallelogram 
law : i ' Sine waves are combined or resolved by adding or 
subtracting their rectangular components/7 To distinguish 
between the two components, the symbol j is put before the 
vertical component, I = a -j-jb, meaning that a is the hori­
zontal and b the vertical component of the wave I and 
that they are combined in the wave of resultant intensity 
i = s/a2 + b2 ; similarly a —jb is a wave with a as horizon­
tal and — b as vertical component. The next step brings in 
the full significance of the method ; multiplying the symbolic 
expression a + jb by — 1 evidently gives — a —jb, or a wave 
of equal intensity but differing in phase by 180°; a wave of 
equal intensity but lagging in phase by 90° (clockwise 
rotation) is evidently represented by ja — b ; this expres­
sion may be derived by multiplying the expression a + jb 
by j if upon the c i hitherto meaningless symbol j ' ' the 
condition be imposed ƒ = — 1 ; and similarly multiplying 
by —j advances the wave through 90° or one quarter 
of a period. The symbol j is thus seen to be the imaginary 
unit, and the sine wave is represented by the complex quan­
tity of the type a + jb ; the letter j is used instead of the 
usual i, since the latter so commonly in electrical litera­
ture denotes the current. u As the imaginary unit j has 
no meaning in the system of ordinary numbers, this defi-



1 9 0 1 . ] ALTERNATING CURRENT PHENOMENA. 4 0 3 

nition of j= */ — 1 does not contradict its original intro­
duction as a meaningless symbol.? ' Thus a + jb means a 

wave of intensity i = s^a? + b2 and of phase o) = tan-^ — ; it 

may also be represented by i(cosw +j sin w) and also by 
iVw. A further extension of method now gives : 'c Sine 
waves may be combined or resolved by adding or subtract­
ing their complex algebraic expressions. ' ' The complex ex­
pression for the impedance is then developed and may here 
serve as a simple instance of the use of the method. A cur­
rent I = i + ji' flows in a circuit of resistance r and react­
ance x ; the E.M.F. consumed by resistance is in phase 
with the current and is rl = ri + jri'x this E.M.F. must be 
supplied by the impressed E.M.F., as must also be an E.M.F. 
necessary to overcome the counter E.M.F. due to the re­
actance x ; this E.M.F., if it be due to self induction, lags 
90° behind the current and is therefore represented by 
ixl —jxi — xif (if xbe due to capacity, by — j x l = xi' —jxi)) 
the component of the impressed E.M.F. to overcome this 
is evidently —jxi — —jxi + xi'\ and the E.M.F. to over­
come both resistance r, and reactance x is E — (r — jx) J ; 
or, the ratio of electromotive force to current, i. e., the im­
pedance, has for its complex expression Z — r — jx. The 
relation E = ZI> the complex values of the three quantities 
being used, may be handled in any of its three forms, giving 
a simple complex expression for any one of the quantities 
in terms of the components of the other two, since the im­
aginary may be easily eliminated from a denominator, and 
thus the real and imaginary components separated. 

From the foregoing, it is seen that the total impedance 
of a circuit, consisting of any number of portions differing as 
to r and x, and connected in series, may be obtained by add­
ing the complex expressions for the impedance of the several 
portions. The total impedance being known, the E.M.F. 
necessary to supply any given value of the current to such 
a circuit may at once be had, together with its phase relation 
to the current. This is the general nature of one class of 
problems. If, however, the circuit has several branches, or 
if several currents are supplied by the same E. M. F. , the total 
impedance of the circuit is not a simple expression, just as the 
resistance of a number of branches connected in parallel is 
not a simple expression in the resistances of the several 
branches. In the latter case, however, the joint conducting 
power, i. e., the reciprocal of the resistance, is the sum of 
the l i conductances ' ' of the several branches. So for par­
allel connected branches the author derives in chapter V I I 
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a method for combining, by the addition of complex quan­
tities, the effects of the several impedances of a branched 
circuit. The total current supplied by the impressed E. 
M.F. is the sum of the currents in the several branches, 
attention being paid to their phase relations, i. e., the com­
plex expressions of the currents are to be added. To sim­
plify this, Ohm's law, which now holds if complex expres­
sions are used, is put in the form I~ EY, where F, being 
the reciprocal of Z, is a complex quantity, and the values of 
J for the several branches are now readily added. Fis called 
the admittance, and the total admittance of a branched cir­
cuit is the sum of the complex expressions of the individual 
admittances. F, being complex, is of the form g +jb. We 
have 

Tr , ., 1 1 r + jx 
Y= g + jb = ^ = == - Ö - ^ . 

* J Z r —jx Tl + x2 

Therefore 
and b * r*+ x2 r2 + x2' 

so that the expressions for F and Z for any branch or com­
bination of branches are readily derived one from the other. 

Chapters V I I I and I X give a complete investigation of 
the various types of series and parallel circuits, of the 
effects upon regulation and phase difference of the relative 
values of r, x, g, and b ; and results heretofore obtained only 
in very complicated form are reduced to simple algebraic 
expressions. A single simple case will suffice here, but no 
electrical engineer should fail thoroughly to digest the con­
tents of these two chapters. 

A reactance x0 is inserted in series with a load circuit of 
impedance Z = r —jx, and an E.M.F. E impressed upon 
the whole. The total impedance is Z — jx0 or r — j(x + x0) ; 
the current is 

i= 3 
r—j(x + x0)' 

_ 3. = _ E° 
v V -f (x + x0)

2 v V + 2xx0 + x^ 

the E.M.F. on the receiver or load circuit is 

with the absolute value 

E=zIZ==
 E^T - J x ) = E

 r* + x2 

r —j(x + x0) ° \r2 + O + x0)
2 

E/ 
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Generally in such a case the value of E, as compared with E0, 
is of prime importance, and the above expression gives means 
of controlling E by a proper variation of xQ; thus E= E0 if 
x0 = —• 2x ; if x0 < -— 2x it raises, if x0 > —• 2# it lowers the 
voltage; if x and x0 have the same sign E is always less than 
E0. I t is to be remembered that a positive value of x is given 
by self-induction, a negative value by capacity. The differ­
ence in phase between current and E.M.F. is gotten, as in­
dicated above, from the expression for the impedance ; here 

the difference in phase in the load circuit is a* = tan - 1 - ; and 
r 

in the supply or generator circuit <of = tan - 1 -. 

Chapter X I I is new in the third edition ; in it the author 
attempts to extend the symbolic method to quantities of 
double frequency, such as the power. At any instant the 
flow of power in an alternating current circuit is the product 
of the instantaneous values of current and E.M.F. If two 
sine waves, e. g., one of current and one of E.M.F. differing 
in phase, be drawn in rectangular coordinates, and if also a 
curve representing the product of their instantaneous values 
be drawn, it is found that while either the current or E.M.F. 
has passed through half a period, the curve of products, or 
the power wave, has passed through a complete period ; that 
is, the power has double the frequency of the current and 
E.M.F., and so may not be represented on the same vector 
diagram with them. The area of positive values in the 
power curve represents power given into the medium by the 
circuit, that of negative values power returned to the circuit 
from the medium, this power having been stored there in the 
forms of a magnetic field and an electrostatic strain ; the 
difference is the true expenditure of power. The pro­
duct of the complex expressions for current and E.M.F., 
(e' + je")(i' + ji") = (e'i'— (?'{") +j(e"i'+ e'i"), does not 
represent the power, since it is an expression of the same 
frequency as the current and E.M.F.; suppose, however, 
since the power is of double frequency, the phase angle be 
doubled in the above expression ; i. e., instead of ƒ = — 1, 
corresponding to a rotation through 180°, we now have 
ƒ == + l? or 360° rotation, and multiplication by j merely 
reverses the sign or rotates through 180°. The product 
then becomes {e'i' + e 'V) -\-j(e"ir — e'i"), the first term 
of which is the real power EI cos w, and the second the 
author calls the ' 'wattless power,7 ' or EI sin a>. The chapter 
is interesting in explaining the apparent failure of the pro­
duct of the two complex expressions to represent the power, 
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but is unattractive, except to those versed in non-commuta­
tive algebra, because of the necessity of remembering that 
j x 1 —j is not the same as 1 X j = —,/. 

Chapter X I I I is devoted to those cases where it is not 
permissible to assume that at any instant the value of the 
current is the same throughout the circuit ; an instance is a 
submarine cable or any line along which capacity in some 
quantity is uniformly distributed. In such cases the simple 
vector diagram and the algebra of complex quantities do 
not suffice ; however, by considering the values of r, x, g, 
b per unit length of line, the author forms and solves the dif­
ferential equations for both current and E.M.F., as varying 
from point to point in the line. While exhaustive in discus­
sion and most useful, the chapter offers no striking applica­
tion of the symbolic method. 

In chapters XIV, XV, and X V I the symbolic method is 
extended to the analysis of the transformer and the induc­
tion motor, i. e., the motor with rotating magnetic field ; 
they are shown to belong to the same general type of ap­
paratus (a fact not before recognized), called by the author 
the general alternating current transformer. Consider the 
simple transformer consisting of a magnetic circuit inter­
linked with two electric circuits, a primary and a secondary. 
The primary circuit carrying current sets up a field in the 
magnetic circuit, which induces an E.M.F. in the secondary 
which supplies current to its load. The secondary is now 
considered as a simple circuit with a given impressed 
E.M.F., having an internal impedance Zx = r, —jxl due to 
its resistance and self-induction, and feeding a load circuit 
of impedance Z—r —jx. Since the same magnetic circuit 
links with both coils, the actions in the secondary are shown 
to be reducible to the primary by the ratio of the numbers 
of turns in each ; the primary has also its internal imped­
ance ZQ = r0— jx0 ; combining the primary impedance with 
the reduced values of the secondary circuit, the effect of the 
whole transformer is brought to the expression of a single 
impedance. By proper attention to the difference in fre­
quency between primary and secondary due to the " slip " 
of the armature (secondary) behind the rotating field due 
to the primary, the same method of procedure is adopted 
for the induction motor. 

Chapter X X I V is a most interesting extension of the 
symbolic method to the representation of the general alter­
nating wave as distinguished from the simple sine wave of 
the type A = a0 cos (<p — a) ; to the latter only is the vector 
representation A = a! + ja'f = a(cos a + j» sin a) applicable. 
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If the two half periods of a wave are similar, the even har­
monics are absent and the general wave is expressed by 

A — A1 cos (<p — «J + Az cos (3<p — «3) 

+ A5 cos (5? — a6) + - , 

which may not be represented by a single complex vector 
quantity. The individual harmonics, however, of this gen­
eral wave are independent and no products appear, so that 
each may be represented by a complex symbol and the sym­
bolic expression for the general wave is 

A = 2(2n-lXan' +jnaH"y, 
i 

here jn= >/ —- 1 always, but the index of j n denotes that the 
ƒ s of different indices, while equal algebraically, physically 
represent different frequencies and so cannot be combined. 
The general wave of E.M.F. is thus represented by 

E=Z(2n-l)(en' +jA>'), 

and the current by a similar expression in the i's. The ex­
pression for the impedance undergoes some change ; the 
values of x, the reactance, when due to self-induction, are 
directly, when due to capacity, inversely proportional to 
the frequency ; there is also a part independent of the fre­
quency ; thus the impedance of a circuit will have different 
values for the several harmonics and its general expression is 

Operations according to Ohm's law may now be performed 
on the general wave quantities E, I, and Z, just as on the 
simple sine wave ; multiplication and division, however, be­
ing only performed on those terms having the same index n. 

A common and most useful medium for the use of alter­
nating currents is the so called polyphase system in which 
several equal E.M.F. 's differing in phase by the same angle 
are generated in the same machine ; the induction motor is 
the most conspicuous form of apparatus depending on the 
polyphase system. The symbolic method lends itself ad­
mirably to the representation of such a system by means of 
the nth roots of unity. In the polar diagram the Î I E . M . F . ' S 
of an n-phase system are represented by n equal vectors 
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following each other under equal angles 2/7ra. In symbolic 
notation, advance or rotation through an angle 2TT/?I is 
represented by multiplying by the quantity cos 2njn + 
j sin 27r/n, and so the E.M.F. 's of a polyphase system are 

E, i ^ c o s - - + , / 8 i n - J , ^ c o s - - + ^ s i n - - J , etc. 

In chapters X X Y I and X X V I I I the author handles this 
application for the deduction of the expression for the 
rotating magnetic field, the ring and star E.M.F.'s of in­
terlinked systems, and other matters of general use, but up 
to this time wanting an analytical expression. 

The writer has only gratitude to express at the appear­
ance of this work, and his one regret is that its author did 
not also include in it his recent articles on the rotary con­
verter. 

JOHN B. WHITEHEAD, J R . 
J O H N S H O P K I N S UNIVERSITY, 

April 18, 1901. 

SHORTER NOTICE. 

Leçons Nouvelles sur les Applications Géométriques du Calcul 
Différentiel. By W. DE TANNENBERG. Paris, A. Her­
mann, 1899. 192 pp. 
THIS volume, which M. de Tannenberg has contributed to 

the literature of the theory of curves and surfaces, is very 
opportune. We have wanted a book which would make 
possible for the beginner a knowledge of the more funda­
mental geometrical applications of the calculus and in a way 
which would prepare him for the treatises of Darboux and 
Bianchi. To be sure, this field has been covered, more or 
less, in the chapters devoted to geometrical applications in 
the French treatises on analysis—notably by Jordan, Picard, 
Appell—but rather as examples of the methods of analysis 
and not standing forth as a systematic development of the 
elements of another field of mathematics. Again, there 
have been in recent years, quite a number of shorter treat­
ises with just the scope of the volume under discussion, but 
their treatment of the subject has been along lines quite 
different from the well known methods of the calculus : 
Ricci in his Lezioni arrives at the results by the study of 


