ON A GENERALIZATION OF A THEOREM OF DINI ON SEQUENCES OF CONTINUOUS FUNCTIONS.

BY DR. T. H. HILDEBRANDT.

(Read before the American Mathematical Society at Chicago, April 10, 1914.)

We propose in this note to give a generalization of the following theorem of Dini*: "If a monotonie sequence of functions continuous on a closed interval converges to a continuous function, the convergence is uniform."

The double sequence analogue of this theorem proves to be of importance in our generalization. We embody it in the following

Lemma. If a double sequence a_{mn} is monotonie non-decreasing in m for every n, and if $L_m L_n a_{mn} = L_n L_m a_{mn}$, all the limits being supposed to exist, then $L_m a_{mn}$ and $L_n a_{mn}$ converge uniformly and the double limit $L_{mn} a_{mn}$ exists and is equal to the iterated limits.

The proof of the uniformity of convergence of $L_m a_{mn}$ is part of Theorem I of the paper by the author in the *Annals of Mathematics*, series 2, volume 14, page 81. This uniformity has as a direct consequence the existence of the double limit equal to the iterated limits, which in turn implies the uniformity of $L_n a_{mn}$.

For the purposes of generalization, consider a class \mathcal{O} of elements unconditioned excepting for the existence within the class of some definition of limit, i.e., some means of determining whether a sequence of elements has a limit and what this limit is.† Then it is possible to define the concepts limiting element, closed and compact relative to subclasses \mathcal{R} of \mathcal{O}.‡ Also if μ is a real-valued function on \mathcal{R}, we can define the notion of continuity, as well as equal continuity, as applied to a set of functions. In such a situation we are able to state the following

Theorem. If \mathcal{R} is a closed and compact subclass of \mathcal{O}, and μ_{nr} is a monotonie sequence of functions continuous on \mathcal{R} and...
converging to the continuous function \(\mu_r \), then the convergence is uniform and the functions \(\mu_{nr} \) are equally continuous.

We prove the uniformity of convergence of \(\mu_{nr} \). Since \(L_n \mu_{nr} = \mu_r \) for every \(r \) of the class \(\mathfrak{R} \), we have: for every positive \(\varepsilon \) there exists an \(n_{er} \) such that if \(n \geq n_{er} \) we have \(|\mu_{nr} - \mu_r| \leq \varepsilon \). Suppose that we have selected for each \(\varepsilon \) and \(r \) the smallest possible value as \(n_{er} \). Then we wish to show that for each \(\varepsilon \), \(n_{er} \) is bounded on the class \(\mathfrak{R} \). Suppose, if possible, this were not so for some particular \(\varepsilon \). Then for every \(n \), there would exist an \(r_n \) such that \(n > n_{er} \), i. e., \(|\mu_{nr} - \mu_r| > \varepsilon \). On account of the convergence of \(\mu_{nr} \) to \(\mu_r \) for every \(r \), no element can recur infinitely often in the set \(r_n \). Then since the class \(\mathfrak{R} \) is compact and closed, there will exist a subsequence \(r_{nm} = r_m \) of \(r_n \), and an \(r \), such that \(L_m r_{m} = r \). Consider the double sequence \(\mu_{nr_{m}} \). It is monotonic non-decreasing in \(n \) for every \(m \). Moreover on account of the continuity of \(\mu_{nr} \) and \(\mu_r \), we have \(L_m L_n \mu_{nr_{m}} = L_n L_m \mu_{nr_{m}} \). It therefore fulfils the conditions of our lemma, and it follows that \(L_m L_n \mu_{nr_{m}} \) converges uniformly; i. e., for every positive \(\varepsilon \) there will exist an \(n_{er} \), independent of \(m \), such that \(|\mu_{nr_{m}} - \mu_r| \leq \varepsilon \). By taking the \(\varepsilon \) as the one presupposed above, and \(n > n_m \), we obtain a contradiction.

The equal continuity of the functions \(\mu_{nr} \) is a direct consequence of their uniformity of convergence and continuity.

To obtain a further generalization we presuppose another general class \(\mathfrak{P} \). In \(\mathfrak{P} \) we shall suppose that there is defined an order relation between triplets of elements: \(B_{p_1 p_2 p_3} \) comparable to \(p_1 \leq p_2 \leq p_3 \). We shall suppose that there exists in the class also the concept of limit, subject to the condition that, if \(L_n p_n = p \), then there exists a subsequence having the same limit, such that \(B_{p_m p_{mn} p} \) for every \(m \), or \(B_{p_m p_{mn} p} \) for every \(m \). If \(\mu \) is a real valued function on \(\mathfrak{G} \), a subclass of \(\mathfrak{P} \), then \(\mu \) is said to be monotonic non-decreasing on \(\mathfrak{G} \) if for every triplet \(s_1, s_2, s_3 \), of \(\mathfrak{G} \) such that \(B_{s_1 s_2 s_3} \) we have \(\mu_{s_1} \leq \mu_{s_2} \leq \mu_{s_3} \). Finally in the composite class \(\mathfrak{G} \mathfrak{D} \), we obtain a double limit, viz., \(L_m p_m q_n = pq \) is equivalent to \(L_m p_m = p \) and \(L_n q_n = q \). This enables us to define a continuity of functions on a composite range, similar to that of continuity of functions of two variables, viz., \(\mu \) is continuous on \(\mathfrak{G} \mathfrak{R} \) if \(L_m \mathfrak{G} \mathfrak{R}_n = sr \) implies \(L_m \mathfrak{G} \mathfrak{R}_n = \mu_{sr} \). Then we have the following

Theorem. If \mathcal{E} and \mathcal{R} are closed and compact subclasses of \mathcal{P} and \mathcal{Q}, respectively, if further μ_{sr} is continuous on \mathcal{E} for every r and on \mathcal{R} for every s, if moreover μ_{sr} is monotonic non-decreasing on \mathcal{E} for every r, then μ_{sr} considered as a set of functions on \mathcal{R}, are equally continuous, as well as μ_{sr} considered as a set of functions on \mathcal{E}, and μ_{sr} is continuous on $\mathcal{S}\mathcal{R}$.

The proof that μ_{sr}, considered as a set of functions on \mathcal{R}, are equally continuous is an indirect one. The assumption that μ_{sr} is not equally continuous on \mathcal{R} is shown to be untenable by a use of the property of limit in terms of B, the monotonicity and continuity of μ_{sr}, and the preceding theorem. The details are easily supplied. The equal continuity of the set μ_{sr} on \mathcal{E}, and the continuity on $\mathcal{S}\mathcal{R}$ follow at once from the equal continuity on \mathcal{R}.

By specializing the classes \mathcal{P} and \mathcal{Q}, we get some interesting theorems in special fields. If we take $\mathcal{P} = 1, 2, 3, \ldots, \infty$, with $B_{p_1p_2p_3}$ defined as $p_1 \leq p_2 \leq p_3$, and \mathcal{Q} as the interval $0 \leq x \leq 1$, and note that equal continuity on $1, 2, 3, \ldots, \infty$ is uniform convergence, we get the Dini theorem stated at the outset. If \mathcal{P} is the linear interval $0 \leq x \leq 1$, and $B_{p_1p_2p_3}$ is the same as $p_1 \leq p_2 \leq p_3$, and \mathcal{Q} is the set $1, 2, 3, \ldots, \infty$, we have:

If a sequence of monotonic non-decreasing functions continuous on a closed interval converges to a continuous function, the convergence is uniform, and the set of functions are equally continuous.*

If \mathcal{P} is the linear interval $0 \leq x \leq 1$, with $B_{p_1p_2p_3}$ equivalent to $p_1 \leq p_2 \leq p_3$ and \mathcal{Q} is the linear interval $0 \leq y \leq 1$, we have:

If $f(x, y)$, defined for $0 \leq x \leq 1, 0 \leq y \leq 1$, is continuous in x for every y, and in y for every x, and is also monotonic non-decreasing in x for every y, then $f(x, y)$ is continuous in x and y simultaneously.

* Cf. Buchanan and Hildebrandt: Annals of Mathematics, ser. 2, vol. 9, p. 123. It is interesting to observe that this theorem and the Dini theorem are special cases of the same theorem.