A CERTAIN CLASS OF FUNCTIONS CONNECTED WITH FUCHSIAN GROUPS.

BY PROFESSOR ARNOLD EMCH.

(Read before the American Mathematical Society April 24, 1915.)

1. CONSIDER a Fuchsian group Γ of linear substitutions

\[V_i \equiv z_i = \frac{\alpha_i z + \beta_i}{\gamma_i z + \delta_i} \quad (i = 1, 2, 3, \ldots) \]

\[\alpha_i \delta_i - \beta_i \gamma_i = 1, \]

that transform the unit circle into itself, and for which the unit circle is a natural boundary. The index i for which z_i approaches a point of the boundary we denote by ∞, so that $\lim_{i=\infty} (z_i) = e^{i\phi}$, where ϕ may have any value from 0 to 2π.

Let $z_0 = z$ represent identity. Denote by $R_0 = R$ the fundamental region in which z lies, and by R_1, R_2, \cdots the regions resulting from R by the substitutions $V_i \quad (i = 1, 2, 3, \ldots)$. Let e_i be the greatest "elongation" of the boundary of R_i, i.e., the maximum distance between two points of the boundary of R_i; then, according to a theorem due to Bricard,* it is possible to circumscribe a circle C_i to the region R_i, such that its radius does not need to be greater than at most $e_i/\sqrt{3}$.

For $i = \infty$, the area A_i of R_i, being that of a singly connected region bounded by circular arcs, is finite, so that for the ratio of the area of the circle C_i to that of the region R_i we have

\[1 < \frac{\pi e_i^2}{3A_i} < M \quad (i = 1, 2, 3, \ldots), \]

where M is a positive finite quantity > 1. But it can be shown that this inequality also exists when $\lim_{i=\infty} (z_i) = e^{i\phi}$. Hence from (2) we get

\[3\Sigma A_i < \Sigma \pi e_i^2 < 3M\Sigma A_i, \]

34 FUNCTIONS CONNECTED WITH FUCHSIAN GROUPS. [Oct.,
in which the sums are extended over the whole group Γ.
as $\sum A_i = \pi$ is a finite quantity we find that the sum of the areas of all circles C_i, and consequently the sum of the squares of the radii of all these circles is finite.

2. Choose now within R any two points a and b and a variable point z, so that the area formed by the euclidean triangle $z_i a_i b_i$ lies entirely within C_i. Now

$$\left| z_i - a_i \right| \leq e_i; \quad \left| z_i - b_i \right| \leq e_i,$$

hence

$$\left| z_i - a_i \right| \cdot \left| z_i - b_i \right| \leq e_i^2,$$

and

$$\sum_{i=0}^{\infty} \left| z_i - a_i \right| \cdot \left| z_i - b_i \right| \leq \sum_{i=0}^{\infty} e_i^2.$$

But, according to (3), $\sum e_i^2$ is a finite quantity. The left side of (4) is therefore an absolutely convergent series, for all values of z within R. The condition for uniform convergence within the whole domain is evidently also satisfied, so that we can state

Theorem I. The series

$$\sum_{i=0}^{\infty} (z_i - a_i)(z_i - b_i)$$

extended over a Fuchsian group Γ, with the unit circle as a natural boundary and z, a, b lying within the fundamental region of Γ, is a uniformly convergent series, and defines an analytic function within R that vanishes for $z = a$ and $z = b$ and has no infinities within R. The result is still valid when $z_b = z_a$, so that

$$\sum_{i=0}^{\infty} (z_i - a_i)^2$$

also defines such a function which at $z = a$ has a zero of the second order.

3. The theorem may immediately be generalized. Choose for z and a any two points within the unit circle (excluding the boundary). The straight line joining them is cut by a finite number of polygons R_i into the segments $l_1, l_2, l_3, \ldots, l_r$.

Any substitution $V_\lambda \equiv \begin{pmatrix} \alpha_\lambda \beta_\lambda \\ \gamma_\lambda \delta_\lambda \end{pmatrix}$ of the group Γ transforms the
straight segment from z to a into an arc of a circle from z_λ to a_λ and the segments l_ι into arcs $l_{i\lambda}$ intercepted by the corresponding polygons arising from the substitution V_λ. Every arc $l_{i\lambda}$ is subtended by a chord $s_{i\lambda} < l_{i\lambda} < e_{i\lambda}$, where $e_{i\lambda}$ denotes the elongation of the polygon (region) $R_{i\lambda}$. From this follows immediately that

$$f_\lambda = |z_\lambda - a_\lambda| < e_{1\lambda} + e_{2\lambda} + \cdots + e_{r\lambda},$$

and

$$(f_\lambda)^2 < (e_{1\lambda} + e_{2\lambda} + \cdots + e_{i\lambda} + \cdots + e_{k\lambda} + \cdots + e_{r\lambda})^2.$$

From the inequality

$$2e_{i\lambda}e_{k\lambda} < e_{i\lambda}^2 + e_{k\lambda}^2,$$

we derive without difficulty

$$(5) \quad 2 \sum_{\iota=1}^{r} e_{i\lambda}e_{k\lambda} < (r-1)(e_{1\lambda}^2 + e_{2\lambda}^2 + \cdots + e_{r\lambda}^2).$$

Now

$$\sum_{\lambda=0}^{\infty} (f_\lambda)^2 = \sum_{\lambda=0}^{\infty} (e_{1\lambda}^2 + e_{2\lambda}^2 + \cdots + e_{r\lambda}^2) + 2 \sum_{\lambda=0}^{\infty} \sum_{\iota=1}^{r} e_{i\lambda}e_{k\lambda};$$

hence, according to (5),

$$(6) \quad \sum_{\lambda=0}^{\infty} (f_\lambda)^2 < r \sum_{\lambda=0}^{\infty} (e_{1\lambda}^2 + e_{2\lambda}^2 + \cdots + e_{r\lambda}^2).$$

But

$$\sum_{\lambda=0}^{\infty} e_{i\lambda}^2 = \sum_{\lambda=0}^{\infty} e_{k\lambda}^2,$$

so that (6) reduces to

$$(7) \quad \sum_{\lambda=0}^{\infty} (f_\lambda)^2 < r^2 \sum_{\lambda=0}^{\infty} e_{\lambda}^2.$$

The right side of this inequality is a finite quantity, so that the series on the left side is absolutely convergent.

Hence

Theorem II. The series

$$\sum_{\lambda=0}^{\infty} (z_\lambda - a_\lambda)^2$$

...
extended over a Fuchsian group with the unit circle as a natural
boundary, where z and a are any two points within the unit circle
and not on the boundary, when a is fixed, is an absolutely and
uniformly convergent series of z for all points within and not on
the boundary, and represents an analytic function in the neighbor­
hood of all such points. It has a zero of the second order for
$z = a$, and has the unit circle as a natural boundary.

4. This theorem admits of a further generalization. Choose
any three points z, z', a within and not on the unit circle, and
write $f_\lambda = |z_\lambda - a_\lambda|$, $g_\lambda = |z'_\lambda - a_\lambda|$. Assuming $f \neq 0$
and $g \neq 0$, it is possible to find a positive finite number M
such that the ratio $g_\lambda/f_\lambda < M$, $\lambda = 1, 2, 3, \ldots$, also when z_λ
approaches a point on the unit circle. We have therefore
$g_\lambda < Mf_\lambda$, and

$$f_\lambda g_\lambda < Mf_\lambda^2,$$

and consequently

$$\sum_{\lambda=0}^\infty f_\lambda g_\lambda < M \sum_{\lambda=0}^\infty f_\lambda^2.$$ (8)

As the right side of this inequality is absolutely convergent,

$$\sum_{\lambda=0}^\infty f_\lambda g_\lambda$$

is an absolutely convergent series, and that consequently

$$\sum_{\lambda=0}^\infty (z_\lambda - a_\lambda)(z'_\lambda - a_\lambda)$$

is absolutely and uniformly convergent, and, for a and z'
constant, defines an analytic function of z for all points
within and not on the boundary of the unit circle. It vanishes
for $z = a$ and has the unit circle as a natural boundary.

Nothing is lost in the convergency proof of (9) by assuming
z and z' fixed and a as variable. Hence putting in (9) $z = a,$
$z' = b$ and $a = z$ we may state

Theorem III. The series

$$\sum_{\lambda=0}^\infty (z_\lambda - a_\lambda)(z_\lambda - b_\lambda),$$

where a and b are any two points within and not on the unit circle,
is absolutely and uniformly convergent and represents an analytic
function of \(z \) within the unit circle, which is a natural boundary of the function. It has \(z = a \) and \(z = b \) as zeros.

5. Making use of the proposition that for an analytic function \(F(z) \) which within a certain region has the character of a rational function, such that for any point \(z_0 \) of this region \(F(z_0) \) exists,

\[
\lim_{z \to z'} \left(\frac{F(z) - F(z')}{z - z'} \right) = F'(z_0)
\]

we may extend theorem III to an even more general type of functions. Let \(\mathcal{R}(z) \) be a rational function of \(z \) which for \(z = 0 \) does not become infinite. Putting \((z_\lambda - a_\lambda)(z_\lambda - b_\lambda) = u_\lambda, (z'_\lambda - a'_\lambda)(z'_\lambda - b'_\lambda) = u'_\lambda\), where \(z', a', b' \) denote a set like \(z, a, b \), then as \(z_\lambda, a_\lambda, b_\lambda, u_\lambda, u'_\lambda \) will approach the same point, and \(u \) and \(u' \) will approach zero as a limit. Consequently

\[
\lim_{z_\lambda \to e^i\phi} \left(\frac{\mathcal{R}(z_\lambda) - \mathcal{R}(u_\lambda)}{u_\lambda - u'_\lambda} \right) = \mathcal{R}'(0)
\]

is a finite quantity, and as \(\sum (u - u') \) is absolutely and uniformly convergent, also \(\sum_{\lambda=0}^{\infty} \{\mathcal{R}(u) - \mathcal{R}(u')\} \) will be absolutely and uniformly convergent within the unit circle, except for a finite number of values of \(u \) and \(u' \), which are poles of \(\mathcal{R}(u) \), and their congruents in the group \(\Gamma \). Hence, with the expressions for \(u, u' \) and \(\mathcal{R} \) defined as above, we may state

Theorem IV. When \(a, b, a', b', z' \) are fixed, so that no \(u'_\lambda \) is a pole of \(\mathcal{R}(z) \), then

\[
\sum_{\lambda=0}^{\infty} \left[\mathcal{R}(z_\lambda - a_\lambda)(z_\lambda - b_\lambda) - \mathcal{R}(z'_\lambda - a'_\lambda)(z'_\lambda - b'_\lambda) \right]
\]

extended over the whole Fuchsian group represents an analytic function of \(z \), which has the same poles as those of \(\mathcal{R}(x) \) and their congruents, and which has the unit circle as a natural boundary.

It appears that in general these functions are not automorphic in the ordinary sense.

University of Illinois.

* For a statement of formula (10) and its applications to trigonometric and elliptic functions see Schottky: "Ueber die Funktionenklasse, die der Gleichung \(F \left(\frac{ax + b}{\gamma x + \delta} \right) = F(x) \) genügt"; Crelle, vol. 143 (1913), pp. 1–24.