can be represented as the potential due to a mass arranged as
(1) a simple distribution along a segment of the Z-axis, (2) a
simple distribution over a circular plate in the XY-plane
\(x^2 + y^2 \leq a^2\), and (3) one or more mass-points at the ends of
certain segments or a radial double distribution on the circular
plate.

The density of the mass distribution in the XY-plane and
on the Z-axis is explicitly determined for the various feasible
cases.

W. R. Longley.

Das Schachspiel, und seine strategischen Prinzipien. Von M.
Lange. Zweite Auflage. No. 281, Aus Natur und Geistes-
With portraits of E. Lasker and Paul Morphy.

This little volume, with the portrait of a mathematician as
frontispiece, is included in the announcement of the series in
which it appears among the mathematical works. While
the strictly mathematical treatment is, of necessity, slight
yet the attempt is seriously made to present an introduction
to chess based upon somewhat fundamental, and partly
mathematical, principles. The work marks a distinct advance,
in a pedagogical way, in the literature of chess.

Louis C. Karpinski.

A Course in Descriptive Geometry and Photogrammetry for the
Mathematical Laboratory. By E. Lindsay Ince. Edin-
burgh Mathematical Tracts, No. 1. London, E. Bell and
Sons, 1915. viii+79 pages, 42 figures.

This little book makes no claim of being a treatise, but
endeavors to present the important features of descriptive
geometry in such a manner that one may be instructed rapidly
in the general processes employed. A short introduction
sketches the whole problem as treated by the methods of
orthogonal double projection, perspective and plane pro-
jection. Only about twenty pages are devoted to the treat-
ment of lines and planes, yet in this short space many of the
standard problems are well discussed. In the chapter on the
applications to curves and surfaces no general statements are
found, no attempts being made to have the processes apply to
other surfaces than cones, cylinders, and spheres. The mathe-