3 sextactic points are contacts of tangents from the flexes \(P_3 \). The 6 contacts of tangents from the sextactic points are the points \(P_{12} \). The 12 contacts of tangents from \(P_{12} \) in turn are the points \(P_{24} \), and so on ad infinitum.

University of Oregon.

RELATED INVARIANTS OF TWO RATIONAL SEXTICS.

BY PROFESSOR J. E. ROWE.

(Read before the American Mathematical Society September 4, 1918.)

Let the parametric equations of the \(R_6^6 \), the rational curve of order six in three dimensions, be

\[
x_i = \delta_i t^6 + a_i t^5 + 6b_i t^4 + 15c_i t^3 + 20d_i t^2 + 15e_i t + 6f_i + g_i \quad (i = 1, 2, 3, 4),
\]

and let the parametric equations of the \(R_6^6 \), the rational plane curve of order six, be of the form

\[
\begin{align*}
x_1 &= \alpha t^6 + a + bt + ct^2 + dt^3 + et^4 + ft^5 + gt^6, \\
x_2 &= \beta t^6 + a' + bt + ct^2 + dt^3 + et^4 + ft^5 + gt^6, \\
x_3 &= \gamma t^6 + a'' + b''t + c't^2 + d't^3 + e't^4 + f't^5 + g't^6.
\end{align*}
\]

It is well known that all plane sections of the \(R_6^6 \) are apolar to a doubly infinite system of binary sextics, and that all line sections of the \(R_6^6 \) are apolar to a triply infinite system of binary sextics. We shall let the four binary sextics \(\delta_i t^6 \) of (1) be four linearly independent sextics of the apolar system of the \(R_6^6 \), and the \(\alpha_i t^6, \beta_i t^6, \gamma_i t^6 \) of (2) be three linearly independent sextics of the apolar system of the \(R_6^6 \). Our purpose is to point out briefly the relation between the invariants of the \(R_6^6 \) and the invariants* of the \(R_3^6 \).

By means of the twelve equations

* This relation must not be confused with the correspondence between invariants of the \(R_6^a \) and covariant surfaces of the \(R_6^a \).
\[a_ia - b_ib + c_ic - d_id + e_ie - f_if + g_ig = 0, \]
\[(3) \]
\[a_ia' - b_ib' + c_ic' - d_id' + e.ie' - f_if' + g_ig' = 0, \]
\[a_ia'' - b_ib'' + c_ic'' - d_id'' + e.ie'' - f_if'' + g_ig'' = 0 \]

\[(i = 1, 2, 3, 4),\]

it may be easily proved that the four-rowed determinants of the matrix of the coefficients of \(\delta_ii^6 \) of the type \(|abed| \) are proportional to the complementary three-rowed determinants of the matrix of the coefficients of \(\alpha_i\delta_6, \beta_i\delta_6, \gamma_i\delta_6 \) of the type \(|ef'g'| \).

Let \(T \) denote the substitution of the three-rowed determinants of (2) for the proportional four-rowed determinants of (1), and \(T^{-1} \) the inverse substitution.

Invariants of the \(R_2^6 \) are combinants of the four sextics \(\delta_ii^6 \), and conversely, and these are rationally expressible in terms of the determinants of the type \(|abcd| \). Invariants of the \(R_2^6 \) are combinants of \(\alpha_i\delta_6, \beta_i\delta_6, \gamma_i\delta_6 \), and conversely, and these are rationally expressible in terms of the determinants of the type \(|ab'e''| \). The combinants of \(\delta_ii^6 \) are implicit invariants of the \(R_2^6 \) which become explicit invariants of the \(R_2^6 \) after the application of \(T \). Similarly, combinants of \(\alpha_i\delta_6, \beta_i\delta_6, \gamma_i\delta_6 \) are implicit invariants of the \(R_3^6 \) which are transformed into explicit invariants of the \(R_3^6 \) by means of \(T^{-1} \). Hence any explicit invariant \(I \) of the \(R_3^6 \) is transformed into an explicit invariant \(I' \) of the \(R_3^6 \) by means of \(T \). Similarly, \(T^{-1} I' = I \). It is evident that the order of \(I \) in the \(|abcd| \) is the same as that of \(I' \) in the \(|ab'e''| \). We shall now mention a few illustrations of this relation.

If \(U' \) is the undulation invariant of the \(R_2^6 \), \(T^{-1} U' = U \) is the stationary line invariant of the \(R_3^6 \). From \(P \), the pantatactic plane invariant of the \(R_3^6 \), we obtain \(TP = P' \), the cusp invariant of the \(R_3^6 \). Similarly, from \(Q \), the quinqueseant line invariant of the \(R_3^6 \), we derive \(TQ = Q' \) whose vanishing defines an \(R_3^6 \) such that any six of its collinear points have parameters apolar to a binary quintic. If \(N = 0 \) is the necessary and sufficient condition that the \(R_3^6 \) have a node, \(TN = N' = 0 \) defines an \(R_3^6 \) which has one secant that cuts out a cyclotomic set of parameters.

Pennsylvania State College,
May, 1918.