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MATHEMATICS IN WAR PERSPECTIVE. 

PRESIDENTIAL ADDRESS DELIVERED BEFORE THE AMER
ICAN MATHEMATICAL SOCIETY, DECEMBER 27, 1918. 

BY P R E S I D E N T L. E . DICKSON. 

A N army officer of high rank, now facing the problems in
volved in stopping the huge war machine which he had helped 
to build, recently remarked to me that this getting out of war 
is far more trouble than getting into it. The armistice has 
put me in the same boat and, for the purposes of this address, 
came a few weeks too soon. I had already put myself under 
obligations to numerous friends, including two in England and 
France, for furnishing me authoritative information on the 
rôle of mathematics and its applications in the war. While 
this information is fortunately no longer needed for its initial 
purpose, it bears on the timely question of the kind of pre
paredness which the nation should adopt. While science has 
played an important rôle in this war, it would undoubtedly 
play a dominant rôle in a future war, and no scheme of na
tional preparedness will prove adequate which does not insure 
an ample supply of highly trained scientists and furnish to all 
men effective training in the fundamentals of exact science. 
Owing to its recognized value as a fundamental part of military 
education, I expressly include mathematics, especially trigo
nometry and graphical analysis. Let it not again become pos
sible that thousands of young men shall be so seriously handi
capped in their army and navy work by lack of adequate 
preparation in these subjects. Nor should so many instructors 
in courses for prospective officers again be chosen from those 
who had just passed hastily through the course, not to count 
those who had merely taken a few private lessons. Fortunately 
the more widespread and more effective scientific training here 
advocated as an essential part of national preparedness for 
war furnishes at the same time the surest means to retain and 
increase our material prosperity, to add to our health, comfort 
and conveniences, and so to train our youth in the unravelling 
of the mysteries of the universe and in habits of drawing ac
curate conclusions from correctly observed facts that they may 
the more surely become sane, reliable and efficient citizens. 
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For data on the military and naval instruction in France 
during the war, I am indebted to the distinguished mathe
matician, M. Edmond Maillet, President of the Mathematical 
Society of France, who also kindly sent me current programmes 
of requirements for admission to the various schools. As a 
background we need some facts concerning the instruction 
given just prior to the war. Cadets to become officers of in
fantry or cavalry took a two-year course (which was suspended 
during the period of the war) at the Ecole Spéciale Militaire 
de Saint-Cyr, the entrance examinations being on algebra 
(through quadratics), geometry, trigonometry, conic sections, 
notions of derivatives, descriptive geometry, mechanics, and 
general physics and chemistry. But the future officer of 
artillery or engineering was trained at other schools which 
required more extensive preparation for entrance. After being 
able to pass the entrance examinations at Saint-Cyr, he entered 
a special class at a lycée which continued 8 or 9 months prior 
to October, 1917, but only 5 | months in 1917-18. For ex
ample, in the class 'of Mathématiques Spéciales, preparing 
particularly for the Ecole Polytechnique, the number of lessons, 
each of 1 | to 2 hours, were as follows for the 8 (and 5|) 
months: trigonometry, (college) algebra, and differential and 
integral calculus, 47 (36) ; plane and solid analytic geometry, 
45 (33); descriptive geometry, 24 (22); mechanics, 20 (7); 
supplemented by written exercises, quizzes and 12 drawings 
in descriptive geometry. In such a lycée, he continued also 
his study of general physics and chemistry, history, and Eng
lish or German. 

The special aim of the famous Ecole Polytechnique is to 
provide the training in the exact sciences which is necessary 
for artillery officers and for the various types of engineers in 
their subsequent technical course at one of the various state 
schools of applied science, mentioned below. The subjects 
taught in the two-year course and the number of lectures are 
as follows:* higher analysis (65), projective, infinitesimal and 
cinematic geometry (26), application of descriptive geometry 
to stereotomy (12), mechanics (74), drawing (30), architec
ture (12), astronomy and geodesy (17), physics (60), chemistry 
(60), history and literature (40), political and social economy 
(20), German, English, military science (30), and drill (one 
hour a week). 

* Journ. de VEcole Polyt., ser. 2, cah. 14, 1910, pp. I-XLIII. 
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Among the schools of applied science* are the Ecole des 
Ponts et Chausséesf for engineers of railroads, ports, rivers, 
harbors, drainage, etc.; Ecole du Génie Maritime for marine 
engineers; Ecole d'Hydrographie for a small number of hydro-
graphic engineers, at each of which there is a two-year course 
primarily for those who have completed the course at the Ecole 
Polytechnique. The Ecole Nationale Supérieure des Mines 
trains especially mining engineers, but also for industrial posi
tions; the engineers are taken exclusively from the Ecole 
Polytechnique and are given a three-year course. The Ecole 
Centrale des Arts et Manufactures offers a three-year course 
for engineers for all branches of industry, architecture, mining, 
machinery, chemistry, etc. The above schools are all at Paris. 

The Ecole Navale at Brest offers to candidates of ages 16 
to 19, who have had the equivalent of the above special lycée 
course (with omission of descriptive geometry and electricity 
in 1918), a two-year course for line officers in the navy. The 
subjects studied are analysis, rational mechanics, astronomy, 
navigation, naval architecture and machines, drawing, photog
raphy, physics, chemistry, literature, history and seamanship. 
The course is followed by a cruise of ten months for practical 
instruction. The entire course has been reduced to five 
months during the war. To provide further line officers in the 
navy, the Ecole des Elèves Officiers de Marine at Brest offers a 
two-year course for enlisted naval men of certain grades and 
lengths of service who can pass the examinations in arithmetic, 
(advanced high school) algebra, trigonometry, conic sections, 
notions of derivatives, elements of plane, solid, and descrip
tive geometry, mechanics, general physics, geography and 
French history. 

To provide captains and mechanician officers for the mer
chant marine there are free state schools at 16 French ports, 
but only those at Havre, Nantes, Marseilles, and Paimpol were 
open during the war.J Beginning with 1918, the course at 

* P. Melon, L'Enseignement supérieur et L'Enseignement technique en 
France, éd. 2, 1893. 

f Cf. transi, of French report by Major W. D. Connor, National School 
of Bridges and Highways, Paris, France. U. S. Printing Office, 1913, 42 
PP-

{Organisation et Fonctionnement des Ecoles d'Hydrographie et de 
l'Institut Maritime du Havre; conditions d'admission, programmes des 
examens pour . . . capitaine au long cours, Paris, A. Challamel, 1918, 
108 pp. Programme . . . d'officier mécanicien de la marine marchande, 
Paris, Vuibert, 68 pp. 
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the first three of these four schools will require two years. For 
the special "brevet supérieur" captain or mechanician, the 
examinations include also differential and integral calculus, 
rational mechanics, physics, elementary chemistry, machines, 
etc. There are schools for apprentice mechanicians at Lor-
ient, Brest, Toulon, and Havre. 

To supply the increased need for army officers during the 
war, the Ecoles Militaires d'Aspirants at Saint-Maixent, Sau-
mur, Fontainbleau and Versailles for the infantry, cavalry, 
artillery and engineers, respectively, provided practical courses 
of five months for sub-officers, regarded as capable of becoming 
officers, who passed oral and written examinations in arithmetic, 
plane geometry, linear equations in several unknowns, defin
itions of the trigonometric functions and of the terms in solid 
geometry, formulas for surfaces and volumes (without proofs), 
elementary notions in physics and chemistry, geography, 
French history and literature. Also an extensive acquaintance 
with descriptive geometry was required of candidates for en
trance to the school for engineers. No examination was re
quired in the case of sub-officers who had served 15 months 
in the army and were recommended by the military authori
ties, nor of those who had been admitted to the Ecole Poly
technique or the school at Saint-Cyr. 

In England the training of naval cadets under the system* 
adopted in 1913 consisted of a two-year course at the Royal 
Naval College at Osborne, followed by a two-year course at 
the Royal Naval College at Dartmouth, and six months on a 
training cruiser. In 1912 there were 439 cadets at Osborne and 
406 at Dartmouth. To enter Osborne the candidate must be 
between 1 2 | and 13 years of age and pass an entrance ex
amination in arithmetic, algebra (linear equations in one or 
more unknowns), geometrical constructions and the substance 
of the first book of Euclid, history, geography, and languages. 
In arithmetic, algebra, geometry and the elements of plane 
trigonometry, there are 6f hours per week of instruction and 
2 of preparation during the first four terms, each of twelve 
weeks, and 7\ + \\ during the last two terms. At Dart
mouth all cadets take algebra, plane and solid geometry and 
plane and spherical trigonometry, while the more proficient 
men take also analytic geometry and elementary notions of 

* Great Britain Admiralty Committee on education and training of 
naval officers, Accounts and Papers, Navy, vol. 43, 1913, 170 pp. 
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calculus. To insure that all shall attain to the standard in 
navigation, extra time is provided in navigation for the weaker 
cadets at the expense of their further progress in mathematics. 
In the first two terms there are 5 + 2\ hours of mathematics 
and no navigation, while the later schedules are 

13d term 4th term 5th term 6th term 

4 + 2 J o r 3 + 2 o r 2 + l | 
|2+1 o r 3 + J or 4+2 

Math. | 4+2 
Nav. I 1+è 

4 + 2 è o r 3 +2 
2+1 o r l J + J 

4 + 2 | or 3+2 
2 + 1 o r 3 + l è 

During the subsequent 24 weeks on a training cruiser, five 
hours were devoted daily to study; the time for the optional 
course in trigonometry and calculus was included in the six 
hours per week assigned to navigation. 

Professor W. Burnside has kindly provided me with a state
ment of the instruction during the war. The only training 
in navigation for prospective officers of the British navy is 
given on board ship and at the Royal Naval College, Dart
mouth. There the course was reduced to five terms by cut
ting down somewhat the non-professional subjects such as 
history. During the initial two terms, two hours per week 
were given to recitation and \ hour to preparation in navi
gation. In the third term the time ranged from 2 + 1 hours 
for the best to 3 + If for the poorest of the six classes into 
which the cadets were separated on the basis of ability. In 
the fourth term the hours were 2 + \\ to 3 + 2; in the final 
fifth term, 3 + l f t o 4 + 2. The only text-book used is S. 
F . Card's Navigation Notes and Examples, 245 pages, second 
edition, 1917, Arnold (to be had of Longmans, Green and 
Company in America), but reference was made to Chapter 
XVII of the Admiralty Manual of Navigation, 525 pages, 1914, 
London (3 shillings). Cadets procured Inman's tables and 
the Nautical Almanac for 1919, and had access to Burdwood's 
Azimuth Tables. They acquired facility in using parallel 
rulers, dividers, sextants, magnetic and gyro compasses, station 
pointers, and the large scale chart S 389 D. 

For artillery officers in the army and for gunnery officers in 
the navy, the whole of the theoretical and a great part of the 
practical training is given at the Ordnance College at Wool
wich, where most of the courses are technical rather than theo
retical. The only course which gives teaching on theoretical 
ballistics, external and internal, is one of 9 hours a week for 
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8 months for artillery officers who are practical experts of at 
least six years' experience in their profession. The books used 
are the Army and the Admiralty Gunnery Manuals which are 
strictly confidential documents. There are no public British 
text-books on ballistics. 

The work at our own government schools* at West Point 
and Annapolis need not be reported on here. The emphasis 
during the first two years is on pure mathematics. There are 
various post-graduate army schools. In marine engineering 
the first year's post-graduate work is done at the Naval Acad
emy and the second year at Columbia University. Other 
graduates, who are to become naval constructors, take a three-
year course at the Massachusetts Institute of Technology. On 
account of the war, a class recently graduated at West Point 
after two years' work. Annapolis is temporarily on a three-
year schedule, the enrollment in the entering, middle and grad
uating classes being now 963, 678 and 485 respectively, with 
18 men per section in mathematics. 

The Naval Auxiliary Reserve Training Schools at Pelham 
Bay and at the Municipal Pier of Chicago taught navigation, 
seamanship, etc., to a large number of enlisted men seeking 
an ensign's commission. As many men lacked adequate math
ematical preparation for the work at the latter school, prelim
inary courses in trigonometry and navigation were given to 
about 900 of these men at the University of Chicago and to a 
like number at Northwestern University. 

At the Officer Material School, Cambridge, Mass., the Navy 
conducted, during the past sixteen months, four-month courses 
in navigation (including plane and spherical trigonometry), 
ordnance and gunnery, seamanship, and naval regulations, the 
number of hours per week of class work being 8, 8, 7, and 2, re
spectively. The 1,000 students were selected from those en
listed in the navy and were all above 21 years of age. The 
instructors expressed belief in the need in the future of more 
thorough grounding in mathematics, up to and including trig
onometry. 

The U. S. Shipping Board conducted free schools for the 

* Besides their annual registers, see the report of the International com
mission on the teaching of mathematics, U. S. Bureau of Education, Bul
letin, 1912, No. 2; also, Report of U. S. Commissioner of Education, 1913, 
I, pp. 599-630. In the Amer. Math. Monthly, Oct., 1918, pp. 370-2, Pro
fessor Root described the temporary course of 16 weeks in navigation at 
Annapolis for reserve officers. 
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training of navigation and engineer officers for the merchant 
marine. The first schools were opened July 1,1917, and others 
from time to time up to November, 1918,—31 schools in all. 
The total attendance has been 12,218; of these, 3,509 completed 
the course for deck officers and 3,290 the course for engineer 
officers. For the navigation schools the prerequisite was two 
years' sea experience and graduation from a grammar school. 
The instruction (30 hours per week in class and 10 of other 
study) was on navigation by dead reckoning and by observa
tion (Bowditch) and in "Rules of the Road" (published by 
the Hydrographie Office), international code of signals, etc. 
Each school possessed six sextants, a chronometer, compass, 
azimuth instrument, and five dividers. In the schools for en
gineer officers the course of one month (36 hours a week) 
covered the technical knowledge required for the grade of 
Chief. The text-books were Dyson's Practical Marine En
gineering, and the Crosby Company's Practical Instructions on 
the Steam Engine Indicator. More difficulty was found with 
mathematics than anything else and special instruction was 
given in mathematics in the early part of the course. On the 
average there was one instructor for ten students in these 
schools. For the preceding information I am indebted to 
Director Henry Howard and his assistants. 

The Student Army Training Corps was formally inaugu
rated on October 1,1918, at some 500 colleges and universities. 
By November 1 the enrollment had reached the following fig
ures obtained from the War Department : army, collegiate sec
tion, 127,766; vocational section, 37,261; navy, 12,598; marine, 
413; in process of induction, 976. The following conclusions 
are based upon 29 replies to a questionnaire from 17 large 
universities and 12 colleges and small universities, which to
gether represent all parts of the country. At these schools, 
14,785 men took trigonometry in 522 sections with an aver
age of 28 men and four hours of class recitation. As 39 per 
cent, of the army and naval enrollment (exclusive of the voca
tional section) at these schools took trigonometry, probably 
about 55,000 of the S. A. T. C. men in all the colleges took 
that subject. Excluding the classes in trigonometry con
ducted for naval men only, there were 257 instructors, 63 per 
cent, of whom were on the regular mathematical staffs, 20 per 
cent, were from other departments, and 17 per cent, were tem
porary appointments. The replies indicated unanimously that 
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the work in trigonometry was not as efficient as in their usual 
classes, nor in 75 per cent, of the institutions as extensive as 
usual. At all but two of the 29 schools, the chief reason as
signed for the inferior work was absence for military duty, 
while poorer preparation was assigned as one of the reasons 
at half the schools and the influenza at several. At 18 of these 
29 schools, surveying was taught to 3,664 S. A: T. C. men on an 
average of six hours per week of field work and three of indoor 
class work; the work was neither as effective nor as extensive 
as usual, due only partly to poorer preparation, but unani
mously and emphatically attributed to cuts for military duty. 
On the average there were four men in a squad and 26 men 
per instructor; only 40 per cent, of the instructors were on the 
regular staffs. Navigation was taught to 2,170 men in sec
tions of usually not over 25 men and with four recitations a 
week. Smaller numbers took courses in firing data, gunnery, 
ballistics, aerodynamics, statistics, as well as various subjects 
in mathematics. But the scheme partially failed because 
the lack of available experienced officers required that its 
execution be left usually to officers of very recent vintage, 
who were unable to understand why other young prospective 
officers needed the college courses, even though prescribed by 
the War Department, and, instead of regarding cuts from 
classes as a breach of military discipline, proceeded to remove 
men from their classes and assign them to all sorts of minor, 
menial, and clerical duties. 

The ultimate object of exterior ballistics is to obtain data 
for range tables and the various ballistic corrections for prac
tical use in directing the fire of the gun. When we entered 
the war we had no range tables for various types of guns we 
decided to adopt, especially for the anti-aircraft guns. The 
construction of the necessary new range tables involved not 
only the obtaining of a vast amount of experimental data, but 
also the elaboration of the theory of the differential equations 
which takes into account not only the resistance of the air but 
also its temperature and its decrease in density at higher alti
tudes, as well as corrections for the wind. Under the leader
ship of two of our well known mathematicians, Professors F. 
R. Moulton, and O. Veblen, now Majors in the Ordnance De
partment, two groups of mathematicians including Alexander, 
Bennett, Blichfeldt, Bliss, Buck, Dines, Gronwall, Hart, Has-
kins, Jackson, MacMillan, Milne, H. H. Mitchell, Ritt, Roever, 
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H. L. Smith, and Vandiver, have been engaged in this im
portant work at Washington and Aberdeen, Md. For given 
initial conditions as to the gun, ammunition, elevation, and 
on the assumption of normal air density and no wind, the 
trajectory is now computed in about half a day, with a gain in 
accuracy. Some further simplification appears to result from 
the use of the adjoint system of differential equations. But 
it would be foolish for me to attempt to go into details since 
you are to have the pleasure of hearing this afternoon five 
ballistic experts who come to us direct from the two centers 
of ballistic work in America. Following my request for some 
information suitable for use in this address, I received from 
both Washington and Aberdeen huge bundles of blue prints 
showing hundreds of beautiful trajectories and other curves 
and many heavy mathematical manuscripts,—a sort of long 
range bombardment which it seemed the part of wisdom to 
dodge and trust to the direct fire of the newly arrived experts. 

Believing that navigation should receive more attention in 
future in collegiate instruction, I shall give an outline of cer
tain mathematical aspects of the subject. 

By dead reckoning is meant the determination of the po
sition of a ship by means of the measured 
distances and courses which it has sailed 
from a known position P . The true course 
C is the angle made by the ship's track 
with the north and south line. The 
method of plane sailing is employed when 
the distance D sailed is so short that we 
may neglect the curvature of the earth. 
Hence we have a plane right triangle with 
hypotenuse D, one angle C, the vertical leg 
being the difference of latitude expressed 
in nautical miles, and the horizontal leg 
being called the departure, as in surveying. Thus the legs 
are 

Diff. Lat. = D cos C, Dep. = D sin C, 

and may be computed by logarithms or found as in surveying 
by inspecting a traverse table in which are entered the prod
ucts of each number D = 1, 2, • • •, 600 by cos C and by sin C 
for C = 1°, 2°, • • •, 89°. I t remains to find the difference of 
longitude, i. e., the arc of the equator intercepted by the me-
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ridians through P and A, the point from which we sailed and 
the point arrived at. The east and west arc through A which 
is intercepted by those two meridians is the departure. Since 
these two arcs subtend equal angles at their centers, their 
ratio equals the ratio of the radii of their circles, which is 
immediately seen to be the secant of the latitude. Hence 
Dep. = (Diff. Long.)(cos Lat. A), from which we may find 
the difference of longitude by logarithms or by a traverse table. 

In middle latitude sailing we take into account the curva
ture of the earth and assume that the ship's track is a rhumb 
or loxodromic line making the same angle C with all the mer
idians crossed. Divide the distance D into parts each so 
small that it can be regarded as the hypotenuse of a plane 
right triangle with an angle C. The sum of the vertical legs 
of these small triangles is seen to equal the difference of lati
tude, so that we again have Diff. Lat. = D cos C. Since the 
meridians converge towards the north pole, the sum of the 
east and west legs of our small triangles has a value which 
exceeds the departure at A and is less than the departure at P 
and is assumed to equal the departure in middle (or mean) 
latitude, i. e., the east and west arc intercepted by the merid
ians through P and A on the parallel of latitude half way be
tween the parallels of latitude at P and A. If these parallels 
are far apart or if either is near a pole, the assumption just 
made introduces too large an error. When the assumption is 
valid, we have Dep. in Middle Lat. = D sin G. Hence we 
may proceed exactly as in plane sailing with departure re
placed by departure in middle latitude. 

Mercator's sailing involves no assumption restricting its 
accuracy and has the further advantage that the computations 
can be conveniently checked graphically on a chart which 
shows the ship's position at all times and hence its relation to 
possible danger points. The earth's surface is mapped on the 
interior of a rectangle in such a way that the meridians are 
represented by parallel straight lines, as also are the parallels 
of latitude. Since the rhumb line on which we sail crosses all 
the meridians at the same angle 0, it is mapped as a straight 
line. The act of plotting as straight lines the earth's merid
ians which converge at the poles has caused an opening out 
of these meridians, i. e., a stretching of east and west lengths. 
But we desire that any small figure on the map shall be of the 
same shape as the corresponding figure on the earth, even 
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though it be magnified. Hence there must be simultaneously 
a stretching of north and south lengths, the amount of stretch
ing being the secant of the latitude. If L is the latitude of a 
point on the earth, the number m of nautical miles in the mag
nified latitude (called meridional parts) is given by a table, 
which is computed by use of the formula 

m = r log tan (45° + %L) 

— r(e2 sin L + i e4 sin3 L + \e% sin5 L + • • -), 

where r is the equatorial radius and e is the eccentricity of the 
ellipse whose rotation produces the earth's surface, while 
Naperian logarithms are employed. Taking for simplicity 
the earth to be a sphere, a small length f d l o n a meridian is 
represented on Mercator's map by r sec L dL, whence the length 
on the map of the meridian from the equator to latitude L is 

f rsecLdL= r log tan (45° + £Z). 
Jo 

By making use of the table of meridional parts we can readily 
construct to scale a rectangular Mercator's chart showing for 
example the parallels of latitude for 20°, 21°, • • -, 30° North 
latitudes and the meridians for 70°, 71°, • • •, 85° West longi
tudes; the entire rectangle is therefore divided into 10 X 15 
small rectangles with equal bases, but varying heights which 
increase as we pass to higher latitudes. Such position charts 
are published by the U. S. Hydrographie Office. On a Mer
cator map, angles are the same as the represented angles on the 
earth, and difference of longitude is found by the scale at the 
bottom of the large rectangle. But as distances and differ
ences of latitude appear magnified, the lines representing them 
are measured to the scale appropriate to their latitude, such 
varying scales being often given in the right and left hand mar
gins directly opposite to the latitude. 

For the computation by logarithms or a traverse table, we 
use the plane right triangle on a Mercator's map whose legs 
are the meridional difference of latitude and the difference of 
longitude and one angle is the course C, as well as the formula 
Diff. Lat. = Dist. X cos C derived above from the curvilinear 
triangle on the earth. We make no use of the side "depart
u re" in the last triangle, or of the hypotenuse of the former. 
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Great circle sailing is employed on very long voyages since 
the distance sailed is then a minimum, although it has the in
convenience that the course is changing continually. We 
first plot the track from port to port on a gnomonic projection 
chart (a projection on a tangent plane from the center of the 
earth), on which the great circle track is represented as a 
straight line. Then we transfer the route to a Mercator's 
map. In 1858, Sir George Airy proposed a method of repre
senting approximately a great circle directly on a Mercator's 
map (Bowditch, page 82). Great circle distances and courses 
are found by spherical trigonometry, as in the later discussion 
of the astronomical triangle. An account of the literature on 
great circle sailing has been given by G. W. Littlehales.* 

Owing to various inaccuracies in the data used in dead reck
oning, the navigator must correct his estimated position by 
use of sights or observations of the sun or stars. We proceed 
to explain the method now in general use. 

Suppose that a navigator measures with a sextant the sun's 
altitude (its angle of elevation above the horizon) and finds it 
to be 70°, so that the sun's zenith distance z is 20°. Then he 
is 20° or 1,200 nautical miles from the geographical position U 
of the sun, i.e., the point on the earth having the sun in its zen
ith. Hence the ship lies on a small circle whose spherical 
radius is 1,200 miles and spherical center is U. This circle 
of equal altitudes is in practice replaced by the tangent line, 
called a Sumner line of position, which is perpendicular to the 
bearing of the sun. I t was discovered in 1837 by an American 
shipmaster, Capt. T. H. Sumner,f under the stress of saving 
his ship from imminent danger. Two special cases of the 
method had long been in constant use. The navigator took 
a sun sight just after sunrise and just before sunset to deter
mine his longitude, the Sumner line then being perpendicular 
to the approximately East or West bearing of the sun. He 
took a noon sight to find his latitude, the Sumner line then 
being perpendicular to the North or South bearing of the sun. 

In 1875 Admiral Marcq Saint HilaireJ of the French navy 
gave the following method to find the Sumner line. Given 

* The Development of Great Circle Sailing, U. S. Hydrographie Office, 
1889, No. 90. 

t A New and Accurate Method of Finding a Ship's Position at Sea, 
Boston, 1843; third éd., 1851. 

t Calcul du point observé, Revue Maritime et Coloniale, vol. 46, 1875, 
p. 341, p. 714. 
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the estimated position A of the ship as found by dead reck
oning and the geographical position U of the sun (or a star), 
we compute the great circle distance A U by one of the for
mulas below, and either compute the bearing (azimuth) of U 
from A or take it from a table of azimuths or from Weir's 
Azimuth Diagram. Then h = 90° — AU is the computed 
altitude. Let h! be the sun's altitude observed with the sex
tant. On a Mercator's chart lay off from A the difference of 
the altitudes in miles towards U or in the opposite direction 
from U according as h is less than or greater than h''. Then 
the straight line through the point B thus determined and at 
right angles to the bearing is the Sumner line* containing the 
ship's true position. 

The computation is made by use of formulas derived from 
the astronomical triangle MPZ, whose projection on the plane 
of the horizon is shown in Fig. 2, in which M represents the 
sun (or star), P the elevated pole, and Z the observer's zenith 
(point overhead). The declination d of the sun at the moment 

\Q 

FIG. 2. 

of observation is given by the Nautical Almanac; its hour 
angle t and the observer's latitude L are supposed known. A 
standard formula of spherical trigonometry expresses cos MZ 
in terms of the remaining two sides and their included angle t: 

cos (90° - h) = cos (90° - L) cos (90° - d) 

+ sin (90° - L) sin (90° - d) cos *. 

Replacing cos t by 1 — 2 sin2 | / , we get 

sin h = cos (L — d) —- 2 cos L cos d sin2 %t. 

* Approximately. See the report below on Guyou's tables. 
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By finding the final product by logarithms, we readily get h. 
I t is customary to use a formula obtained from the last by 
introducing versine x for 1 — cos x and haversine x for § vers x 
— sin2 \ x. Since h = 90° — z, we get 

1 — vers 2 = 1 — vers (L — d) — 2 cos L cos d hav t, 

whence, by cancellation and division by 2, we finally have* 

hav z — hav (L — d) + cos L cos cZ hav t. 

Table 45 in Bowditch's American Practical Navigator gives 
the haversines and their logarithms of angles at intervals of 
15 seconds of angle (or one second of time) up to 120° (or 8 
hours), with an extension to 180°. Since we now have the 
three sides of our triangle MPZ, we may compute the azimuth 
angle Z by usef of 

cos2 \Z = cos s cos (s — p) sec L sec h, s = | ( i + h + p), 

where p is the polar distance 90° db d. 
In 1875, Lord KelvinJ stated that it ought to be the rule 

and not the exception to use Sumner's method for ordinary 
navigation at sea. 

We may solve our astronomical triangle PZM by use of 
the spherical traverse table published by Commander F . 
Radier de Aquino § of the Brazilian Navy. In Fig. 2, let the 
perpendicular a from M to PZ divide the latter into the parts 
Pm = 90° — b and Zm = 90° — B. Use is made of six for
mulas given by Napier's rules. By means of 

sin d = cos a sin 6, cot t = cot a cos 6, 

* C. L. Poor, in his Simplified Navigation for Ships and Aircraft, 125 
pp., 1918, N. Y., The Century Co., describes his machine to compute z 
by this formula. It is in effect a circular slide rule with several circular 
discs for finding the separate terms of the formula. 

tOr by a formula for its haversine, Muir, Navigation, 1918, p. 444; 
Card, Navigation Notes, p. 9 (example, p. 90). 

% Popular lectures and addresses by Sir Wm. Thomson, vol. 3, " Navi
gational Affairs," 1891 and 1894, Macmillan and Co. 

§ The "Newest'' Navigation. Altitude and Azimuth Tables, 2d éd., 
London, J. D. Potter, 1917. Aquino, O methodo de Marcq Saint Hilaire, 
Rio de Janeiro, 1902; Typos de calculo . . . , 1902. The table was re
printed and illustrated by examples (but without explanation of its con
struction) in Altitude, Azimuth and Line of Position, U. S. Hydrographie 
Office, 1917, No. 200. 
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he computed and tabulated the values of d and t corresponding 
to values of b for every degree and of a for every 30' from 0° 
to 84° and for every 1° from 84° to 90°. Since 

sin h = cos a sin B, cot Z = cot a cos B 

are of the same form as the preceding equations, the values of 
h and Z for given a and B are already known. Hence the 
table has a double set of labels 

B\b\h\d\Z\t\ 

at the top of the page for any given value of a. Finally, 

sin a = cos d sin t, cot b = cot d cos t 

show that we have automatically tabulated the values of a 
and b (marked by labels at the bottom of the page) which cor
respond to given values of d and t. The table has a column 
with the heading C\c showing c = 90° — b or C — 90° — B; 
also a column showing the two angles at M. To do away with 
certain interpolations, we take an assumed latitude and longi
tude nearly the same as those given by dead reckoning, 
without changing the accuracy of the Sumner line. 

Lord Kelvin* had previously published a smaller table of 
the same type. 

F . Souillagouët'sf final table of 108 pages is a traverse table 
for the right spherical triangle MmP of Fig. 2. I t gives as 
entries 0 = Pm and a for arguments t (angle at P) and hy
potenuse 90° — d, each at intervals of 30' up to 90°. Having 
a and mZ = PZ — 0, we again enter the table and read off 
the azimuth Z and altitude h. His first table of 254 pages 
serves to solve triangle PZM; let <// = ZK be the perpendicular 
from Z to PM, and let 0 = PK. Then 

tan 0 = cot L cos P , sin h = ƒ cos(90° — d — <ƒ>), 

ƒ = sin L/(cos 0) = cos <//. 

The table gives <p and log ƒ. We then get h. 

* W. Thomson, Tables for facilitating of Sumner's method at sea, 
London, 1876. Cf. H. Jacoby's Navigation, 1917, pp. 126-133, 292-317. 

t Tables du point auxiliaire pour trouver rapidement la hauteur et 
l'azimut estimés, suivies d'un recueil nouveau de tables nautiques . . . , 
new éd., Toulouse, 1900. 
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G. W. Littlehales* published a book of charts which serve 
to solve graphically the astronomical triangle PZM. Employ 
a stereographic projection of the celestial sphere on the plane 
of the observer's meridian (a projection from the pole of the 
meridian circle). By use of the latitude, 90° — PZ, mark the 
observer's position Z on the bounding meridian. Locate the 
position M of the observed celestial body by means of its dec
lination 90° — PM and its hour angle MPZ. In the triangle 

s 
FIG. 3. 

PMZ we have two sides and the included angle and desire the 
azimuth PZM and co-altitude ZM. Rotate the triangle about 
the center 0 of the projection with the side PZ kept in coin
cidence with the bounding meridian until Z is brought to the 
position of P , whence P is moved to a position P', and M to 
M'. The co-altitude now lies along a meridian PM' and the 
azimuth becomes the angle M'PP' between two meridians, so 
that each can be measured by means of the graduations of 
the projection. To obviate the necessity for the actual rota
tion of the triangle, draw a series of equally spaced circles 
with the center 0, numbered serially from 0 outward, and a 
series of equally spaced radial lines, marked by numbers indi
cating their angular distances in minutes of arc counted in 
clockwise direction from OS. After plotting M, note the num-

* Altitude, Azimuth and Geographical Position, comprising Graphical 
Tables . . . , Philadelphia, Lippincott, 1906, $25. 
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ber of the circle and the number of the radial which pass 
through M. To the number of the radial add the number of 
minutes in the co-latitude. The sum is the radial number of 
M', which is thus located in the circle just noted. We can 
now read off from the graduated arcs of the projection the 
desired altitude and azimuth. The projection was constructed 
for a sphere 12 feet in diameter and subdivided into 368 sec
tions. The plate for a section is about a foot square and two 
of them are printed on the large page. There is a diagram 
which furnishes an index to the plates. For example, let the 
declination be 45° 54' N, the hour angle 30° 43.5', and the 
latitude 39° 16' N. Plotting the declination and hour angle 
roughly on the index of plates with reference to the parallels 
and meridians (counted from the left-hand bounding merid
ian), we find that the position of the observed body falls on 
plate No. 63 approximately at the intersection of circle 17.2 
with radial 8,400. The co-latitude is 3,044 minutes. Thus the 
approximate position of the rotated position M' is the inter
section of circle 17.2 with radial 8,400 + 3,044 and hence falls 
on plate No. 258. Turn to plate No. 63 and plot the declin
ation and hour angle carefully; we find that M is at the inter
section of circle 495.6 with radial 8,411. Then M' on plate 
No. 258 is at the intersection of that circle with radial 8,411 
+ 3,044, whence we read off the altitude 66° 36' and the azi
muth N 63° 32' W. The method applies at once to sailing on a 
great circle from Z to M, the initial course being angle PZM. 
In the problem to identify an observed star, we know its alti
tude and azimuth and hence point Mf; we get M and hence 
its declination and hour angle. 

E. Guyou* recently published extensive tables for the accu
rate simultaneous determination of altitude and azimuth. 
Underlying his method are geometrical facts of considerable 
interest. On the sphere let CCiM be a circle of position with 
the center A and let Z be the position of the ship estimated 
by dead reckoning (Fig. 4). Let I be the intersection of 
the circle with the great circle AZ. On Mercator's chart, let 
cciTYi and zia be the curves which represent the circle CCi and 
the great circle ZIA (Fig. 5). The true line of position ih is 
the normal at i to the arc zi. But by Saint Hilaire's method 
we draw the tangent zj at z to the arc zi and take a perpendic-

* Nouvelles Tables de Navigation, Paris, 1911. Vol. 1, Réduction 
à l'Equateur, 33 + 370 pp. Vol. 2, Calcul de la Hauteur et de F Azimut, 
284 pp. 



306 MATHEMATICS IN WAR PERSPECTIVE. [Apri l , 

ular jh' to this tangent as the line of position. While this 
line passes very near to i, its direction is in error by an angle 
hih' equal to the angle between the tangents at z and i to the 

FIG. 4. FIG. 5. 

arc zi. This error increases with the latitude and practically 
disappears at the equator, i. e., in the case of circle C'Ci' and 
point Z' of Fig. 4, since the great circle arc Z'V'A' is repre
sented on the chart (Fig. 5) by a curve z'i'a' which has an 
inflexion at z' and hence coincides with its tangent for a con
siderable length. The last fact is the basis of Guyou's method 
to find a line of position which presents all the advantages of 
the line of Saint Hilaire and yet is free from the imperfections 
with which the latter line is in general affected. Starting with 
the "figure" (cci, z) composed of the curve cci and the point z, 
slide it down to occupy the position (c'c/, z'). This displaced 
figure represents on the sphere a figure composed of a circle 
C'Ci and point Z', for which Saint Hilaire's method is prac
tically exact, since z'i'a' is practically straight near z'. The 
method consists of two operations,—reduction to the equator 
and determination of the altitude and azimuth for the reduced 
figure at the equator, being accomplished by tables 1 and 2 
respectively. First, let 

H = 90° - CA, D = 90° - PA, Pe = ZPA, L = 90° - PZ 

be the true altitude, declination and hour angle of the observed 
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body and latitude of the estimated position Z, and hence 
the "real data." Let the corresponding values for figure 
(C'Ci', Z'), with Z' on the equator, be 

H' = 90° - A'C', D' = QA', PJ = Pe = Z'PA', U = 0, 

which are the "reduced data." By use of relations like 

qc= log tan l ^ + — 1, 

it is proved in his article* (but not stated in his book) that 

PL' + W H+D H ' - D ' l ff - D 
cot — = t cot — ~ — , cot - — = - cot — - — , 

t = tan I m) Table I gives the resulting values of \(H' ± P>f) as functions 
of H zb D for each L. By use of a right triangle, we get 
tanZe = cot D'-sin Pe, where Ze is the azimuth. Table I I 
gives the values of H and Z as functions of D'. 

SOME FURTHER BOOKS ON NAVIGATION. 

If all the books on navigation were collected together they 
would sink a ship. The following books in English are not 
afraidf of a needed mathematical formula and appear to be 

* " Nouvelle méthode pour déterminer les droites de hauteur et le point 
observé," Revue maritime, vol. 180, Feb., 1909, pp. 223-266. Also, Rivista 
marittima, Aug., 1909. 

t The following avoid explicit formulas: H. Marshall, Nav. made easy, 
Milwaukee, 1877. W. C. Bergen, Practice of Nav. and Naut. Astr., 671 
pp., 9th éd., 1902, North Shields. L. Young, Simple Elements of Nav., 
248 pp., 2d éd., 1898, N. Y. A. C. Johnson, On Finding the Lat. and Long, 
in Cloudy Weather, 39 pp., 22d éd., 1900 (and 1903), London, Potter; and a 
Handbook for Star Double-Altitudes, 32 pp., 1898. H. Taylor, Modern 
Nav., 347 pp., 1904, San Francisco. C. E. MacArthur, On Nav. simplified, 
121 pp., 1906, Rudder Pub. Co. C. L. Poor, Naut. Science in its Relation to 
Practical Nav., 329 pp., 1910, Putnam's Sons, $2. J. Pendlebury, Plain 
Everyday Nav., 44 pp., 1911, Yonkers, $2.50. W. J. Smith, The Self-in
structor in Nav., 138 pp., 3d éd., 1912, BellinghamJWash., $3. H. L. Thomp
son, Self-instruction in Nav., 80 pp., 1916, Portland, Me., $1.50. H. Jacoby, 
Nav., 350 pp., 2d éd., 1917, Macmillan, $2.25. G. L. Hosmer, Nav., 214 
pp., 1918, Wiley, $1.25. S. T. S. Lecky, Wrinkles in Practical Nav., 18th 
éd., 1918, Van Nostrand, $10. F. S. Hastings, Modern Nav. by Sumner-
St. Hilaire Methods, 84 pp., 1918, Appleton and Co. W. J. Henderson, 
Elements of Nav., new éd., 1918, Harper and Bros., $1.25. A. G. Mayor, 
Nav. Illustrated by Diagrams, 207 pp., 1918, Lippincott, $1.50. The last 
six books are good of their kind. 
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suitable as college texts: W. C. P. Muir, A Treatise on Navi
gation and Nautical Astronomy, 784 pages, 4th edition, 1918, 
U. S. Naval Institute, Annapolis, the text-book at the U. S. 
Naval Academy (contains 160 pages on the compass and the 
theory of its deviations). W. R. Martin, Navigation and 
Nautical Astronomy, 429 pages, 3d edition, 1899, Longmans, 
Green and Company. J. H. C. Coffin, Navigation and Nauti
cal Astronomy, 221 pages, 7th edition, 1898, Van Nostrand. 
F . C. Stebbing, Navigation and Nautical Astronomy, 328 
pages, 1896 and 1903, Macmillan and Company. J. Gill, 
Text-book on Navigation and Nautical Astronomy, 380 pages, 
1898 and 1905, Longmans, Green and Company. W. Hall, 
Modern Navigation, 378 pages, 1904, Clive, London. V. J. 
English, Navigation for Yachtmen, 342 pages, 1896, H. Cox, 
London. Card's book was cited above. 

The following three books are good ones of the Bowditch 
type : H. Raper, Practice of Navigation and Nautical Astron
omy (1840), 934 pages, 19th edition, 1899, London, J. D. 
Potter; M. F. Maury, A new Theoretical and Practical Treatise 
on Navigation, 520 pages, 3d edition, 1864, Philadelphia; J. 
H. Colvin, Nautical Astronomy, 127 pages, 1901, London, 
Spon. 

Among very clear, elementary books are those by W. T. 
(Earl of) Dunraven, Self-instruction in the Practice and Theory 
of Navigation, Macmillan, two volumes, 1900, three volumes, 
1908, $8; D. Wilson-Barker and W. Allingham, Navigation, 
Practical and Theoretical, 154 pages, 1896, $1.50, London, 
Griffin and Company; J. Merrifield, Treatise on Navigation 
for Use of Students, 305 pages, 5th impression, 1900, Long
mans, Green and Company (dead reckoning only); F. S. 
Hastings, Navigation, 109 pages, 1917, 75 cents, Appleton (no 
Sumner line) ; J. R. Walker, An Explanation of the Method of 
Obtaining the Position at Sea known as the New Navigation, 
67 pages, 1901, Portsmouth (Sumner line only). Many prob
lems and examination papers occur in A. P. W. Williamson's 
Text-book of Navigation and Nautical Astronomy, 418 pages, 
2d edition, 1915, Portsmouth; and in H. B. Goodwin's Problems 
in Navigation, two volumes, 1893-6, London, Philip and Son. 
Wentworth's text omits the subject of Sumner lines. 

J. B. Harbord's Glossary of Navigation, 512 pages, 3d 
edition, 1897, Portsmouth, is an excellent nautical dictionary 
and reference book. 
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Of French books, the two by J. B. Guilhaumon, Astronomie 
et Navigation suivies de la Compensation des Compas, 611 
pages, 5th edition, 1912, and Eléments de Navigation et de 
Calcul nautique, two volumes, 1891, and G. Lecointe, La 
Navigation astronomique et la Navigation estimée, 392 pages, 
1897, all published by Berger-Levrault, Paris, seem excellent. 
Especially recommended are E. Perret's Navigation, Instru
ments, Observations, Calculs, 1908, Paris, O. Doin et Fils, 
5 francs (in Encyclopédie scientifique) ; and Cours de Naviga
tion et de Compas, 1913, Ecole Navale, A. Challamel, Paris, 
10 francs. 

Many German texts are listed in Katalog der Büchersamm-
lung der Nautischen Abteilung des Reichsmarineamts, 1905, 
Berlin, Mittler und Sohn. 

On tables of altitudes and azimuths, see Encyclopédie des 
Sciences mathématiques, volume VII, part 1, 218-223. 

MINIMUM LIST* OF BOOKS ON THE MATHEMATICAL THEORY OF BALLISTICS. 

Articles in Encyclopédie des Sciences-mathématiques, volume IV, part 
6, pages 1-191. 

P. R. Alger and others, Ground Work of Practical Navy Gunnery or 
Exterior Ballistics, 329 pages, 1915, Annapolis, U. S. Naval Inst., $6. 

P. Charbonnier, Traité de Balistique, second edition, 592 pages, 1904, 
Paris, Beranger; Balistique extérieure rationnelle, two volumes, 492 and 
406 pages, 1907, Paris, Doin; Balistique intérieure, 351 pages, 1900, Paris, 
Doin. 

C. Cranz, Lehrbuch der Ballistik,f Leipzig, Teubner; volume I, Aeussere 
Ballistik, second edition, 1917, 529 pages; volume III, Experimentelle Bal-
listik, 339 pages, 1913; volume IV, Tafeln und Photographieen, 81 pages, 
1910. 

J. M. Ingalls, Artillery Circular M, Ballistic Tables, Revised by Ord
nance Board, 233 pages, 1918, Government Printing Office, Washington. 

F. Siacci, Balistique extérieure, 474 pages, 1892, Paris, Berger-Levrault. 
E. Valuer, Balistique extérieure, second edition, 212 pages, Paris, Gau-

thier-Villars, 1913 (with improvements on Siacci's methods). 
G. M. Wildrick, Gunnery for Heavy Artillery, Coast Artillery School, 

Ft. Monroe, 1918 (recent methods for effect of wind on trajectories). 

* Prepared by Professors Haskins and Gronwall, with the concurrence of 
Professor Bliss. As supplementary books they suggest A. Hamilton, Ballis
tics, Artillery School Press, Ft. Monroe, 1908-9; J. M. Ingalls, Interior Bal
listics, third éd., 1912, Wiley and Sons, $3; Ingalls, Artillery Circular N, 
Problems in Exterior Ballistics, 250 pp., Government Printing Office, 1900 
(essentially a revised form of his Handbook of Problems in Direct and In
direct Fire, 1890, Wiley & Sons); I. Didion's and N. Mayevski's texts, 
1860 and 1872, of historical interest. Also Journal of the U. S. Artillery, 
Ft. Monroe, 1892-, and U. S. Naval Institute Proceedings, Annapolis, 
1874-, each with many translations of articles in foreign artillery journals. 

t English transi, by Greenhill just announced. 
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BOOKS ON THE THEORY OF AVIATION.* 

* W. L. Cowley and H. Levy, Aeronautics in theory and experiment, 
Longmans, 1918. 

A. Fage, The Aeroplane, London, Griffin and Company, 1917. 
M. A. S. Riach, Airscrews, New York, Appleton, 1916. 

* F . Lanchester, Aerodynamics, 1907; Aerodonetics, 1908, Van Nos-
trand, $6 each (classics though rather out of date). 

Duchêne, The mechanics of the aeroplane, Longmans. 
A. Klemin, Course in aerodynamics and airplane design, New York, 

Gardner, Moffat and Company, $5 (from Aviation and Aeronautical 
Engineering, 1916-7). 

F . E. Bedell, Airplane characteristics, Ithaca, Taylor and Company, 
1918. 

In addition to these particularly recommended books, access should be 
had to the following : 

* Technical Reports of the British Advisory Committee for Aeronautics, 
London, yearly (Greenhill's articles, of special interest to mathematicians, 
have been published separately under the titles* Dynamics of Mechanical 
Flight, 1912, Van Nostrand, and Report on Gyroscopic Theory). 

* Annual Reports of the American Advisory Committee for Aeronautics, 
Washington (the articles by Hunsaker, Durand and E. B. Wilson are of 
special interest to mathematicians). 

* G. H. Bryan, Stability in Aviation, 1911, Macmillan, $2. 
S. Brodetsky, Tôhoku Math. Journ., June, 1916; Aug., 1918. 

* J. C. Hunsaker and others, Dynamical Stability of Aeroplanes, Smith
sonian Miscellaneous Collections, 62, 1916, No. 5. 

* N . Joukowski, Bases théoretiques de l'Aéronautique : Aérodynamique, 
230 pp., 1916, Gauthier-Villars. 

As regards the experimental work, recommended books are : 
* G. Eiffel, Résistance de Fair, 1910, 5M! francs; Resistance de l'air et 

l'aviation, 1912, 12 francs (transi, by Hunsaker, Resistance of the Air, 
Houghton, Mifflin and Company, 1913); Nouvelles recherches . . . faites 
au laboratoire d'Auteuil, 1914, 50 francs. 

J. C. Hunsaker, Stable Biplane Arrangements, Engineering, Jan., 1917. 
* Hunsaker and others, Reports on Wind Tunnel Experiments in Aero

dynamics, Smithsonian Inst., 1916, 30 cents. 
Armand de Gramont, Essais d'Aérodynamique, Gauthier-Villars, 

1911-4. 
* A. W. Judge, Properties of Aerofoils and Aerodynamic bodies, 1917, 

Macmillan, $6. 
R. Pannell, The wind channel, Aeronautical Journ., July, 1918. 

* F . Lanchester, Flying-machine from engineering standpoint, 1916, 
Van Nostrand, $3. 

* S. P . Langley, Experiments . . . , Smithsonian Inst., 1891, 1908, 
1911 (of historical interest only). 

* L. Marchis and Riecardo-Brauzzi, in their three and two volume 
works each entitled Cours d'Aéronautique, treat the theory of balloons 
very fully. 

I must omit the list of titles of over fifty papers of mathe
matical character which appeared during the past two years 

* Recommended by Professor H. Bateman of the Aeronautical Labora
tory of Troop College of Technology, Pasadena, Cal. The starred books are 
those recommended independently by Professor E. B. Wilson, who remarked 
t ha t A. F . Zahm's Aerial Navigation, Appleton and Company, 1911, gives 
the best popular historical account, while the best elementary account is by 
Painlevé and Borel, l'Aviation. 
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in the following journals: Aviation, Aeronautics, Aeronautical 
Journal, Aerial Age, Proceedings of the Royal Society of London, 
volume 91 A, page 354, page 503, and Aviation and Aeronautical 
Engineering (which gave two lists of books on aviation, Au
gust 15, 1916, page 31, May 1, 1917, page 306). 

A PARTIAL ISOMORPH OF TRIGONOMETRY. 

BY PROFESSOR E . T. B E L L . 

1. I T is well known that the only continuous solution, 
cp (x), yp{x), of the system of functional equations 

(1) <p(a + b)= <p(a)<p(b)-t(a)Mb), 
(2) yp{a + b) = *(a)cp(b) + cp(a)^(b), 

(3) cpHa) + f\a) = 1 

is <p(x) = cos x, \p(x) = sin x. By suppressing the condition 
that cp, if/, shall be continuous functions of a single variable, 
and one or two of (1), (2), (3), we get what may be called the 
partial isomorphs of trigonometry, whose interest, of course, 
will depend chiefly upon their interpretations. Several such 
are known and in use. While seeking arithmetical para
phrases for some of the more complicated results in elliptic and 
theta functions, I noticed incidentally another of these iso
morphs in which (1), (2) only are retained. Apart from its 
usefulness in the theory of numbers (which is not considered 
here), this isomorph is of interest because it extends, in a 
sense, the concepts of evenness and oddness, or parity, rela
tively to functions of several variables. 

2. We denote the sets of variables, (xi, x2, • • •, xn), (— Xi, 
—• X2, •••, — xn) by £, — £ respectively, and define a function 
ƒ to be even or odd in £ according as it does not or does change 
sign when the signs of xlf x2, • • •, xn are changed simultan
eously: ƒ(£) = ƒ(— £), or ƒ(£) == - ƒ ( - Ö, according as ƒ is 
even or odd in £. These relations may be written f{{x\, x2, 
•"> s„)) = db ƒ((— Xi, —x2, - -, —xn)), the inner ( ) being used 
to distinguish ƒ(£) from f(xlf x2, • • •,#„), in which no property 
of evenness or oddness is implied. 


