The polynomials $Z_{ik}A^*$ are transformed by the adjoint of φ, and according to the theorem of Schur mentioned above, a matrix which transforms a system of linearly dependent polynomials which are not all zero is reducible. Hence if the $Z_{ik}A^*$ were linearly dependent, the matrix φ would be reducible, contrary to our assumption.

5. Conclusion. We have proved the following theorem:

Theorem. If G_1, \ldots, G_h are a system of polynomials in the a_{ij}, and G_1', \ldots, G_h' the same functions of the a_{ij}' such that

$$(G_1, \ldots, G_h) = (0, \ldots, 0)$$

is an invariantive property, then there exists a set of rational integral relative covariants V_1, \ldots, V_v in $p-1$ sets of cogredient variables such that $(V_1, \ldots, V_v) = (0, \ldots, 0)$ when and only when $(G_1, \ldots, G_h) = (0, \ldots, 0)$.

Princeton University.

A CORRECTION

By B. A. Bernstein

In my paper in the November number of this Bulletin (vol. 28, No. 8), the word *integers* should be replaced by the word *rationals* in line 16 of page 398 and in the table on page 399.