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REDUCTIONS OF ENUMERATIONS 
IN HOMOGENEOUS FORMS* 

BY E. T. BELL 

1. Introduction. By carrying out the work in detail for 
the form ax2 + by2 + cz2 we shall derive a useful set of 
reduction formulas, and illustrate a general process which can 
easily be applied to the reduction of the number N(n =f) 
of representations of the integer n in any homogeneous 
form ƒ of any degree in any number of variables. This 
set contains implicitly the complete set of corresponding 
reduction formulas for Ax2 + By2 + Cfe2 H \- Et2, in any 
number of indeterminates x, y, z, . . . , t. The formulas in no 
case yield by themselves a complete evaluation of N(n = ƒ) 
for any type of n, but in many instances they materially 
simplify the problem, either by making the evaluation for 
ƒ depend upon that for a simpler form, or by reducing 
the n to be represented to a more tractable type. By 
means of the process developed here, combined with elliptic 
function expansions, I have recently obtained several new 
complete enumerations for special ternary and quinary qua­
dratic forms; the results will be published in other papers. 

Before proceeding to the main discussion it will be in­
structive to glance at what is known concerning Nin=f) 
in the simplest case (other than ƒ linear), viz., ƒ = ax2 

+ by2 + • • • ; when the degree of ƒ exceeds 2 even partial 
evaluations of N(n = ƒ) are at present unknown. It seems 
fair to say that the simplest case of all, N(n = x2 + by2), 
b > 0, is still far from complete; Dirichlet's well known 
general theoremt for the number of representations by the 
totality of a system of representative forms of determinant—b 

* Presented to the Society, San Francisco Section, April 5, 1924. 
f Cf. Dickson's History, vol. 3, p. 19. Eeferences to the other citations 

of this introduction can be found by consulting the index to vol. 3, 
and running down the references to vol. 2. 
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does not of itself give a complete solution when the principal 
genus contains more than one class. For ƒ = ax2 + by2 + ^ 2 

there is the complete evaluation of N(n=f) in the case 
(a, b, c) = (1, 1, 1) by Gauss, an unproved statement of 
Liouville for (a, b, c) = (1, 2, 3), partial results by Torelli 
for {a, b, c) = (l, 1, 2), a special case of (a, &, c) = (l, 2, 2) by 
Stieltjes, and beyond these apparently nothing detailed and 
specific for this N(n = ƒ). When ƒ = a#2 + 6?/2 + c#2 + dt2, 
there is Jacobi's JV(w = ƒ) for (a, 6, c, d) = (1, 1, 1, 1), 
several theorems of Liouville for a = 1 and each of &, 
c, d = pa (a = 0, 1 ; p = 3, 5) times a low power of 2, 
some similar results by Humbert when p = 11, or when 
p = 3? a = 2, and Chapelon's evaluations when jp = 5, 
« = 1, 2. These appear to mark the limit of definite progress 
in this direction. Complete evaluations of N{n = ax2 + by2 

H ) for more than 4 indeterminates x, y,... exist only 
for 5 and 7 squares. These remarks will indicate how 
far from satisfactory solutions even the simplest problems 
in the enumerative arithmetic of homogeneous forms still are. 

The final formulas of this paper in § 5 have been checked. 
The nature of the work is such that this verifies all pre­
ceding formulas. 

2. Notation, In all that follows p is prime, the inte­
gers n, a, 6, c are prime to p, and a, b, c are coprime; 
k, M, A, J5, C are arbitrary integers; «, ft, y, ô are inte­
gers ;> 0. To simplify the printing we shall write 

N{pan = apdx + 6pV + <&£) = ("\à, h ï\ 
in which d, ft, y (also a, b, c, n) are regarded as given 
constants. Note that pan is any integer. 

3. Lemma. Although it may be obvious that 
(1) N(kM= kAx2+ kBy2+ kCz2) = N(M=Ax2+ Bif+ Cz2), 

we shall prove it, as upon this depends all that follows. 
The ^ on the left extending to all integers x,y,z%0, 
that on the right to all integers M, 

2qkAa*+kBy>+kCz> = ^qkMN(kM=kAx2+kBy2+kCz2). 
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In this replace q by V g : 

2qAx*+By*+cz> = 2iMK&M= kAx2-\-kBy2+kCz2). 

In the original identity take k = 1 : 

2 ; ^ - + W + c f = 2qMN(M = Ax2+By2+ Œ2). 

By comparing the second identity with the third we get (1). 
By the notation explained in § 2, the evaluation of 

N(M= Ax2+By2+Cz2) is equivalent to that of (a; d, fi, y). 
By the lemma, if a< ô,fi,y,(a; d,fi,y) = 0\ if <*>($,(«; ô,ô,ô) 
— (a—d] 1,1,1); while if d, fi, y are unequal, one of them, 
say d, is not greater than either of the others, and if 
«><), («; â, fi+â, r + â) = (a—â; 0, fi, ri 

Hence the evaluation of N(M = Ax2-\-By2-\- Cz2) is re­
duced to that of (a ; 0, fi, y), in which, without loss of 
generality, we may assume y^>fi. Evidently the inequality 
y^>fi (by the definitions of fi, y in § 2) can be eliminated 
by replacing y by y-\-fi wherever y occurs, Eliminations 
of this kind simplify the final formulas. The further evalua­
tion of N{M = Ax2+By2+Cz2) is now reduced to that of 
(a;Q,fi,fi + y). 

4. Preliminary Reductions. Let s^>0 be an integer such 
that a—2s, fi—2s^>0, and therefore also fi-\-y—2s^>0. 
Suppose for a moment that for some s > 0 we have a— 2s, 
fi—2s^0. If O; 0, fi, fi + y)^0, then must x = 0 modjp, 
and therefore by s applications of the Lemma (§ 3), 

(2) (a; 0, fi, fi + y) = (a-2s] 0, fi—2s, fi + y-2s), 

which obviously remains true when s = 0 and when 
(a; 0,fi,fi + y) = 0. Choose for s the lesser of [a/2], [fi/2], 
where [t] is the greatest integer <^£; when a = fi, take 
s = [fi/2]. Clearly the reductions (2) can be performed pre­
cisely s times, s being as just chosen. Separating out the 
cases of (2) for even and odd values of fi we get 

(1. 1) a<fi, (2a; 0,2fi,2fi + y) = (0] 0, 2fi —2a, 2fi+y—2a); 

(1.2) a^fi, (2a; 0, 2fi, 2fi + y) = (2a — 2fi; 0, 0, yh 
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(1.3) aSP, (2« + l ; 0, 2fi, 2/3 +y) 
= (1; 0, 2/9—2a, 2/9 + r —2a); 

(1.4) a^fi, (2a + l ; 0 ,2£2£ + y) = (2« + l — 2/9; 0,0, r); 
and the complementary set, 
(2.1) a^/9, (2a; 0, 2 £ + l , 20 + y + l) 

= (0; 0, 2/9+1— 2a, 2/9 + / + 1 —2a); 
(2.2) a ^ £ (2a; 0 , 2 ^ + 1 , 2 ^ + ^ + 1) 

= ( 2 a - 2 £ ; 0, l , r + l ) ; 
(2.3) a<fi, ( 2 a + l ; 0 ,2^+1,2/9 + ^ + 1) 

= (1; 0, 2y«+l — 2a, 2^ + ^ + 1 —2a); 
(2.4) cc^/3, (2a + l ; 0, 2fi+l, 2/S + y+l) 

= (2a + l—2/9; 0 , 1 , ^ + 1). 

Only those on the right having a pair of zeros in the 
symbol are irreducible. The further reduction of the rest 
is effected in a similar way, first powers of the prime p, 
instead of second, being now successively eliminated. The 
process is seen by examining the right of (1. 3), (2. 3). When 
a < / 9 w e have 2/9—2a^2, 2/9 + / — 2 a ^ 2 , and sincepn 
is the number represented in the right of (1. 3), it follows 
that x = 0 moàp. Applying the lemma, we get 
(1; 0, 2/9—2a, 2/9 + r—2a) 

= (0; 1, 2/9 —2a — 1 , 2/9 + r —2a —1), 

and this evidently vanishes (when a -< /9). Similarly for (2. 3), 
and we have 
(1.31) a</3, ( 2 a + l ; 0, 2/9, 2fi + y) = 0; 
(2.31) a < £ , (2a + l ; 0, 2j8+ 1, 2jS-\-y + 1) = 0, 

which may replace (1.3), (2.3), since the cases a = j8 are 
included in (1. 4), (2. 4). 

Similarly, provided that a—2s, y—2s+l>0, we get 

(a; 0, 1, y+l) = (a — 2s] 0, 1, y+l — 2s), 

and, provided that a—1 — 2s, y — 2s^>0, 

(a; 0, 1, y + l) = (a — 1 — 2s; 1, 0, y-2s). 

Upon separation of cases according to even, odd y, these 
yield the formulas which enable us to complete the re-
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auction of (1.1)—(2. 4). It is unnecessary to preserve the 
very simple calculations. "We find 
(3. 1) a ^ H - 1 , (2a; 0, 1, 2r+2) = (0; 0,1, 2y+2—2a); 
(3.2) a ^ H - 1 , (2a; 0, 1, 2y+2) = (2a—2y —2; 0,1,0); 
(3.3) a<Ly, ( 2 a + l ; 0,1, 2y+2) = (0; l , 0 , 2 y + l —2a); 
(3.4) a ^ H - 1 , ( 2 a + l ; 0, l ,2y+2) = (2a —2y — 1 ; 0,1,0), 
and the complementary set 
(4. 1) a<y, (2a; 0, 1, 2 r f l ) = (0; 0, 1, 2y+l — 2a); 
(4. 2) a ^ y + 1 , (2a; 0 ,1 , 2y+l) = (2a —2y — 1 ; 1, 0, 0); 
(4. 3) a^y, ( 2 a + l ; 0, 1, 2y+l) = (0; 1, 0, 2 y - 2 a ) ; 
(4.4) a ^ r , ( 2 a + l ; 0, 1, 2y+l) = (2a—2y; 1, 0, 0), 
all of which are further irreducible. Note that since y 
may take the value zero, (a; 0 ,1 , 2y) is not necessarily 
reducible, while the type considered, (a; 0, 1, 2y + 2), is. 

Apply (3.1)—(4. 4) to (2. 2), (2. 4) after having first elimi­
nated the condition a^>/9 by replacing a wherever it occurs 
by /# + «• The results are: 
(5. 1) a^y, (2/8 + 2a; 0, 2/8 + 1 , 2/8 + 2y + 1) 

= (0;0, 1, 2 y + l — 2 a ) ; 
(5.2) a ^ y + 1, (2/8+2a; 0 ,2 /8+1 , 2/8 + 2y + l) 

= (2a —2y — 1 ; 1,0,0); 
(5.3) a<y, ( 2 / 8 + 2 a + l ; 0 ,2 /8+1, 2 / 8 + 2 r + l ) 

= (0; 1, 0, 2y — 2a); 
(5.4) «^y , (2/8 + 2a + l ; 0, 2/8 + 1, 2/8 + 2 y + l) 

= (2a —2r; 1,0,0); 
and the complementary set, 
(6.1) a ^ y + 1, (2/8+2a; 0 ,2 /8+1, 2/8 + 2y + 2) 

= (0; 0, 1, 2 r + 2 - 2 a ) ; 
(6.2) a ^ y + 1, (2/8 + 2 a ; 0 ,2 /8+1 , 2/8 + 2^ + 2) 

= (2a — 2y— 2; 0, 1,0); 
(6.3) a ^ y , (2/8+2a + l ; 0 ,2 /8+1 , 2/8 + 2y + 2) 

= (0; 1,0, 2 y + l —2a); 
(6.4) a > y + l , ( 2 / 8 + 2 a + l ; 0 ,2 /8+1 , 2/8 + 2y + 2) 

= (2a —2y — 1 ; 0, 1,0). 
Examining (1.1)—(2.4) and (5.1)—(6. 4) we see it is 

necessary to consider only 
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(7) N{p"n = ax2 + & / V + cp^z2) = Nx{pttn), 

(8) N(p"n = ax2 + fcp^+y + çp^+^+V) = iVi(pan), 

(9) N(p"n = aa? + bp^+Y + q ^ + ^ + V ) = -Ni(pan), 

in order, by the reductions in § 3, to obtain a complete 
set of reduction formulas for 

(10) N(M=Ax*+By* + Cz2). 

That the three sets in § 5 are exhaustive is evident by 
inspection on referring to the notation in § 2. 

5. Final Formulas. For the Ni (i — 1, 2, 3) see (7), 
(8), (9). From (1.1)—(1.4) and (1.31), by eliminating the 
condition «>/9, we find 

(I) Form a^ + W + c^+^2-' 

«^A Nl{p*'n) = {Oi 0, 2£—2«, 2/î+y—2a); 
«</9, N1{P2a+1n) = 0; 

N^^n) = (a; 0,0, y). 

From (2.1), (2.31) with y replaced by 2y, and from 
(5.1)—(5.4) we find upon eliminating «2^y + l, « ^ r -

(11) Form ax^+hp^+y + cp^+W+h2: 

cc^/3, Nz{p2ttn) = (0;0, 2/tf+l — 2«, 2yS + 2y = l — 2a); 
« < A iv~2(p

2a+1n) = 0; 
« S r , N2{p2P+2an) = (0; 0, 1, 2y + 1 —2«); 

jy2(j^+2r+2a+2n) = (2a + 1; 1, 0, 0); 

«^y» iV2(^+2K+:l«) = (0; 1, 0, 2y —2a); 
N2{p2P+2r+2ce+1n) = (2«; 1, 0, 0). 

From (2.1), (2. 31) with y replaced by 2y + 1, and from 
(6.1)—(6.4) upon elimination of a > y + l we find 

(in) Form ax2 + bp#+Y + cp2^+2^ V : 

« S A N*ifttn) = (0; 0, 2/8 + 1 — 2a, 2/8 + 2y + 2 — 2a); 
a<fi, NB{p2a+1n) = 0; 
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a<r+l9 N3{p2^2an) = (0; 0, 1, 2 / + 2 - 2 a ) ; 
Ns{p2P+2Y'Ha+2n) = (2a; 0, 1, 0); 

a<y, Ns{p2P+2aJrln) = (0; 1, 0, 2 / + 1 —2a); 
NsiptP+W+Ht+tn) = 2a + 1 ; 0, 1, 0). 

In all of the above no further reduction is possible. 

6. Successive Reductions. Let D be the greatest common 
divisor of B, C in (10), and assume without loss of generality 
(§ 3) that M, A, B, C are relatively prime in their totality. 
Let M = Mfpa, where p is any prime divisor of _D, and 
M' is prime to p. Apply (I)—(III) of § 5. Repeat the 
process on the results for each remaining prime divisor 
of D, obtaining finally a system of formulas analogous to 
(I)—(III) in which (10), for its several possible cases ac­
cording to the prime factors of D, is replaced by a corres­
ponding N(Mrpa' = A!x* + B'y2 + C'z*) in which no further 
reduction with respect to B', Cf is possible. This system 
of formulas may conveniently be written as a set of equalities 
between r-rowed matrices, where r is the number of distinct 
prime factors of D. To each pair of A, B, C in (10) will 
correspond such a system of equalities, and all three to­
gether give the complete reduction of (10). It would be 
of interest to discuss this set. 

7. (IV) Form Ax2 + By2 + Cz* H \-M*. As in § 3 
the reduction for this form is referred to that of 

N{pan = x2 + pPy2 + / + V H h / + r + ' * *+£ t2), 

where fi, y,..., e are integers ;> 0, and a precisely similar 
argument shows immediately that this N is reduced when 
N{pan = x2JrpPy2 + j^+ r£2) is reduced. The complete set 
of reduction formulas can be written down from § 5. 

8. General Form. When the degree of ƒ is 3 + a, the 
process of reducing N(n=f) is evident from the fore­
going; the discussion now depends upon [&/(3 + a)l instead 
of [Jc/2]. 
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