A GENERALIZATION OF RECURRENTS

BY MORGAN WARD

1. Introduction. It is well known that if

$$\phi(x) = \sum_{r=0}^{\infty} \phi_r x^r, \quad \psi(x) = \sum_{s=0}^{\infty} \psi_s x^s$$

are two singly infinite series, then the coefficients in the expansion of $\phi(x)/\psi(x)$, $\log \phi(x)$, $e^{\phi(x)}$ can all be expressed as determinants in the quantities ϕ_r, ψ_s. These expressions are called *recurrents* and have been used by several writers\(^*\) to evaluate determinants involving the binomial coefficients, Bernoulli numbers, etc.

In the present paper, the analogous results are given for the quotient of two *doubly* infinite series, and the logarithm and exponential of a doubly infinite series. The extension to m-tuply infinite series is briefly sketched in §8.

It is believed the expressions obtained are new; there is no reference to any such work in the four volumes of Muir's *History*. We assume throughout that all the series involved are absolutely convergent, so that the derangements and multiplications employed are justified. As a matter of fact, we are dealing essentially with infinite sets of quantities A_{rs}, B_{rs}, C_{rs}, \cdots ($r, s = 0, 1, 2, \cdots$); the "variables" which appear in the series are merely convenient carriers for their coefficients.

We shall use, wherever convenient, the convention employed by writers on relativity for summations, namely,

$$U_{rs} x^r y^s,$$

which is taken to mean

$$\sum_{r=0}^{\infty} \sum_{s=0}^{\infty} U_{rs} x^r y^s,$$

the summations being understood.

\(^*\) Muir's *History*, vols. II, III, IV, Chapters on recurrents.
2. **Degree and Rank.** Given a doubly infinite series

\[U(x, y) = U_{rs}x^r y^s, \]

we shall invariably write \(U \) in the order

\[U_{00} + U_{10}x + U_{01}y + U_{20}x^2 + U_{11}xy + U_{02}y^2 + \cdots, \]

or as

\[U(x, y) = \sum_{l=0}^{\infty} \sum_{k=0}^{l} U_{l-k,k} x^{l-k} y^k. \]

We define

\[l = (l - k) + k, \quad u_{lk} = \frac{l(l + 1) + 2(k + 1)}{2}, \]

as the **degree** and **rank** respectively of the coefficient \(U_{l-k,k} \).

Hence the degree of a coefficient is the degree of the term it multiplies. The rank of a coefficient is simply its place in the series (2). For since from (2) there are \(l+1 \) terms of degree \(l \), the coefficient \(U_{10} \) appears in the \([1 + 2 + 3 + \cdots + l] + 1\)st place, that is,

\[u_{10} = \frac{l(l + 1)}{2} + 1. \]

The coefficient \(U_{l-k,k} \) is \(k \) terms to the right of \(U_{10} \), so that its rank is

\[\frac{l(l + 1)}{2} + 1 + k = \frac{l(l + 1) + 2(k + 1)}{2} = u_{lk}. \]

Thus for \(U_{rs} \), the degree is \(r+s \), and the rank is

\[u_{rs} = \frac{(r + s)(r + s + 1) + 2(s + 1)}{2}. \]

Moreover, it follows from the meaning of rank, that given any positive integer \(n \), the equation

\[n = u_{rs} \]

determines a unique pair of non-negative integers \(r, s \), and hence a unique coefficient \(U_{rs} \) in the series (2). Let \(k \) be any integer not greater than \(r+s \). Then, by (3),
\[u_{r+s-k,k} = \frac{(r + s)(r + s + 1) + 2(k + 1)}{2}; \]

hence
\[u_{r+s-k,k} + s - k = \frac{(r + s)(r + s + 1) + 2(s + 1)}{2} = u_{rs}. \]

In particular
\[u_{r+s,0} + s = u_{rs}, \quad s \leq r + s. \]

3. Coefficients for a Product. If
\[A(x, y) = A_{qr}x^qy^r, \]
\[B(x, y) = B_{st}x^s y^t, \]
then we know that
\[A(x, y) \cdot B(x, y) = C_{uv}x^u y^v, \]
where
\[C_{uv} = \sum_{\sigma=0}^{u} \sum_{\tau=0}^{v} A_{u-\sigma,v-\tau}B_{\sigma\tau}. \]

4. Coefficients for a Quotient. Consider now
\[P(x, y) = P_{uv}x^u y^v, \]
\[Q(x, y) = Q_{qr}x^q y^r, \]
and let
\[\frac{P(x, y)}{Q(x, y)} = Z(x, y) = Z_{st}x^s y^t, \]
where the coefficients \(Z_{st} \) are to be determined.

First, we can assume \(Q_{00} \neq 0 \). For, if \(Q_{00} = Q_{10} = Q_{01} = \cdots = 0, Q_{ij} \neq 0 \), multiply both sides of (7) by \(x^t y^i \), replacing \(Q(x, y)/x^t y^i \) by \(Q'(x, y) \) and \(x^t y^i Z(x, y) \) by \(Z'(x, y) \) with \(Z_{00}' = Z_{10}' = Z_{01}' = \cdots = 0, Z_{ij}' = Z_{00} \). We then have a new equality of the same form as (7) with \(Q_{00}' = Q_{ij} \neq 0 \). Thus \(P(x, y) = Q(x, y)Z(x, y) \), or, by (6),
\[P_{uv} = \sum_{\sigma=0}^{u} \sum_{\tau=0}^{v} Q_{u-\sigma,v-\tau}Z_{\sigma\tau}, \]
\[(u,v = 0,1,2, \cdots). \]

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
It may be noted in passing, that just as recurrences are related to difference equations with constant coefficients, so may (7), if \(Q(x, y) \) be a polynomial, be looked upon as a linear partial difference equation with constant coefficients to determine \(Z_{uv} \).

Let us introduce the symbol

\[
(\lambda_{r-k,k} ; u - r + k, v - k),
\]
defined by the relations

\[
\left\{ \begin{array}{l}
\lambda_{r-k,k} = \frac{r(r + 1) + 2(k + 1)}{2}, \\
(\lambda_{r-k,k} ; u - r + k, v - k) = 0, \text{ if } r > u + k, \text{ or } k > v, \\
= Q_{u-r+k,v-k}, \text{ if } k \leq v \text{ and } r \leq u + k.
\end{array} \right.
\]

Then (8) may be written

\[
(10) \sum_{r=0}^{u+v} \sum_{k=0}^{r} (\varepsilon_{r-k,k} ; u - r + k, v - k)Z_{r-k,k} = P_{uv},
\]

\[
(p_{uv} = 1, 2, 3, \ldots).
\]

For \(\lambda_{r-k,k} = \varepsilon_{r-k,k} \), by definition of rank in (3). Moreover setting \(r-k=\sigma, k=r \) in (10), we see that every term that occurs in (8) occurs in (10), and conversely.

Finally, by virtue of (9) we may replace (10) by

\[
(11) \sum_{r=0}^{n} \sum_{k=0}^{r} (\varepsilon_{r-k,k} ; u - r + k, v - k)Z_{r-k,k} = P_{uv},
\]

\[
(p_{uv} = 1, 2, 3, \ldots),
\]

where \(n \) is any integer \(\geq u+v \). Take \(n=\varepsilon_{ij} \) and consider the set of \(n=p_{ij} \) equations (11), in the \(n \) unknowns \(Z_{00}, Z_{10}, Z_{01}, \ldots, Z_{ij} \),

\[
(12) \left\{ \begin{array}{l}
Q_{00}Z_{00} = P_{00}, \\
Q_{01}Z_{00} + Q_{00}Z_{10} = P_{10}, \\
\ldots \\
Q_{ij}Z_{00} + (2 ; i - 1, j + 1)Z_{10} + \cdots + Q_{00}Z_{ij} = P_{ij}.
\end{array} \right.
\]
Since $Q_{00} \neq 0$, we have, solving for Z_{ij} by determinants,

\[
\begin{vmatrix}
Q_{00} & 0 & 0 & \cdots & 0 & P_{00} \\
Q_{10} & Q_{00} & 0 & \cdots & 0 & P_{10} \\
Q_{01} & 0 & Q_{00} & \cdots & 0 & P_{01} \\
Q_{20} & Q_{10} & 0 & \cdots & 0 & P_{20} \\
Q_{11} & Q_{01} & Q_{10} & \cdots & 0 & P_{11} \\
Q_{02} & 0 & Q_{01} & \cdots & 0 & P_{02} \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
Q_{ij} & (2; i - 1, j + 1), (3, i - 2, j + 2) & \cdots & \cdots & \cdots & \cdots & \cdots & P_{ij}
\end{vmatrix}
\]

where (13) is constructed on the following scheme. The elements in the sth column ($s < n$) consist of $s - 1$ zeros, then the coefficients of $Q(x, y)$ of degree zero, one, two, three, \ldots, in their proper order, the groups of coefficients of the same degree being separated by r' zeros, where $s = z_{r' - k', k'}$ determines r'. In fact, we see from (11), that the elements in the sth column are given by the expression

\[(14) \quad (s ; u - r' + k', v - k'),\]

where r' and k' are determined from the equation

\[z_{r' - k', k'} = s,
\]

in accordance with (4), and (u, v) has the successive values

\[(15) \quad (0, 0), (1, 0), (0, 1), (2, 0), (1, 1), \ldots, (u, v), \ldots, (i, j),
\]

$n = \lambda_{ij}$ in number, (u, v) appearing in the λ_{uv}th place in (15). Now the $\sigma + 1$ terms (uv) of constant degree $u + v = \sigma$, $(0 \leq \sigma \leq i + j)$, appear in the order

\[(16) \quad (\sigma, 0), (\sigma - 1, 1), \ldots, (\sigma - k, k), \ldots, (0, \sigma).
\]

If n is replaced u by $\sigma - v$, (14) becomes

\[(s ; \sigma - r' + k' - v, v - k'),\]
so that for \(\nu = 0, 1, 2, \ldots, \sigma \), we have the values of (14) for the sequence (16). But this expression vanishes, by (9), unless

(a) \(v - k' \geq 0 \),
(b) \(\sigma - r' + k' - v \geq 0 \).

Thus the first \(k' \) terms of (16) yield \(k' \) zeros. Replace \(v \) by \(r + k' \), where to satisfy (a) and (b) \(0 \leq r \leq \sigma - r' \geq 0 \).

We thus obtain from the next \(\sigma - r' + 1 \) terms of (15),

\[
(s ; \sigma - r', 0), (s ; \sigma - r' - 1, 1), \ldots, (s ; 0, \sigma - r'),
\]

or by (9),

\[
Q_{\sigma - r', 0}, Q_{\sigma - r' - 1, 1}, \ldots, Q_{0, \sigma - r'},
\]

the coefficients of \(Q(x, y) \) of degree \(\sigma - r' \) in their proper order. The remaining terms of (16) produce \(\sigma + 1 - k' - (\sigma - r' + 1) = r' - k' \) zeros.

Since the sequence of degree \(\sigma + 1 \) following (16) produces \(k' \) zeros followed by

\[
Q_{\sigma + 1 - r', 0}, Q_{\sigma + 1 - r' - 1, 1}, \ldots, Q_{0, \sigma + 1 - r'},
\]

we see that the coefficients of degree \(\sigma - r' = 0, 1, 2, 3, \ldots \) are separated by \(r' \) zeros, as stated. \(Q_{00} \) appears when \(\sigma - r' = 0 \). From (a) and (b),

\[
v = k', \quad u = \sigma - v = r' - k'.
\]

Hence \(Q_{00} \) appears in the \(\lambda_{r' - k'}, k' \) or the \(s \)th place in the column; i. e., in (13), the elements \(Q_{00} \) lie along the main diagonal. The last column in (13) consists of the elements \(P_{00}, P_{01}, \ldots, P_{ij} \) in order of rank.

5. Final Coefficients in the \(s \)th Column. There is some doubt about the last few elements in the \(s \)th column, but this is obviated as follows. Take \(s = z_{i + j - r, r}, (0 \leq r \leq j - 1) \), i. e., consider the \((n - j)\)th, \((n - j - 1)\)th, \ldots, \((n - 1)\)th columns of (13).

We have then \(s = n - j + \tau \) so that the \(s \)th column contains \(n - j + \tau \) zeros, \(Q_{00} \), followed by \(i + j \) zeros by our results in §4. But since there are only \(n \) elements in the column, \(Q_{00} \) is followed by \(j - \tau - 1 \) zeros, since \(j - \tau - 1 \) is always
less than $i+j$. Hence we can reduce (13) to a determinant of the $(n-j)$th order multiplied by Q_0^j to some power, for the j columns just considered consist entirely of zeros save along the main diagonal where Q_0 appears.

Now $n = z_{ij}$ and $z_{i+j,0+j} = n$, by (5). Hence, setting $n-j = \nu$, we have

$$n - j = z_{i+j,0} = \frac{(i+j)(i+j+1)}{2} + 1 = \nu.$$

The elements in the νth row are now

$$Q_{ij}, (2 ; i - 1, j + 1), (3 ; i - 2, j + 2), \ldots ,$$

$$(\nu - 1 ; i - \nu + 2, j + \nu - 2), P_{ij}$$

so that the sth column terminates with

$$(s ; i - s + 1, j + s - 1)$$

and in the $(\nu-1)$th row the elements are

$$(z_{r-k,k} ; k - r, i + j - 1 - k) = \delta_{r+1,k+i} Q_{0,i+j-1-r},$$

$$(r,k = 0, 1, 2, \ldots , i + j - 1),$$

where δ_{uv} is the Kronecker symbol.

Thus we have

$$Q_{0,i+j-1,0}, Q_{0,i+j-2,0}, 0, 0, Q_{0,i+j-3,0}, 0, 0, \ldots , Q_{00}, P_{0,i+j-1},$$

so that our evaluation of Z_{ij} gives us

$$Q_{00} Z_{ij} =$$

$$|$$

$$Q_{00} 0 \ldots \ldots P_{00}$$

$$Q_{10} Q_{00} \ldots \ldots P_{01}$$

$$Q_{01} 0 \ldots \ldots P_{10}$$

$$Q_{20} Q_{10} \ldots \ldots P_{20}$$

$$Q_{11} Q_{01} \ldots \ldots P_{11}$$

$$Q_{02} 0 \ldots \ldots P_{02}$$

$$Q_{ij} (2 ; i - 1, j + 1), \ldots \ldots P_{ij}$$

$$|$$

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
where
\[\nu = \frac{(i + j)(i + j + 1)}{2} + 1. \]

6. Expression of the Z's as Recurrents. There remains still one more simplification; the quantities \(Z_{i+j,0}, Z_{0,i+j} \) can be expressed as recurrents. For we obtain from (7), §4, by the ordinary multiplication rule

\[P_{uv} = \sum_{t=0}^{u} \sum_{s=0}^{v} Q_{ts} Z_{u-t, v-s}, \quad (u, v = 0, 1, 2, 3, \ldots). \]

This result may be written

\[P_{uv} - R_{uv} = \sum_{t=0}^{u} \sum_{s=0}^{v} Q_{ts} Z_{u-t, v-s}, \quad (u, v = 0, 1, 2, 3, \ldots), \]

where

\[R_{uv} = \sum_{t=0}^{u} \sum_{s=0}^{v} Q_{ts} Z_{u-t, v-s}, \]

so that

\[R_{u0} = 0, \]
\[R_{u1} = \sum_{t=0}^{u} Q_{t1} Z_{u-t, 0}, \]
\[R_{u2} = \sum_{t=0}^{u} Q_{t1} Z_{u-t, 1} + \sum_{t=0}^{u} Q_{t2} Z_{u-t, 0}, \]

etc.

The formula (19) gives for \(u = 0, 1, 2, 3, \ldots, i+j \), the set of \(i+j+1 \) equations

\[Q_{0v} Z_{0v} = P_{0v} - R_{0v}, \]
\[Q_{10} Z_{0v} + Q_{00} Z_{1v} = P_{1v} - R_{1v}, \]
\[Q_{20} Z_{0v} + Q_{10} Z_{1v} + Q_{00} Z_{2v} = P_{2v} - R_{2v}, \]
\[\vdots \]
\[Q_{i+j,0} Z_{0v} + Q_{i+j-1,0} Z_{1v} + Q_{i+j-2,0} Z_{2v} + \cdots + Q_{00} Z_{i+j,v} = P_{i+j,v} - R_{i+j,v}, \]

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
so that

\[Q_{i+j+1}^{i+j+1}Z_{i+j,v} = \begin{vmatrix} Q_{00} & 0 & \cdots & P_{0v} - R_{0v} \\ Q_{10} & Q_{00} & \cdots & P_{1v} - R_{1v} \\ \vdots & \vdots & \ddots & \vdots \\ Q_{i+j,0} & \cdots & P_{i+j,v} - R_{i+j,v} \end{vmatrix}. \]

In particular

\[Q_{00}^{i+j+1}Z_{i+j,0} = \begin{vmatrix} Q_{00} & 0 & \cdots & P_{00} \\ Q_{10} & Q_{00} & \cdots & P_{10} \\ \vdots & \vdots & \ddots & \vdots \\ Q_{i+j,0} & \cdots & P_{i+j,0} \end{vmatrix}. \]

which gives the required expression for \(Z_{i+j,0} \) as a recurrent. From symmetry the expression for \(Z_{0,i+j} \) is derived from (22) by simply interchanging the subscripts of all the terms in (21).

We may observe that, having obtained the quantities \(Z_{u0} \) by (22), we know \(R_{u1} \), so that we can calculate the quantities \(Z_{i+j-1,1} \) by means of (21). Proceeding thus step by step, we can finally calculate \(Z_{ij} \).

There are a number of relations among the determinants (17), (22). For example, suppose we interchange \(x \) and \(y \) in the equation (7),

\[\frac{P(x,y)}{Q(x,y)} = Z(x,y). \]

The effect is merely to interchange the subscripts of the coefficients throughout. Hence in (17), we can interchange the subscripts of \(Z_{ij} \), the \(Q \)'s and the \(P \)'s and obtain an expression for \(Z_{ji} \), \(\nu \), the order of the determinant, being unaffected by the process. Again, we may write (7) as

\[\frac{P(x,y)}{Z(x,y)} = Q(x,y), \]

so that we can interchange the roles of the \(Q \)'s and \(Z \)'s in (17).
7. Final Expressions for the Z's. The first eleven coefficients in the development of

\[
\frac{P(x, y)}{Q(x, y)} = Z_{00} + Z_{10}x + Z_{01}y + \cdots + Z_{03}y^3 + \cdots
\]

are

\[
Z_{00} = Q_{00}^{-1}P_{00},
\]

\[
Z_{10} = Q_{00}^{-2} \begin{vmatrix} Q_{00} & P_{00} \\ Q_{10} & P_{10} \end{vmatrix}, \quad Z_{10} = Q_{00}^{-3} \begin{vmatrix} Q_{00} & P_{00} \\ Q_{01} & P_{01} \end{vmatrix},
\]

\[
Z_{20} = Q_{00}^{-3} \begin{vmatrix} Q_{00} & 0 & P_{00} \\ Q_{10} & Q_{00} & P_{10} \\ Q_{20} & Q_{10} & P_{20} \end{vmatrix}, \quad Z_{02} = Q_{00}^{-3} \begin{vmatrix} Q_{00} & 0 & P_{00} \\ Q_{01} & Q_{00} & P_{01} \\ Q_{02} & Q_{01} & P_{02} \end{vmatrix},
\]

\[
Z_{11} = Q_{00}^{-4} \begin{vmatrix} Q_{00} & 0 & 0 & P_{00} \\ Q_{10} & Q_{00} & 0 & P_{10} \\ Q_{01} & 0 & Q_{00} & P_{01} \\ Q_{11} & Q_{01} & Q_{10} & P_{11} \end{vmatrix},
\]

\[
= Q_{00}^{-4} \begin{vmatrix} Q_{00} & 0 & 0 & P_{00} \\ Q_{01} & Q_{00} & 0 & P_{01} \\ Q_{10} & 0 & Q_{00} & P_{10} \\ Q_{11} & Q_{10} & Q_{01} & P_{11} \end{vmatrix},
\]

\[
Z_{30} = Q_{00}^{-4} \begin{vmatrix} Q_{00} & 0 & 0 & P_{00} \\ Q_{10} & Q_{00} & 0 & P_{10} \\ Q_{20} & Q_{10} & Q_{00} & P_{20} \\ Q_{30} & Q_{20} & Q_{10} & P_{30} \end{vmatrix},
\]

\[
Z_{03} = Q_{00}^{-4} \begin{vmatrix} Q_{00} & 0 & 0 & P_{00} \\ Q_{01} & Q_{00} & 0 & P_{01} \\ Q_{02} & Q_{01} & Q_{00} & P_{02} \\ Q_{03} & Q_{02} & Q_{01} & P_{03} \end{vmatrix},
\]
8. Quotient of two m-tuply Infinite Series. The same method can be applied to the development of the quotient of two triply, or indeed of two m-tuply infinite series. We need only to generalize the formulas for degree and rank of §2, for product of two series in §3 and to introduce a symbol corresponding to the \(\lambda_{r-k, h; u-r+k, v-k} \) of §4 to obtain the analog of (17); the analog of (21) is obtained with equal ease. Thus for the m-tuply infinite series,

\[
A(x_1, \ldots, x_m) = A_{i_1, i_2, \ldots, i_m} x_1^{i_1} x_2^{i_2} \cdots x_m^{i_m},
\]

\(i_1 + i_2 + \cdots + i_m \) is the degree of the coefficient \(A_i \) above and

\[
(23) \quad a_{i_1, i_2, \ldots, i_m} = \sum_{r=1}^{m} \left(\begin{array}{c}
 i_r + i_{r+1} + \cdots + i_m + m - r \\
 m - r + 1
 \end{array} \right) + 1
\]

is its rank, when \(A \) is written so that the terms of degree 0, 1, 2, \ldots, \(r, r+1, \cdots \) succeed each other in order, and the terms of degree \(r \) are arranged in alphabetic order.
For the product of two such series, we have the formula
\[A(x_1, \ldots, x_m) \cdot B(x_1, \ldots, x_m) = C(x_1, \ldots, x_m), \]
where
\[(24) \quad C_{i_1, \ldots, i_m} = \sum_{r=0}^{j} A_{i_r, i_r, \ldots, i_r} B_{r_r, r_r, \ldots, r_r}. \]
If we define \(Z(x_1, \ldots, x_m) \) by
\[(25) \quad \frac{P(x_1, \ldots, x_m)}{Q(x_1, \ldots, x_m)} = Z(x_1, \ldots, x_m), \]
then our new symbol is
\[\Delta_{s} = \left(\lambda_{s}; \ j_1 - s_1 + s_2, j_2 - s_2 + s_3, \ldots, \ j_m - s_m + s_m \right), \]
defined by \(\Delta_{s} = 0 \) if \(j_r - s_r + s_{r+1} \) is negative for any \(r \) between 0 and \(m+1 \), and
\[(26) \quad \Delta_{s} = Q_{j_m - s_m + s_m}, \]
if \(j_r - s_r + s_{r+1} \) is positive for every \(r \) between 0 and \(m+1 \), and by convention \(s_{m+1} = 0 \). But our final results in the general case are completely obscured by the symbolism introduced to express them.

9. Expansion of a Logarithm. We can readily obtain the expansion of
\[(27) \quad \log Q(x, y) = Z(x, y) \]
where
\[Q(x, y) = Q_{00} x^{s_0} y^{r_0}, \quad Q_{00} \neq 0, \]
\[Z(x, y) = Z_{s1} x^{s_1} y^{r_1}. \]

For, operating on (27) with
\[\frac{\partial}{\partial x} + \frac{\partial}{\partial y}, \]
we obtain a result of the form

\[
\frac{P(x,y)}{Q(x,y)} = W(x,y),
\]

where

\[
W_{st} = (s + t)Z_{st}, \quad P_{uv} = (u + v)Q_{uv},
\]

by Euler's theorem on homogeneous functions and our convention as to the order of an infinite series.

Thus \(Z_{00} = \log Q_{00}; \) the other coefficients are derived from our previous expressions by replacing \(Z_{ij} \) by \(Z_{ij}/(i+j) \) and \(P_{uv} \) by \((u+v)Q_{uv}. \)

10. Expansion of an Exponential. For \(e^{Q(x,y)} \), a slightly different procedure is necessary. Let

\[
\begin{cases}
Q(x,y) = W(x,y), \\
\partial = \frac{\partial}{\partial x} + \frac{\partial}{\partial y}
\end{cases}
\]

We shall have

\[
\begin{cases}
Q(x,y) = Q_{or}x^ay^r, \quad \theta Q = (q + r)Q_{or}x^ay^r, \\
W(x,y) = W_{st}x^sy^t, \quad \theta W = (s + t)W_{st}x^sy^t.
\end{cases}
\]

Then

\[
\theta e^{Q} = \theta Q e^{Q} = (\theta Q) \cdot W = \theta W.
\]

Hence, by (6),

\[
(u + v)W_{uv} = \sum_{\sigma=0}^{u} \sum_{\tau=0}^{v} (u + v - \sigma - \tau)Q_{u-\sigma,v-\tau}W_{\sigma\tau}.
\]

Now as in §4 introduce a symbol

\[
(\lambda_{r-k,k}; u - r + k, v - k)
\]

defined as in (9), with one modification, namely, while

\[
\lambda_{r-k,k} = \frac{r(r + 1) + 2(k + 1)}{2}
\]
and

\[(\lambda_{r-k,k} ; u - r + k, v - k) = 0, \text{ if } r > u + k, \text{ or } k > v, \]

\[= (u + v - r)Q_{u-r+k,v-k}, \]

if \(k \leq v \) and \(r \leq u + k, \)

we have

\[(\lambda_{r-k,k} ; u - r + k, v - k) = -(u + v), \]

for \(k = v \) and \(r = u + v. \) Then (31) may be written in the form

\[\sum_{r=0}^{u+v} \sum_{k=0}^{r} (W_{r-k,k} ; u - r + k, v - k)W_{r-k,k} = 0, \]

just as (10) was equivalent to (8) in \$4. Also \((\lambda_{00} ; 0, 0) = 0, \)

but from (28) we see that

\[e_{00} = W_{00} = -P_{00}, \text{ say.} \]

Thus (28) becomes equivalent to (10) if we replace in each equation \(P_{uv} \) by 0 for \(u+v > 0 \) and \((\lambda_{uv} ; 0, 0) \) by \(-(u+v), \)

instead of by \(Q_{00}. \) We thus obtain the following set of \(w_{ij} \)

\[\text{equations for } W_{ij}: \]

\[- W_{00} = P_{00}, \]

\[1 \cdot Q_{10}W_{00} - 1 \cdot W_{10} = 0, \]

\[1 \cdot Q_{01}W_{00} + 0 \cdot W_{10} - 1 \cdot W_{01} = 0, \]

\[2 \cdot Q_{20}W_{00} + 1 \cdot Q_{10}W_{10} + 0 \cdot W_{01} - 2W_{20} = 0, \]

\[2 \cdot Q_{11}W_{00} + 1 \cdot Q_{01}W_{10} + 1 \cdot Q_{10}W_{01} + 0 \cdot W_{20} - 2W_{11} = 0, \]

\[2 \cdot Q_{02}W_{00} + 0 \cdot W_{10} + 1 \cdot Q_{01}W_{01} + 0 \cdot W_{20} + 0 \cdot W_{11} - 2W_{02} = 0, \]

\[\ldots \ldots \ldots \ldots \ldots \]

\[(i + j)Q_{ij}W_{00} + \cdots = -(i + j)W_{ij} = 0. \]
The determinant of this system is
\[
(- 1)(- 1)^2(- 2)^3(- 3)^4 \cdots \\
(- i - j + 1)^{i+j}(- i - j) \\
= (- 1)^{i+j} 1^2 \cdot 2^3 \cdot 3^4 \cdots (i + j - 1)^{i+j}(i + j)^j .
\]

Just as before, if we solve for \(W_{ij} \), we can reduce the determinant we obtain corresponding to (12) to one of the \(\nu \)th order,
\[
\nu = \frac{(i + j)(i + j + 1)}{2} + 1.
\]

But we can also develop this expression with respect to its last row which is \(P_{00}, 0, 0, \cdots, 0 \), obtaining a determinant of the \((\nu - 1)\)st order with a factor \((-1)^{\nu-1}\). Hence our final form for \(W_{ij} \) is
\[
1^2 \cdot 2^3 \cdot 3^4 \cdots (i + j - 1)^{i+j} W_{ij}
\]
\[
\begin{array}{cccccc}
Q_{10} & -1 & 0 & 0 & 0 & \cdots & 0 \\
Q_{01} & 0 & -1 & 0 & 0 & \cdots & 0 \\
2Q_{20} & Q_{10} & 0 & -2 & 0 & \cdots & 0 \\
2Q_{11} & Q_{01} & Q_{10} & 0 & -2 & \cdots & 0 \\
2Q_{22} & 0 & Q_{01} & 0 & 0 & \cdots & 0 \\
& \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
& & & & & \ddots & 0 \\
(i + j) Q_{ij} & (2, i - 1, j + 1) & \cdots & \cdots & \cdots & \cdots & \cdots
\end{array}
\]

As before, we can interchange subscripts of all the \(Q \)'s to obtain \(W_{i\nu} \). We can also express \(W_{i+j,0} \) and \(W_{0,i+j} \) as recurrernts; thus
(i + j - 1)!W_{i+j,0} = - \begin{vmatrix}
Q_{10} & -1 & 0 \\
2Q_{20} & Q_{10} & -2 & 0 \\
3Q_{30} & 2Q_{20} & Q_{10} & -3 & 0 \\
\vdots & \vdots & \vdots \\
(i + j)Q_{i+j,0} & \cdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
\end{vmatrix}

with a similar expression for $W_{0,i+j}$.

11. Conclusion. It hardly seems necessary to give numerical examples of these expansions. As in the case of recurrences, from expressions of such generality any desired example may be derived by a mere substitution of numbers for letters in the general formulas. The quotient of two polynomials, the reciprocal of a series or a polynomial, for example, are included as special cases.

It appears from the expressions for Z_{11} and Z_{12} in §7, that a further immediate reduction of the order of the determinants (17) is sometimes possible; but to explicate this reduction in the general case would be to mar the simplicity and symmetry of our developments.

In conclusion I should like to thank Professor E. T. Bell for criticism and suggestions in the writing of this paper.

CALIFORNIA INSTITUTE OF TECHNOLOGY

A CORRECTION

In the paper by H. W. March, *The Heaviside operational calculus*, this Bulletin, vol. 33(1927), on page 312, in the line following equation (2), change "negative" to "positive."