ON CONTINUOUS CURVES IN n DIMENSIONS*

BY G. T. WHYBURN AND W. L. AYRES†

If M_1 and M_2 are subsets of a connected point set M, the subset K of M is said to separate M_1 and M_2 in M if $M-K$ is the sum of two mutually separated sets containing M_1 and M_2 respectively. R. L. Moore‡ has shown that in order that a plane continuum M be a continuous curve§ it is necessary and sufficient that for every two distinct points A and B of M there should exist a subset of M which consists of a finite number of continua and which separates A and B in M. Consider the following example: Let S_i ($i=1, 2$) be the set of all points (x, y, z) in three dimensions such that $x = (-1)^i$, $-1 \leq x \leq 1$, $0 \leq z \leq 1$. Let R_0 be the set of all points (x, y, z) such that $-1 \leq x \leq 1$, $-1 \leq y \leq 1$, $z = 0$. For each integer $n>0$, let R_n be the set of all points (x, y, z) such that $-1 \leq x \leq 1$, $-1 \leq y \leq 1$, $z = 1/n$. Let

$$M = S_1 + S_2 + \sum_{n=0}^{\infty} R_n.$$

It is easy to see that every two points of M may be separated by a single subcontinuum of M and yet M is not a continuous curve. Hence the condition given by Moore is not sufficient in order that a continuum in n dimensions ($n > 2$) be a continuous curve. In this paper we give two modifications (Theorems 2 and 4) of Moore's theorem which hold in n dimensions.

* Presented to the Society, October 29, 1927.
† National Research Fellow in Mathematics.
§ We shall use the term continuous curve in the sense of a point set which is closed, connected and connected im kleinen. See R. L. Moore, Concerning simple continuous curves, Transactions of this Society, vol. 21 (1920), p. 347.
THEOREM 1.* If \(M \) is a continuous curve in euclidean space of \(n \) dimensions, \(K \) is a bounded subcontinuum of \(M \) and \(\varepsilon \) is any positive number, then there exists a set \(L \) such that

1. \(K + L \) is a continuous curve which is a subset of \(M \),
2. every point of \(L \) is within a distance \(\varepsilon \) of some point of \(K \),
3. \(L \) consists of a countable set of arcs of \(M \), not more than a finite number of which are of diameter greater than any given positive number,
4. \(L + K \) is non-dense at every point except those points at which \(K \) fails to be non-dense.

PROOF. The set \(M \) is uniformly connected im kleinen over the set \(K \).† Let \(\delta_1, \delta_2, \delta_3, \ldots \) be a sequence of positive numbers such that every two points of \(K \) whose distance from one another is less than \(\delta_m \) can be joined by an arc of \(M \) whose diameter is less than \(\varepsilon/2m \). For each point \(p \) of \(K \) and each positive integer \(n \), let \(C_{np} \) and \(C'_{np} \) be hyperspheres with center \(p \) and radii \(\varepsilon/n \) and \(\varepsilon/(2n) \) respectively.‡ By the Borel theorem, for each value of \(n \) there is a finite subset of the set \([C_{np}]\),

\[
C'_{np1}, C'_{np2}, C'_{np3}, \ldots, C'_{npn'},
\]
such that every point of \(K \) is in the interior of one of the sets \(C'_{np_i} \) for \(1 \leq i \leq n' \). Since \(M \) is a continuous curve there are but a finite number,

\[
M_{ni1}, M_{ni2}, M_{ni3}, \ldots, M_{nim_n},
\]
of the components§ of \(M \cdot I(C_{np_i}) \) that contain points in the interior of \(C'_{np_i} \). For each \(n, i \) and \(j \), let \([K_{ni}]\) be the set of

* This theorem contains as a special case a theorem due to H. M. Gehman, *Concerning the subsets of a plane continuous curve*, Annals of Mathematics, vol. 27 (1925), pp. 29–46, Theorem 3.
‡ If \(p \) is a point and \(r \) a positive number, the hypersphere with center \(p \) and radius \(r \) is the set of all points of the space whose distance from the point \(p \) is \(r \). If \(S \) is a hypersphere, \(I(S) \) denotes the interior of \(S \).
§ A connected subset of a point set \(H \) which is not a proper subset of any connected subset of \(H \) is called a component of \(H \).
components of $K \cdot M_{nij} \cdot I(C_{npn})$. By the Zermelo postulate*, there exists a set of points $[P_{nij}]$ such that each set K_{nij} contains just one point P_{nij} and each point P_{nij} belongs to just one component K_{nij}. In the set $[P_{nij}]$ there is a finite subset,

$$P_{nij}^1, P_{nij}^2, P_{nij}^3, \ldots, P_{nij}^{k_1}, \ldots$$

such that every point of $[P_{nij}]$ is within a distance δ_i of some point of this finite set. There exists an arc $\alpha_{nij} (1 \leq r \leq k_1 - 1)$ with end points P_{nij}^r and P_{nij}^{r+1} and lying wholly in M_{nij}. There exists a finite subset,

$$P_{nij}^{k_1+1}, P_{nij}^{k_1+2}, \ldots, P_{nij}^{k_2}, \ldots$$

of the set $[P_{nij}]$ such that every point of $[P_{nij}]$ is within a distance δ_2 of some point of $P_{nij}^1, P_{nij}^2, \ldots, P_{nij}^{k_1}$. Let $\alpha_{nij}^r (k_1 \leq r \leq k_2 - 1)$ be an arc of M_{nij} with end points P_{nij}^r and some point of $\sum_{t=1}^{k_t} P_{nij}^t$. Continue this process indefinitely except that for $t > n$ we place the additional condition on $\alpha_{nij}^t (k_t \leq r \leq k_{t+1} - 1)$ that it be of diameter less than $\epsilon/(2t)$. This can be done since any two points of K whose distance from one another is less than δ_i can be joined by an arc of M whose diameter is less than $\epsilon/(2t)$.

For each n, i and j, there is a countable set of arcs of M, $\alpha_{nij}^1, \alpha_{nij}^2, \alpha_{nij}^3, \ldots$, such that (a) each lies interior to a hypersphere of radius ϵ/n with a point of K as center, (b) only a finite number are of diameter greater than a given positive number, and (c) each has its end points on K. For each value of n the numbers i and j range over finite sets of values; hence the set of all arcs $[\alpha_{nij}^r]$ for a fixed value of n satisfy conditions (a), (b), and (c) above. And since all arcs $[\alpha_{nij}^r]$ for a fixed value of n are of diameter less than $2\epsilon/n$, the set of all arcs $[\alpha_{nij}^r]$ for all values of n satisfies the condi-

† The symbol k_1 denotes a positive integer whose value depends on n, i and j.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
tion that only a finite number are of diameter greater than a given positive number. Let

\[L = \sum_{n \leq m_n} a_{nij}, \quad 1 \leq i \leq n', \quad 1 \leq j \leq m_n, \quad 1 \leq r < \infty, \quad 1 \leq n < \infty. \]

We have shown that \(L \) satisfies conditions (2) and (3) of our theorem. It remains to prove that (1) and (4) are satisfied. Since only a finite number of the arcs of \(L \) are of diameter greater than a given positive number and each has a point on the closed set \(K \), every limit point of \(L \) which does not belong to \(L \) belongs to \(K \). Thus \(K+L \) is closed. Let \(P \) be any point of \(K+L \). If \(P \) does not belong to \(K \) it is easy to see that \(K+L \) is connected im kleinen at \(P \), for the interiors of hyperspheres of sufficiently small radii and center \(P \) contain no point of \(K \) and points of only a finite number of arcs of \(L \). If \(P \) is a point of \(K \) and \(\eta \) is any positive number, there is a hypersphere \(C_{nPn} \) which lies entirely in the interior of the hypersphere with radius \(\eta/4 \) and center \(P \) and such that \(I(C_{nPn}) \) contains \(P \). Let \(M_{nij} \) be the component of \(M \cdot I(C_{nPn}) \) containing \(P \). There exists a positive number \(\gamma \) such that every point of \(K \) whose distance from \(P \) is less than \(\gamma \) lies in \(M_{nij} \). There exists a number \(\rho > 0 \) such that every point \(p' \) of \(L \) whose distance from \(P \) is less than \(\rho \) lies on an arc \(\alpha_{p'} \) of \(L \), one of whose points \(e \) belongs to \(K \cdot M_{nij} \) and such that the subarc \(p'e \) of \(\alpha_{p'} \) is of diameter less than \(\eta/2 \). Let \(\sigma \) be the smaller of \(\gamma \) and \(\rho \). Now let \(Q \) be any point of \(K+L \) whose distance from \(P \) is less than \(\sigma \). If \(Q \) belongs to \(K \) it belongs to \(M_{nij} \). By the method of

* If \(S_\gamma \) and \(S_d \) denote hyperspheres with center \(P \) and radii \(\gamma \) and \(d \) respectively, then only a finite number of arcs of \(L \) have points in \(I(S_d) \) for any \(d < \gamma \) and contain no point of \(I(S_\gamma) \cdot K \) since any such arc is at least of diameter \(\gamma - d \). There is a number \(d_1 > 0 \) such that for \(d \leq d_1 \) there is no such arc. Also there is a number \(d_2 > 0 \) such that no arc of \(L \) of diameter greater than \(\eta/2 \) contains a point whose distance from \(P \) is less than \(d_2 \) unless the arc contains \(P \). On each of the finite set of arcs of \(L \) of diameter greater than \(\eta/2 \) that contain \(P \) there is a point \(q \) such that the subarc \(qP \) of the arc is of diameter less than \(\eta/2 \). Let \(d_3 \) be the smallest of the finite set of distances from \(P \) to the points \(q \). Let \(\rho \) be the smallest of the numbers \(d_1, d_2 \) and \(d_3 \).
construction of \(L \), there is a subset \(L' \) of \(L \) such that \(M_{nij} \) contains \(L' \) and \(L' + K \cdot M_{nij} \) is connected. But every point of \(L' + K \cdot M_{nij} \) is at a distance from \(P \) less than \(\eta/2 \) and \(L' + K \cdot M_{nij} \) contains both \(P \) and \(Q \). If \(Q \) is not a point of \(K \), it lies on an arc \(\alpha Q \) of \(L \) which contains a point \(e \) of \(K \cdot M_{nij} \) such that the subarc \(eQ \) of \(\alpha Q \) is of diameter less than \(\eta/2 \). Then \(\alpha Q + L' + K \cdot M_{nij} \) is a connected subset of \(L + K \) containing \(P \) and \(Q \) and such that every point is at a distance from \(P \) less than \(\eta \). Therefore \(K + L \) is connected at every point \(P \).

Let \(P \) be any point of \(K \) at which \(K \) is non-dense. Then if \(S_1 \) is any hypersphere with center \(P \), the set \(I(S_1) \) contains a hypersphere \(S_2 \) such that \(S_2 + I(S_2) \) contains no point of \(K \). Since only a finite number of the arcs of \(L \) are of diameter greater than a given positive number, there are only a finite number of arcs of \(L \) that have points in \(I(S_2) \). Then there is a hypersphere \(S_3 \) lying in \(I(S_2) \) such that \(I(S_3) \) contains no point of \(L \). Then the interior of every hypersphere \(S_1 \) with center at \(P \) contains a hypersphere \(S_3 \) such that \(I(S_3) \) contains no point of \(K + L \). Hence \(K + L \) is non-dense at the point \(P \).

Theorem 2. In order that a continuum \(M \) lying in euclidean space of \(n \) dimensions be a continuous curve it is necessary and sufficient that for every two distinct points \(A \) and \(B \) of \(M \) there should exist a subset of \(M \) which consists of a finite number of continuous curves and which separates \(A \) and \(B \) in \(M \).

Proof. The condition is necessary. Let \(d \) be the distance from \(A \) to \(B \). Let \(S_1 \) and \(S_2 \) be hyperspheres with center \(A \) and radii \(d/2 \) and \(d/4 \) respectively. Let \(H = S_1 + I(S_1) - I(S_2) \). The set \(M \cdot H \) is closed and it is easy to see that there is at least one component of \(M \cdot H \) containing points on both \(S_1 \) and \(S_2 \). As \(M \) is a continuous curve there cannot be more than a finite number of such components. Let \(K_1, K_2, K_3, \ldots, K_m \) denote the set of all components of \(M \cdot H \) which contain a point on \(S_1 \) and a point on \(S_2 \). By Theorem 1, for each \(i, 1 \leq i \leq m \), there is a continuous curve \(M_i \) which contains
K_i, is a subset of M and such that every point of M_i is within a distance $d/8$ of some point of K_i. Suppose that A and B lie in a connected subset of $M - \sum_{i=1}^{m} M_i$. Then there is an arc with end points A and B lying in $M - \sum_{i=1}^{m} M_i$.\(^*\) This arc contains a subarc α which is a subset of H and has one end point on S_1 and the other on S_2. Then α must belong to some set K_i and thus to $\sum_{i=1}^{m} M_i$. But this is impossible, for $M - \sum_{i=1}^{m} M_i$ contains α. Therefore $\sum_{i=1}^{m} M_i$ separates A and B in M.

The condition is sufficient. If M is not a continuous curve there exist two concentric hyperspheres S_1 and S_2 and an infinite set of subcontinua M_∞, M_1, M_2, M_3, \ldots of M satisfying the conditions of the Moore-Wilder lemma.\(^\dagger\) Let S_3 and S_4 be distinct hyperspheres concentric with S_1 and lying between S_1 and S_2. Each continuum M_i contains a subcontinuum K_i which contains a point P_i on S_3 and a point Q_i on S_4 and is a subset of the set G consisting of S_3 and S_4 and all points which lie between S_3 and S_4. There exists a sequence of integers n_1, n_2, \ldots, such that $[P_{n_i}]$ has a sequential limit point A and $[Q_{n_i}]$ has a sequential limit point B. By hypothesis there exists a finite set of continuous curves C_1, C_2, C_3, \ldots, C_m which are subsets of M and separate A and B in M.

CASE I. Suppose infinitely many of the continua K_{n_i} contain a point of $\sum_{k=1}^{m} C_k$. As there are but a finite number of the curves C_k, one curve C_k must contain a point p_{n_i} of K_{n_i} for infinitely many values of i. The set $[p_{n_i}]$ has a limit point P, which must belong to M_∞ and to G. Let ϵ be a positive number such that no point of $S_1 + S_2$ is within a distance ϵ of P. As C_k, is a continuous curve, the point P

\(^*\) R. L. Moore, *Concerning continuous curves in the plane*, Mathematische Zeitschrift, vol. 15 (1922), pp. 254-260. Moore’s theorem is stated for two dimensions, but the extension to n dimensions is obvious.

belongs to C_k and there is a number $\delta_e > 0$ such that any point of C_k whose distance from P is less than δ_e can be joined to P by an arc of C_k of diameter less than ϵ. There is a point p_n of $[p_n]$ whose distance from P is less than δ_e. Let α denote an arc of C_k with end points P and p_n and of diameter less than ϵ. The arc α contains a point of M_n, and a point of M_∞ and lies entirely between S_1 and S_2. By the Moore-Wilder lemma, M_n, is a component of the common part of M and the set composed of S_1 and S_2 and all points lying between S_1 and S_2. Hence M_n, contains the arc α. But this contradicts the condition of the lemma that M_n, and M_∞ have no common points.

Case II. Suppose only a finite number of the continua K_n, contain points of $\sum_{k=1}^{m} C_k$. The set $M - \sum_{k=1}^{m} C_k$ is the sum of two mutually separated sets M_A and M_B containing A and B respectively. Every set K_{n_i} which contains no point of $\sum_{k=1}^{m} C_k$ lies wholly in M_A or wholly in M_B. There is an integer j such that for $i \geq j$, the continuum K_{n_i} contains no point of $\sum_{k=1}^{m} C_k$. Both A and B are limit points of the set $\sum_{i=j}^{m} K_{n_i}$. Either infinitely many of the sets K_{n_i} $(i \geq j)$ belong to M_A or infinitely many belong to M_B. If the first holds then B is a limit point of M_A; under the second possibility the point A is a limit point of the set M_B. In either possibility we have a contradiction since M_A and M_B are mutually separated.

The assumption that M is not a continuous curve leads to a contradiction with the assumed condition in either case. Therefore the condition is sufficient.

It is to be noticed that in the proof of the necessity of the condition in Theorem 2 we showed that the separating continuous curves were bounded. Hence we have the following corollary and theorem.

Corollary. If A and B are points of a continuous curve M lying in euclidean space of n dimensions, there exists a subset of M which consists of a finite number of bounded continuous curves and which separates A and B in M.
Theorem 3. If K_1 and K_2 are any two mutually exclusive and closed point sets, one of which is bounded, then K_1 lies wholly in a finite number of the complementary domains of K_2.

Proof. Suppose the contrary is true. Then there exists an infinite sequence D_1, D_2, D_3, \ldots of distinct complementary domains of K_2 each of which contains at least one point of K_1. For each positive integer i, let P_i denote a point of K_1 belonging to D_i. Let H denote the set of points $P_1 + P_2 + P_3 + \cdots$. By hypothesis either K_1 or K_2 is bounded. If K_1 is bounded, then H is bounded because H is a subset of K_1; and if K_2 is bounded, then since H contains at most one point in the unbounded complementary domain of K_2, it readily follows that H is bounded. Hence, in any case, H is bounded; and since it is infinite, it must have at least one limit point P. Since K_1 is closed and contains H, it must contain the point P; and since K_1 and K_2 are mutually exclusive, P must belong to some complementary domain D of K_2. Clearly this is impossible, since P is a limit point of H, and not more than one point of H can belong to D. Thus the supposition that Theorem 3 is not true leads to a contradiction.

Theorem 4. In order that a continuum M in a euclidean space E_n of n dimensions should be a continuous curve it is necessary and sufficient that every two mutually exclusive, closed, and bounded subsets of M should be separated in M by the sum of a finite number of subcontinua of M.

Proof.* The condition is sufficient. For suppose a continuum M satisfies the condition but is not a continuous curve. Then by the Moore-Wilder lemma† it follows that there exist two different concentric hyperspheres C_1 and C_2 and a countable infinity of mutually exclusive subcontinua of M: W, M_1, M_2, M_3, \ldots such that (1) if D denotes the

* Compare this proof with that given by R. L. Moore for Theorem 1 of his paper, A characterisation of a continuous curve, loc. cit.
† See reference to the Moore-Wilder lemma above.
n-dimensional domain whose boundary is $C_1 + C_2$, then each of these continua contains at least one point on each of the hyperspheres C_1 and C_2, and each of them, save possibly W, is a component of the set of points $M \cdot (D + C_1 + C_2)$, and

(2) W is the sequential limiting set of the sequence of continua M_1, M_2, M_3, \cdots. Let A and B denote the sets of points $W \cdot C_1$ and $W \cdot C_2$ respectively and, for each positive integer i, let a_i denote the set of points $M_i \cdot C_1$ and b_i the set $M_i \cdot C_2$. Since A and B are mutually exclusive, closed, and bounded subsets of M, by hypothesis there exists a subset L of M such that (1) $M - L$ is the sum of two mutually separated point sets M_a and M_b containing A and B respectively, and (2) L is the sum of a finite number of continua $L_1, L_2, L_3, \cdots, L_m$. Since neither A nor B has a point in common with L, and A contains no point of M_b and B contains no point of M_a, therefore there exist open sets C_a and C_b, containing A and B respectively, such that C_a contains no point of $L + M_b$ and C_b contains no point of $L + M_a$. There exists an integer δ such that, for every j greater than δ, the point set a_j lies wholly in C_a and the point set b_j lies wholly in C_b. Thus, for every j greater than δ, M_j contains a point of M_a and also a point of M_b. But M_j is a subcontinuum of M, and every subcontinuum of M which contains a point of each of the sets M_a and M_b must contain at least one point of L. Hence, for every j greater than δ, M_j contains a point of L, and therefore of some one of the sets L_1, L_2, \cdots, L_m. It follows that there exists an integer g and an infinite sequence of distinct positive integers t_1, t_2, t_3, \cdots such that, for every j, L_g contains at least one point in common with M_{t_j}. Since, for every j, the subcontinuum L_g of M contains a point of M_{t_j} and a point of $M_{t_{j+1}}$ it follows by a lemma of R. L. Moore's* that L_g must contain a point either of a_{t_j} or of b_{t_j}. Thus there exists an infinite sequence of distinct integers j_1, j_2, j_3, \cdots, such that either L_g has a point in common with each point set

* A characterization of a continuous curve, loc. cit., Lemma 2.
of the sequence \(a_1, a_2, a_3, \ldots \), or it has at least one point in common with each point set of the sequence \(b_1, b_2, b_3, \ldots \). In the first case it readily follows that \(A \) contains at least one point of \(L \), and in the second case that \(B \) contains at least one point of \(L \). But \(A + B \) is a subset of \(M - L \). Thus the supposition that \(M \) is not a continuous curve leads to a contradiction.

The condition is also necessary. For let \(M \) be any continuous curve in \(\mathbb{R}^n \), and let \(K_1 \) and \(K_2 \) be any two mutually exclusive, closed, and bounded subsets of \(M \). It follows by Theorem 3 that there exists a finite number \(D_1, D_2, D_3, \ldots, D_m \) of the complementary domains of \(K_2 \) whose sum contains the point set \(K_1 \). For each positive integer \(i \leq m \), let \(B_i \) denote the boundary of \(D_i \), let \(H_i \) be the set of points common to \(K_1 \) and \(D_i \), and let \(4d_i \) be the minimum distance between the closed sets of points \(H_i \) and \(B_i \). For each point \(P \) of \(H_i + B_i \), let \(C_P \) denote a hypersphere with \(P \) as center and radius \(d_i \), and let \(G_i \) be the collection of all the hyperspheres \([C_P] \) for all points \(P \) of \(H_i + B_i \). Since \(K_1 + K_2 \), and hence also \(H_i + B_i \), is bounded, then by the Borel theorem there exists a finite subcollection \(G_i \) of the hyperspheres of \(G_i \) such that \(H_i + B_i \) is a subset of the sum \(I_i \) of the interiors of the collection \(G_i \). Let \(T_i \) denote the point set \((D_i + B_i) - I_i \). Then \(T_i \) is closed. Let \(F_i \) denote the sum of all the hyperspheres (not including their interiors) of the collection \(G_i \) which enclose at least one point of \(H_i \), and let \(N_i \) be the sum of all those which enclose at least one point of \(B_i \). Since the least distance between \(H_i \) and \(B_i \) is \(4d_i \), and since the radius of each hypersphere of \(G_i \) is \(d_i \), it follows that \(F_i \) and \(N_i \) are mutually exclusive closed sets whose least distance apart is \(>d_i \). Let \(Q_i \) denote the collection of all those maximal connected subsets of \(M \) which lie wholly in \(T_i \) and contain at least one point of each of the sets \(F_i \) and \(N_i \). Each element of \(Q_i \) is a continuum, and since \(M \) is a continuous curve, it follows by the Moore-Wilder lemma that \(Q_i \) has just a finite number of elements. Hence \(Q_i \) is a finite
collection of mutually exclusive continua \(L_{1i}, L_{2i}, L_{3i}, \ldots, L_{ni} \) which belong to \(M \).

Now let \(L \) denote the point set \(\sum_{i=1}^{n} \sum_{j=1}^{n} L_{ji}. \) Then \(L \) is the sum of a finite number of mutually exclusive subcontinua of \(M \). Let \(M_a \) denote the sum of all those components of \(M - L \) which contain at least one point of \(A \), and let \(M_b \) denote the point set \(M - (M_a + L) \). No point of \(B \) belongs to \(M_a \). For if a point \(X \) of \(B \) belonged to \(M_a \), then* \(X \) could be joined in \(M \) to some point \(Y \) of \(A \) by an arc which contains no point of \(L \), and this arc would contain a subarc \(t \) which is a subset of some set \(T_i \) and which has its end points on \(F_i \) and \(N_i \) respectively; and the arc \(t \) would necessarily be a subset of some continuum of the collection \(Q_i \), contrary to the fact that \(t \) contains no point of \(L \). Therefore \(B \) must be a subset of \(M_b \). Since \(M \) is connected in kleinen and \(L \) is closed, it readily follows that \(M_a \) and \(M_b \) are mutually separated. Hence \(M - L \) is the sum of two mutually separated sets \(M_a \) and \(M_b \) containing \(A \) and \(B \) respectively, and therefore \(L \) separates \(A \) and \(B \) in \(M \).

Theorem 5. In order that a continuum \(M \) in a space of \(n \) dimensions should be a Menger regular curve† it is necessary and sufficient that every two points of \(M \) should be separated in \(M \) by some finite subset of \(M \).

Proof. The condition is sufficient. Let \(P \) be any point of \(M \) and \(\epsilon \) any positive number. Let \(C_1 \) and \(C_2 \) be two distinct hyperspheres each of which has \(P \) as center and is of radius less than \(\epsilon/4 \). Let \(D \) denote the domain between \(C_1 \) and \(C_2 \), and let \(K \) denote the set of points common to \(D + C_1 + C_2 \) and to \(M \). Then \(K \) is closed. Now by Theorem 2 it follows

* R. L. Moore, *Concerning continuous curves in the plane*, loc. cit.
† A continuum \(M \) is said to be a Menger regular curve provided that for each point \(P \) of \(M \) and each positive number \(\epsilon \) there exists an open subset \(T \) of \(M \) of diameter less than \(\epsilon \) which contains \(P \) and whose \(M \)-boundary is finite. The \(M \)-boundary of an open subset \(T \) of a continuum \(M \) is the set of all those points of \(M - T \) that are limit points of \(T \). See K. Menger, *Grundzüge einer Theorie der Kurven*, Mathematische Annalen, vol. 95 (1925–1926), pp. 276–306.
that M is a continuous curve. By hypothesis, for each point X of K there exists a finite subset N_x of M which separates X and P in M. For each such point X, the maximal connected subset H_x of $M - N_x$ which contains X is an open subset of M which does not contain P and whose M-boundary is finite (a subset of N_x). Let G_0 denote the collection of sets $[H_x]$ for all points X of K. Since K is closed and bounded, then by the Borel theorem the collection G_0 contains a finite subcollection G which covers K. Let R denote the sum of all the point sets of the collection G. Then K is a subset of R, and R is an open subset of M. Furthermore B, the M-boundary of R, is finite, for R is the sum of a finite number of the sets H_x. Now, supposing that C_1 is within C_2, let A denote the set of all those points of B which lie on or within C_1. Now $R + A$ does not contain P, for P belongs to no set H_x and to no N_x. Let T denote the maximal connected subset of $M - A$ which contains P. It is readily seen that T must lie within C_1. Hence the diameter of T is less than ϵ. The M-boundary of T is finite, because it is a subset of A. Then, since T is an open subset of M, it follows that P is a regular point of M and that M is a Menger regular curve.

That the condition is necessary follows at once from the definition of a Menger regular curve.

Theorem 6. If every two points of a continuum M are separated in M by some finite subset of M, then every two mutually exclusive, closed, and bounded subsets of M are separated in M by some finite subset of M.

Proof. It follows by Theorem 5 that M is a Menger regular curve. Then by a theorem of Menger's,* it follows that every two mutually exclusive, closed, and bounded subsets of M can be separated in M by some finite subset of M.

*The University of Texas

* Loc. cit., Theorem 12.