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R E C E N T D E V E L O P M E N T S IN PROJECTIVE 
D I F F E R E N T I A L GEOMETRY* 

BY E. B. STOUFFER AND E. P. LANE 

A. INVARIANTS AND COVARIANTS, CANONICAL FORMS, 
CANONICAL EXPANSIONS 

1. Introduction. In a long series of papers appearing first 
in 1901 and continuing for more than twenty years, Wil-
czynski made a study of the projective differential properties 
of many geometrical figures, including plane and space 
curves, ruled and curved surfaces, and linear congruences. 
While Wilczynski was not the first to discover projective 
differential properties of figures, he was the first to proceed 
in a systematic manner in finding these properties. His general 
scheme in studying a given figure is to set up a system of one 
or more linear homogeneous differential equations such 
tha t the fundamental sets of solutions of the system de­
termine the figure uniquely except for projective transforma­
tions. The independent and the dependent variables which 
appear in the differential equations and also in the parametric 
equations of the figure can be subjected to certain trans­
formations which do not disturb the figure or change the form 
of the system of differential equations, but will in general 
change the coefficients of the differential equations. A func­
tion of the new coefficients and their derivatives and of the 
new dependent variables and their derivatives which is equal, 
except possibly for a factor, to the same function of the orig­
inal coefficients and variables is called a covariant. A covar-
iant which does not contain the dependent variables or their 
derivatives is called an invariant. 

Wilczynski uses a complete and independent system of 
invariants and covariants as a foundation for each of his 

*Two addresses presented at the request of the program committee at 
the Western meeting of the Society, April 6, 1928. Part A was given by 
Professor Stouffer, and Part B by Professor Lane. 
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geometrical studies. His general method of calculating the 
invariants and covariants is by means of the Lie theory of 
continuous groups, a process which is frequently very labor­
ious, although the final results are usually quite elegant. 
Since the method is purely analytical, there is no assurance 
tha t the invariants and covariants will appear in a form 
which will readily show their geometric significance. 

Fubini and his school began about 1913 to study pro­
jective differential properties by means of differential forms. 
However, before many geometrical results can be obtained 
by this method it is necessary in each case to pass from the 
forms to a system of differential equations of the type used 
by Wilczynski. Fubini confines his attention almost wholly 
to systems which have been made canonical, that is, systems 
in which the coefficients have been specialized by means of 
the permissible transformations in such a way as to make 
the fundamental covariants take very simple forms. 

One purpose of this paper is to derive several canonical 
forms for defining systems of differential equations and to 
show how each properly chosen canonical form leads in a 
very simple manner to a complete system of invariants and 
covariants of the Wilczynski type. A second purpose is to 
show how such canonical forms make possible direct deriva­
tion of canonical expansions for the equations of the figures. 

In a paper(1) published in 1915 Green showed how the in­
variants and covariants associated with a curved surface 
referred to general parametric curves could be obtained from 
those associated with the surface referred to the asymptotic 
curves as parametric curves. The principle which Green 
used in that particular problem is of remarkably wide 
application. We shall first apply it to the very simple case 
of a plane curve. 

2. Curves. The differential equation associated with a 
plane curve C is of the form(2) 

(1) y'" + Zpiy" + 3p2y
f + psy = 0, 

WNumerical references are made to the bibliography at the end. 
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where differentiation is with respect to the independent 
variable x and where pi are functions* of x. The permissible 
transformations in this case have the form 

(2) 

(3) 

x = 4>(x), 

y = \ y , 

where <j> and X are arbitrary functions of the independent 
variable. 

The transformation (2) changes (1) into a new equation 
(la) with coefficients pi given by 

(4) 

- 1 ( , *"\ 

1 / <j>" <j>'"\ 1 

and (3) in turn changes (la) into another equation (lb) 
in y with coefficients i \ given byf 

X' 

(5) 

Pi = P i + — > 
X 

X' X " 
P* = p2+2pi-— + — ; 

X X 
X' X" X'" 

Pz= pz + 3p2— + 3pi— + — • 
X X X 

It is easy to determine from (4) and (5) an invariant (2), 
tha t is, a function 03 of pi which is related to the same func­
tion £3 of Pi by the equation 03 = 03/(0')3-

If we choose <j>' to satisfy the equation^ (0')3==03 so that 
ö3 = l and then choose X to satisfy the equation X'/X = —pi 

*Here as everywhere else in this paper we shall assume tha t all functions 
which appear are capable of differentiation to as high an order as nec-
cessary. 

f in equations (5), X is a function of x and differentiation is with respect 
to x. 

% I t is assumed tha t C is not a conic, since in tha t case 03 —0. 
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so that Pi = 0, we have a canonical form of the desired type 
for our differential equation. This is exactly the canonical 
form obtained by Sannia(3) who introduced the differential 
form a\dx and then chose ai = 03

1/3. 
Since the conditions 03 = 1, Pi —0 are maintained by the 

transformations (2) and (3) only if 0 " =A' = 0, the coefficients 
Pi of our canonical form and their derivatives are each 
determined except for possible factors. A simple process 
of reasoning shows that they are the canonical forms of 
invariants whose general forms in terms of the coefficients 
of (1) can be obtained from (5) by direct substitutions from 
(4) with the now known values of </>' and X' inserted. The 
same reasoning shows that y and its derivatives are the 
canonical forms of covariants whose general forms follow 
by mere substitution. The completeness of the system of 
invariants and covariants thus obtained is evident and 
the determination of the particular invariants and co-
variants which are independent is not at all difficult. 

The system of invariants and covariants thus obtained is, 
of course, equivalent to the system derived by Wilczynski 
and is, in fact, not greatly different from it. The great value 
of the method outlined above lies in its simplicity and in its 
complete avoidance of the complicated Lie theory. 

A canonical form of the above type for the differential 
equation of a plane curve leads by a process involving only 
direct substitutions to an equation for the curve in the 
form of an expansion of one non-homogeneous coordinate in 
terms of the other.(4) This method of obtaining a canonical 
expansion has the advantage tha t the vertices of the triangle 
of reference are exactly the points determined by the three 
covariants y, y', yn and are, as a consequence, easily charac­
terized geometrically. Since a canonical expansion is the 
most natural and simple tool for obtaining results in this 
geometry, the ability to derive the expansion in a direct 
analytic manner is of great advantage. 

The general scheme applied above to plane curve theory 
can be applied to space curves.(4) However, it is desirable 
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in this case to use the canonical expansion in order to 
determine the most satisfactory canonical form for the 
fundamental differential equations, even though this canon­
ical form is actually used to determine the canonical ex­
pansion. We shall illustrate this principle in some detail 
by means of ruled surface theory. In the study of ruled sur­
faces it has been long and difficult work to determine the 
invariants and covariants(2) and a canonical expansion(5) 

by previous methods. 

3. Ruled Surfaces, Let us denote by P the point on a 
ruled surface R in the neighborhood of which we wish to 
study the surface. If we choose as one directrix curve Cy the 
asymptotic curve through P and for the other directrix curve 
Cz any curve on the surface, it is well known(2) that the 
fundamental system of differential equations has the 
general form 

. . ƒ ' + 2pny' + qny + qi2Z = 0, 
(6) 

Z" + 2p2iy' + 2pnZ' + Ç2iy + Ç22Z = 0, 
where pi3- and q^ are functions of the independent variable x. 
The permissible transformations are 

(7) x = <£0), 

for the independent variable and 

(8) y = ay, z = y y + ôz, aô 9^ 0, 

for the dependent variables, where </>, a, 7, 5 are arbitrary 
functions of the independent variable. 

Let us now assume that (6) has been transformed by (7) 
and (8) into a canonical form with the dependent variables 
and their first derivatives uniquely determined except for pos­
sible factors. What the canonical form is we do not know 
as yet. However, it is easy to determine that the associated 
canonical expansion for the equation of the surface in the 
neighborhood of the point P is 

(9) f = ^ + — <2i2£
3 + — F 1 2 ê 4 - — ( ^ 1 1 - ^ 2 2 ) ^ + • • • , 
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where Vï2 and Üu — U22 are simple functions of the coefficients 
Pij and Qij of the canonical form and their derivatives. 
Equation (9) makes evident the desirable conditions to be 
imposed in order to produce a canonical form and at the same 
time simplify the expansion. By means of (7) and (8) we 
can make* 

V12 = Üu - ÜK = P u = P22 = 0, Cu = 1. 

Since these conditions are maintained by (7) and (8) only 
if <£"=«'= 8 '= 7 = 0, we obtain for (6) a canonical form 

(10) \ r + ?n* + * - 0 , 

in which the coefficients and their derivatives are invariants 
and the dependent variables and their derivatives are 
covariants, all in their canonical forms. The general form 
of this complete system of invariants and covariants in terms 
of the coefficients and variables of (6) can be obtained by 
direct substitutions just as the case of plane curves. 

The expansion (9) is thus reduced to the simple form 
r = %y + £3/3 + terms of at least the fifth degree. The 
vertices of the tetrahedron of reference are given at once by 
the four simplest covariants. Their geometrical significance 
is easily determined. In fact, one vertex is the point P , a 
second is the point Pz, the harmonic conjugate of P with re­
spect to the flecnode points on the generator through P , 
a third is the point P p on the tangent to Cy at P which 
is the pole of the generator with respect to the osculating 
conic of Cy at P , and the fourth is the intersection of the 
asymptotic tangent at Pz and the line of the osculating 
hyperboloid which passes through Pp . 

The geometrical significance of the vanishing of the in­
variants, which in their canonical forms are the coefficients 
of (10), can be read directly from the differential equation. 

T h e s e results are not valid if P is a point on a flecnode curve. 
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In fact, if P2i = 0, CZ is an asymptotic curve, if Q2i = 0 the 
flecnode curves coincide and if Qn = 0 the tangent at Pp 

to Cp passes through Pz. 
Cech(6) has applied Fubini's methods to ruled surfaces 

by starting with a specialized case of the differential forms 
for curved surfaces. He derives from these forms a pair of 
second order differential equations which he makes canonical 
by putting a certain invariant 04 of Wilczynski equal to unity. 

4. Curved Surfaces. In applying the above methods to 
curved surfaces we start with the fundamental equations(7) 

yUu + 2a yu + 2byv + cy = 0, 

yvv + 2a'yu + 2Vyv + c'y = 0, 

with the asymptotic curves parametric. The permissible 
transformations are 

(12) « = *(«), 0 = iKi>), 

for the independent variables, and 

(13) y = \{u,v)y, 

for the dependent variable. 
Let us assume that (11) has been transformed by (12) and 

(13) into a system with coefficients A, B, 'C, A', B', C', 
whose dependent variable y and its derivatives %, y-v, 3 ^ are 
all completely determined except for possible factors. I t is 
easily found that an associated canonical expansion for the 
equation of the surface 5 in the neighborhood of a point 
Py given by ü=ü0, v = v0, is 

t f = to + ÎBe + U'v? + 1(5," - 2BBf)^V 

(14) ) + f (Ju- - 23Z0fc?8 + l(Bü + 4AB)£* 

' + U~Âlv + ÏI'B'h4 + i(Âv + BÙ W + • • • . 

The fact tha t <t>(u) and \p(v) in the transformation (12) 
are each functions of only a single variable limits the 
conditions which may be imposed by this transformation. 
However, we can, for instance, impose by (12) and (13) the 
conditions 
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(15) Ai(ü,v<u = BÏ(ÜQ}V) = 0, 

(16) A = B' = 0, 

conditions which are maintained by (12) and (13) only if 
0tm = ^'t>«=Au=Xv = O. Since the coefficients in (14) are func­
tions of ûo and v0 we are thus led to a canonical expansion 
for the equations of the surface. However, we do not obtain 
in place of (11) a canonical form in the true sense. Neverthe­
less, by the same kind of simple substitutions as above, 
the coefficients and variables of the reduced form and their 
derivatives produce a complete system of invariants and 
covariants in terms of the coefficients and variables of (11). 
The expansion (14) becomes under the conditions (15) and 
(16) essentially that obtained by Wilczynski(8) and also by 
Green(9), with the vertices of the tetrahedron of reference 
determined by the simplest covariants and located at the 
intersection of Wilczynski's directrices of the first and second 
kind with his canonical quadric (8). 

In place of (15) we may impose the more general conditions 

1'u(u9v0) Bz(ü,v0) j5r(tfo *0 Aï(ü0,v) 
(17) Z — h ni— = Z — h m— — = 0 

A'(ü,v0) B(ü,v0) B(ü0,v) A'(ü0,v) 

where Z and m are constants. In each case we obtain a canon­
ical expansion with two points Pg and Pp, one on each 
asymptotic tangent through Py, as two vertices of the tetra­
hedron of reference. The fourth vertex 7a is the intersection 
of the canonical quadric of Wilczynski with the polar re­
ciprocal of the line PZPP with respect to the quadric of Lie. 
For all values of Z and m the lines joining corresponding 
points P& and Pp pass through a point, the canonical point, 
and the corresponding lines joining Py and Pa all lie in a plane, 
the canonical plane. 

If w = 0 we have the case mentioned above. If Z = 0 the 
vertices are on the canonical edges of Green(9). If l/rn — l 
the line joining Py and Pa is the pseudo-normal of Green(9), 
the projective normal of Fubini(10). Other values of the 
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ratio l/m give other covariant lines. In each case the coef­
ficients and variables of the reduced form produce a corre­
sponding system of invariants and covariants which can 
be expressed in terms of the coefficients and variables of (11) 
by direct substitutions. 

If we apply the transformations (13) alone, we find that it 
is possible to impose the conditions(11) 

(18) 22 + (logAfB)u = 2 1 ' + (log J ' S ) , = 0. 

These conditions are not disturbed by the general trans­
formation (12). If we write 0 = (1/2) log J ' l , equations (11) 
become under the conditions (18) 

%u — 26uyu + 2Byv + Cy = 0, 

yvv + 1A'% - 26vyv + C'y = 0, 

which is the canonical form of Fubini. 
If A and B' are replaced by —du and — 0„, respectively, in 

accordance with (18), the expansion (14) becomes essentially 
the canonical expansion of Fubini(12). The vertices of the 
tetrahedron of reference for this expansion are the same as 
for the case l/m = 1 above, except that the fourth vertex 
is the intersection of the projective normal with Fubini's 
canonical quadric(20). Fubini(13) has derived the same 
expansion without the use of a fundamental system of 
differential equations. He simply assumes an expansion of 
one non-homogeneous coordinate in terms of the other two 
and then chooses his tetrahedron of reference properly. 

Recently Lane(14) has obtained all the above mentioned 
canonical expansions for the equation of a curved surface, 
starting from the equivalent of equations (18). The same 
author(39) has also derived a significant canonical form 
for the equations of a curved surface referred to a conjugate 
net as the parametric net. 

The methods outlined above for obtaining complete 
systems of invariants and covariants and canonical ex­
pansions apply equally well in many other cases. However, 
their consideration must be left to other occasions. 
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B. GEOMETRY OF SURFACES 

1. Surfaces in Ordinary Space. The foundations for a 
theory of the projective differential geometry of an analytic 
non-ruled surface in ordinary space were laid by Wilczynski 
in a series of five memoirs which were published in the Tran­
sactions of this Society from 1907 to 1909. As the theory 
grew and expanded, Green made notable contributions to 
it, especially in a memoir that appeared in the Transactions 
after his death in 1919. The work of Fubini on this subject 
dates from about 1913, and that of Bompiani from about 
1923. 

A considerable portion of the projective differential 
geometry of a surface as elaborated in the last two decades, 
together with some of the more or less incidental results 
found by various geometers before 1907 can be organized 
about three unifying ideas, namely, quadrics containing the 
asymptotic tangents, the canonical pencils of lines, and union 
curves with their generalizations. After establishing an ana­
lytic basis for our discussion we shall consider each of these 
topics in turn. 

Let the projective homogeneous coordinates x(1), • • • , x(4) 

of a point P on a surface 5 be functions of two independent 
variables u, v. If the asymptotic net is parametric and if the 
proportionality factor of the coordinates is suitably chosen, 
then the functions x are solutions of a completely integrable 
system of differential equations of the form 

(0 = log 07). 

The coordinates of a point N on 5 near P can be represented 
by Taylor's formula as power series in the increments Aw, 
Av corresponding to displacement from P to N. Then by 
means of (1) and the equations obtained therefrom by 
differentiation it is possible to express each of these series 
uniquely in the form x±x "T" X2XU\XzXv ~T~x^xUvi wnere Xif • • • , 
#4 are the following series which represent the local coordi-
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nates of N referred to the covariant tetrahedron X} Xy, ) Xy J 
with suitably chosen unit point: 

[ xi = 1 + (pAu2 + qAv2)/2 + • • • , 

, . 1x2 = Au + (6uAu2 + 7Afl2)/2 + • • • , 
(2) \ 

\x3 = Av + ((3Au2 + 6vAv2)/2 + • • • , 
[Xi = AuAv+((3Aus+3duAu2Av+3dvAuAv2+yAv*)/6+ 

The equations of the w-tangent are x3 = x4 = 0, and those of 
the z>~tangent are x2 = x4 = 0. 

2. Quadrics containing the Asymptotic Tangents. The 
equation of any non-singular quadric surface <j> containing 
the asymptotic tangents of S at P can be written (15) in 
the form 

(3) xiXz + x±{KiXi + K2x2 + Kdxz + K^x^ = 0 (2STi 9e 0). 

If i?Ti = — 1, then <ƒ> has contact of the second order with S 
at P and cuts S in a curve with a triple point at P . If the 
triple point tangents coincide, they coincide in one of 
the three directions of Darboux{U) for which 

(4) $duz + ydvz = 0. 

If Ki— — 1 and K2 = KS = 0, then 0 is a quadric of Darboux, 
which has contact of the second order and has the tangents 
of Darboux for triple point tangents. 

Among the quadrics of Darboux there are four that de­
serve mention. If Ki= —(fiy + 0uv)/2, then <£ is the quadric 
of Lie(l7\ called by Wilczynski the osculating quadric, 
which is the limit of the quadric determined by three 
asymptotic tangents of one family constructed at points of a 
fixed curve of the other family as these points approach 
coincidence along the fixed asymptotic. If ^4=—0M V /2, 
then <f> is the canonical quadric of Wilczynski™. Bompiani 
has recently(18) rediscovered this quadric, apparently with­
out recognizing it, by means of the following considerations. 
If a curve C o n 5 has an inflexion at P then C is tangent 
to an asymptotic at P . The limit of the quadric determined 
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by three asymptotic tangents of the other family constructed 
at points of C, as these points approach P along C, is the 
canonical quadric of Wilczynski. If in this definition the 
curve C, instead of having an inflexion, has a stationary 
osculating plane at P , the resulting quadric is the quadric 
of Fubini<19> for which K±= -(2py + 3duv)/6. Finally, if 
i^4 = 0, then <j) is the canonical quadric of Fubini(20\ which 
is the quadric of Darboux that passes through the covariant 
point (0, 0, 0, 1). 

We shall refer briefly to only two more species of quadrics 
of the general type (3). At a point P of curve C on 5 there 
are two of Bompiani's asymptotic osculating quadricsm ; 
each of these is the limit of the quadric determined by three 
asymptotic tangents of one family constructed at points of C, 
as these points independently approach P along C. And 
the quadric of Moutardm of S at P in the direction of a 
tangent / is the locus of the osculating conies at P of the 
curves of intersection of S and the planes of the pencil with 
t as axis. 

3. The Canonical Pencils. The canonical line pencils 
of S a t P may be defined analytically as follows. The line 
h joining P to the point (0, K\j/> K<j>, 1), where 

*\ *\ 
(5) <t> = — log/372, ^ = — log/327, K = const., 

du dv 

is a canonical line of the first kind. When K varies, the locus 
of h is the first canonical pencilt with center at P and lying in 
the canonical plane 0x2 — \fsxz = 0. The polar line Z2 of h with re­
spect to the quadric of Lie is a canonical line of the second 
kind and joins the points (i£<£, 1, 0, 0), (JSty, 0, 1, 0). When 
K varies, the locus of Z2 is the second canonical pencil with 
center at the canonical point (0, \[/, —0, 0) and lying in 
the tangent plane X4 = 0. 

Every canonical line is covariant to the surface, but nega­
tive rational values of K give most of the lines that have 
appeared naturally in geometric investigations. For instance, 

file:///fsxz
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if K = — 1 / 2 , then Zi, l2 are the directrices^ of Wilczynski. 
These have several characteristic properties, but were dis­
covered by Wilczynski as the directrices of the linear 
congruence of intersection of the osculating linear com­
plexes of the two asymptotic curves at P . If i £ = — 1 / 4 , 
then lu h are the canonical edges(9) of Green. Perhaps the 
most recently discovered characteristic property of these 
lines is due to B. Segre who shows(23) tha t all non-composite 
cubic surfaces having contact of the fourth order with S at 
P cut the tangent plane in the same cubic curve which has a 
double point at P and has three inflexions lying on the second 
canonical edge of Green. If K-—1/3, then h is the axis 
of Cech, called(24) by him the line of Segre, because the 
osculating planes of the three curves of Segre f3duB—ydv*~0 
at P intersect in this line. If i£ = 0, then h is the projective 
normal™ of Fubini, which was discovered independently 
by Green and called(9) by him the pseudo-normal. Other 
canonical lines of interest are the principal linesm of Fu­
bini, for which JST = — l /6 f J £ = - l / 1 2 ; the lines<16> for 
which 2 £ > - 5 / 1 2 , i £ = - 3 / 4 ; and<26) the lines<*7> for which 
J £ = - 3 / 8 . 

4. Union Curves. Let us consider a congruence T of lines 
one of which, /, passes through each point P of S but does 
not lie in the tangent plane at P. A union curve of T is de-
fined(28) by Miss Sperry to be a curve on 5 such that its 
osculating plane at each of its points contains the line of T 
through the point. The differential equation of the union 
curves has the form 

(6) v" = A + Bv' + Cv'2 + Dv'* 0 ' = dv/du), 

and the osculating planes at P of all the union curves of Y 
through P form a pencil with the line I through P as axis. 
For this reason Bompiani(29) calls the union curves of 
a congruence an axial system. In metric geometry the 
union curves of the congruence of normals are the geodesies. 

The most general equation of the form (6) defines on S a 
system of curves such that the osculating planes at a point 


