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LINEAR INEQUALITIES AND SOME RELATED 
PROPERTIES OF FUNCTIONS* 

BY L. L. DINES 

Some years ago Lovittf treated a problem concerning 
preferential voting. When expressed in analytic terms, the 
problem could be reduced to the consideration of a set of simul
taneous inequalities of the form 

[ anXi + ai2#2 + • • • + dipXv > 0, 

#21#1 + #22#2 + • • • + UïvXv > 0 , 

I CLnl%l + #M2#2 + ' ' ' + Qiiv%v > 0 j 

where the coefficients at-;- were given real constants, and per
missible values for the x3- were to be determined. In the 
particular problem mentioned v was equal to 3; hence each of 
the inequalities could be given a simple geometric interpreta
tion, and the resultant restriction upon the variables x, of the 
entire set (1) could be discussed clearly and vividly in geometric 
terms. But for v>3> a discussion of the system (1) obviously 
requires analytic methods. If one attempts such a discussion, 
he will almost certainly contrast the lack of available formal 
machinery, with the elegant theory of the system of equations 
which results from (1) if the inequality signs be replaced by 
equality signs. Yet it is obvious that for inequalities as for 
equations, the entire body of facts is inherent in the matrix of 
coefficients A =||a^-||. 

I t was these considerations which directed my thoughts along 
the lines which my remarks will follow this afternoon. I shall 
endeavor first to indicate how, by the introduction of certain 
suitable definitions, the treatment of a system of linear inequali
ties (1) can be made somewhat analogous to the treatment of 

* An address read by invitation of this Society and the Mathematical 
Association of America, at their joint session, December 31, 1929. 

f W. V. Lovitt, Preferential voting, American Mathematical Monthly, 
vol. 23, p . 363. 
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the corresponding system of linear equations. The central 
feature of the latter treatment is, as you will recall, the rank of 
the matrix of coefficients. An analogous notion will be intro
duced, specially designed to apply to the inequalities, and will 
be called the inequality-rank or I-rank of the matrix. Post
poning, for the moment, a precise definition of the notion, I 
will merely say that the /-rank, like the ordinary rank, is a 
well defined integral-valued function of the coefficients a^, 
and can have any one of the values 0, 1, 2, • • • , v. In terms 
of this notion can be stated the following theorem,* which is 
comparable to the fundamental theorem in the theory of linear 
equations. 

THEOREM 1. A necessary and sufficient condition for the exis
tence of a solution of the system of inequalities (1) is that the I-rank 
of the matrix ||a»j|| be greater than zero. If the I-rank of this 
matrix is &(>0), then the system admits a solution in which 
k — 1 of the Xj are arbitrary. 

The proof is of course a consequence of the definition, and 
you will be spared the details. It is desirable, however, to get 
before us the general idea of the /-rank. 

To take the simplest situation first, suppose all the coefficients 
in some one column of the matrix are different from zero and 
have the same sign. Then the solution of the system may be 
obtained immediately. If, for example, the column in question 
is the first, the system may be reduced to one of the two forms 

" CL' • 

%1 > — X) ~Xi> (* = ^ V " ^ ) , 

or 
v Q," 

x\ < — 23 xh ( i = 1>2, • • • , M), 
3=2 # i l 

according as the coefficients in the first column are all positive 
or all negative. In either case the variables #2, #3, • • * , xv can 
be assigned values at pleasure, and X\ is only required to admit 
a finite number of values as lower bounds or upper bounds. 
Under these circumstances, that is, when all the elements in 
one column of the matrix A have the same sign, the matrix will 

* Annals of Mathematics, vol. 20, p. 193. 
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be said to be I-definite with respect to that column. To say merely 
that a matrix is I-definite will imply that there is some column 
with respect to which it is /-definite. 

Suppose now that with respect to some certain column, say 
the rth. column, the matrix A is not /-definite. Then the ele
ments in that column can be divided into three classes, namely, 

those which are positive: aprj p = pi, p., • • * , pp, 
those which are negative: anrj n = nu n:, • • • , n^, 
those which are zero: azn z = zly z2j • • • , zz, 

the number of elements in the respective classes being repre
sented by P , N, and Z. 

We form now a certain matrix of v — 1 columns and PN+Z 
rows, which shall be known as the I-complement of the rth column 
of the given matrix A. A typical column of this new matrix, 
the column characterized by the index j , consists of the elements 

i(P = Pi,p2, ' ' ' , P P ) , 
apranj anraph < ^ = ^ ^ . . . , » * ) , 

azj, (z = 0 i , 2;, • • • , Zz). 

The v — \ columns are obtained by taking j = 1, 2, • • • , r— 1, 
r + 1 , • • • , v. 

If the given matrix A is not /-definite with respect to any of 
its columns, there will be v of these /-complement matrices. By 
suitable conventions to take care of the exceptional cases, we 
may properly say that there are always v of them. They will 
be called the first /-minors or the /-minors of v — \ columns of 
the matrix A. 

In order not to burden you with more detail, suffice it to 
say that each of the first /-minors so formed can be treated 
exactly as was the original matrix, and thus a system of second 
/-minors of v — 2 columns defined. And the process may be re
peated to determine successively /-minors having columns in 
number: v — 3, *> —4, • • • , 1. We can now state the following 
definition. 

DEFINITION. A matrix will be said to be of I-rank k if it 
possesses at least one I-minor of k columns which is I-definite, 
but possesses no I-minor of k + 1 columns which is I-definite. If 
none of its I-minor s is I-definite it will be said to be of I-rank zero. 
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I t is in terms of this definition that Theorem 1 is to be 
interpreted. 

Two additional remarks will suffice to make complete the 
study of linear algebraic inequalities from the point of view 
which I have been presenting. The first has to do with a prac
tical algorithm for actually finding the solution of a given 
system. A very satisfactory algorithm consists merely in con
structing successive /-minors until an /-definite one is reached. 
The general solution can then be determined by inspection, 
in accordance with a few simple rules. 

The second remark has to do with non-homogeneous in
equalities. It is almost obvious that the system 

(2) ^dijXj + bi > 0 , (t = 1,2, • • • , M)> 
y=i 

is essentially equivalent to the system of homogeneous in
equalities 

V 

Ylaaxi + faxf
v+i > 0, ( i = 1 ,2 , • • • , ju), 

%'v+i > 0 . 

Hence the theory of the system (2) can be stated in terms of the 
matrix 

1 #11 • 

ani ' 

0 • 

• div 

ttpv 

• • 0 

bx 1 

b. 

1 1 
Now shortly after the above theory was formulated, the 

system (1) was considered from a different point of view by 
Carver.* He was primarily interested in determining under 
what conditions the system (1) would admit no solution, that is 
would be inconsistent. To be sure, an answer to this question 
is given in Theorem 1, namely the /-rank of the matrix must 
be zero. But he sought and found a condition of a different 
and very interesting sort. I shall take the liberty of stating 
it in somewhat altered form, in order to preserve the analogy 

* Annals of Mathematics, vol. 23, p. 212. 
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to systems of equations, an analogy which we have had in 
mind throughout this discussion. You will recall that as
sociated with any given system of linear homogeneous equa
tions there is a second system of similar equations known as the 
adjoint or associated system, and that the facts relative to the 
solutions of the two systems are intimately connected. In the 
problem we are considering it turns out to be convenient to 
associate with the system of inequalities 

V 

(1) Z X J * J > °> (* = 1,2, • • • , M) , 
3=1 

the system of linear equations 

(10 I X ^ = 0, (ƒ = 1,2,- • • , v). 
»=i 

In order to state nicely the relationship between these two 
systems, it is desirable to give first some definitions which will 
be generalized later. A set of real numbers (#i, x2, • • • , xn) 
will be said to be positive if all of its members are positive, or 
negative if all of its members are negative. In either case it may 
be said to be definite. Somewhat similar but weaker properties 
are defined as follows. A set of real numbers is mildly positive 
(M-positive) if at least one of its elements is positive and none 
are negative; it is mildly negative (M-negative) if at least one 
element is negative and none are positive. In either case it may 
be said to be M-definite. Carver's theorem can now be stated 
as follows: 

THEOREM 2. A necessary and sufficient condition that the sys
tem of inequalities (1) admit no solution (xi, p) is 
that the associated system of equations (1') admit an M-definite 
solution (3/1, y2, * • • , y^). 

The sufficiency of the condition is almost obvious. The 
necessity requires some argumentation which would be out of 
place here. Let us rather consider a question which is immed
iately suggested by Carver's Theorem. That theorem furnishes 
a criterion for the existence of a mildly definite solution of a 
system of linear homogeneous equations (1')- Can we by mak
ing the condition stronger obtain a criterion for the existence of 
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a definite solution of such a system of equations? This turns out 
to be possible. In order to state the criterion in a form similar 
to Theorem 2, it is desirable to introduce a modification of the 
inequality sign. The new symbol > ' is to be interpreted "is 
somewhere greater than and nowhere less than." Thus the 
statement Xi>J0, (i=?l, 2, • • • , m), is equivalent to saying 
that the numbers Xi form an ikf-positive set. We may now state 
the following theorem. 

THEOREM 3. A necessary and sufficient condition that the 
system of mild inequalities 

V 

(3) ^aijXj > ' 0, (i = 1 , 2 , • • • , /x), 
2=1 

admit no solution (xi, X2j j Xp ) is that the associated system of 
equations 

J^aij-yi = 0, (j = 1,2, • • • , v), 
i=l 

admit a definite solution (yi, y%, • • • , y»).* 

The complementary character of the two theorems 2 and 
3 is perhaps better exhibited in the following dual statement. 

THEOREM 4. A necessary and sufficient condition that the 
system of linear equations 

^dij-yt = 0, (J = 1,2, • • • , v), 

admit an M-definite (a definite) solution (ji, y2, • • • , y^) is 
that the values of the n linear forms 

V 

J^aijXj, (i = 1,2, • • • , /0 , 

cannot constitute a definite (an M-definite) set for any values of 
\X\j X2j ' ' ' i Xv). 

I t may be of interest in passing to state that a corollary* of 
Theorem 3 furnishes an easily detectable sufficient condition 
that a system of linear equations admit a definite solution. 

* Annals of Mathematics, vol. 28, pp. 41-42. 
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One further remark will conclude what I have to say about 
algebraic systems. A theory somewhat, though not completely, 
analogous to that summarized in Theorem 1 for the system of 
inequalities (1) can be formulated relative to the system of mild 
inequalities (3). The roles played by the notions /-definite and 
/-rank are played by the analogous notions If-definite and M-
rank in the other. 

I wish to turn now to some of the extensions and generaliza
tions of the ideas we have been considering. The theory of 
systems of linear algebraic equations has led in various ways to 
theories of systems of linear equations in infinitely many 
unknowns, and to theories of linear integral equations. It is 
natural to inquire whether the theory of algebraic ^equalit ies 
can be extended in similar fashion. To put the question, for 
preliminary examination, in a very general form suggested by 
the work of Professor E. H. Moore, one may ask what can be 
said of an inequality of the form 

(4) JMP,q)&q) > 0, (P on range P), 

or 

(5) Jqa(P, q)t(q) > '0, (pon range P), 

where p and q are variables whose ranges are classes of elements 
P and Q respectively, a(p, q) is a given real-valued function, 
%(q) is the unknown function to be determined, and Jq is a linear 
operator of more or less general nature. The systems of alge
braic inequalities which we have considered are obtained from 
(4) and (5) by specializing the ranges P and Q to be the sets of 
numbers 1, 2, • • • , /x, and 1,2, • • • , v respectively, and the 
operator Jq to be the summation operator 2g . 

Our first remark on this question imposes a great and regret
table limitation, which will later be partially removed. The 
methods used in developing the algebraic theory involved an 
algorithm consisting of a finite number of steps corresponding 
to the finite number of variables x. Until other methods are 
devised, it is impossible to take for the range of the variable q 
any but a finite set of elements. The operator Jq is for the same 
reason restricted essentially to the finite summation operator 
SQ. The type of inequality which we may hope to treat by 
methods which are direct generalizations of the algebraic 
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theory is therefore much simpler than (4) or (5). Of these two 
forms, the latter turns out to be the more interesting, as well 
as the more tractable. Under the limitations just mentioned, 
it reduces to a form which may be written 

V 

(6) I > / ( £ H / > ' 0, (p on range P ) , 

where aj(p), (.7 = 1,2, • • • , v), is a given set of real functions of 
a general variable p, and the set of numbers £,- is to be deter
mined. In view of the meaning of the symbol > ' , the problem 
may then be stated as follows: Given a finite set of real func
tions ctj(p) of a variable p, the range of which is any class of 
elements P ; to determine a linear combination of these func
tions which is ikf-definite. 

A fairly simple generalization of the algebraic theory leads 
to a satisfactory treatment of this problem. A certain integral-
valued function of the set of functions {(Xj{p)} generalizes the 
notion of the ikf-rank of the algebraic matrix. Calling it the 
M-rank of the set of functions, we may state the following 
theorem.* 

A necessary and sufficient condition that the set of v functions 
admit an M-definite linear combination is that its M-rank be 
greater than zero. If the M-rank is r (0<r<v) then there is a 
subset of v — r + 1 of the functions which admit an M-definite 
linear combination, but there is no subset of v — r functions for 
which this is true. 

A generalized algorithm provides a method for determining 
an ikf-definite linear combination when one exists. 

Of greater interest perhaps are the results obtained in an 
at tempt to generalize the theorem relative to the associated 
algebraic systems. The adjoint or associated equation of the 
inequality (6) would be 

(60 JPri(p)*j(p) = 0 , ( i = 1,2, • • • , v)9 

with Jp a suitably restricted linear operator; and the general
ized theorem would be to the effect that the inequality (6) 
admits no solution {£,-} if and only if the system of equations 
(6') admits a positive solution rj(p). This theorem is un-

* Transactions of this Society, vol. 29, p. 468. 
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doubtedly true if the class of functions considered and the 
linear operator be suitaby restricted; but the problem of de
termining suitable restrictions so as to retain the greatest 
possible generality has not been solved. What has been done 
is to prove the theorem for the two important cases : first,* the 
case in which the range of p is the infinite sequence 1, 2, 3, • • • , 
the functions of p considered are infinite sequences of real 
numbers satisfying certain convergence conditions, and the 
operator Jp is the infinite summation operator; and second,f 
the case in which the range of p is a closed interval of real 
numbers, the functions of p are continuous, and the operator 
Jp is the definite integral over the interval. 

The latter of these two theorems is the more interesting, and 
I shall limit myself to a statement of it. With some changes 
to alter the emphasis it is as follows. 

THEOREM 5. A necessary and sufficient condition that a set of 
real functions ai(x), a2(x), • • • , av(x), continuous and linearly 
independent on an interval a^x^b, admit a positive continuous 
function orthogonal to all of them is that every linear combination 
of the functions change sign on the interval. 

The necessity of the condition is alm,ost obvious; the proof 
of the sufficiency offers considerable difficulty. The method 
which was effective was analogous to the method used in the 
algebraic theory. 

I may in passing make a remark similar to one I made in an 
analogous algebraic situation. While the criterion furnished by 
Theorem 5 for the existence of a positive function orthogonal 
to each of a given set of continuous functions may not be 
practicable, the theorem can be made to yield a sufficient 
conditionj which is easily detectable when present, and an 
algorithm for determining such a function in this case. 

Now, by the use of Theorem 5 and its analogs, in such 
fields as it possesses valid analogs, we are able to push 
somewhat further our study of the general inequality (5). You 
will recall that so far we have been restricted to cases in which 

* Transactions of this Society, vol. 30, p. 440. 
t Transactions of this Society, vol. 30, p. 425. 
X Annals of Mathematics, vol. 28, p. 393. 
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the range of the variable q is a finite set of elements. We are 
now able to remove this restriction. Unfortunately we have to 
replace it by another restriction, which while less stringent, 
is still regrettable. We shall assume that the kernel a(p, q) 
has the particular form 

m 

a restriction which is sometimes described in the integral equa
tion theory by saying that the kernel is of finite rank. 

THEOREM 6.* A necessary and sufficient condition that the 
inequality 

(5) JMP,q)t(q) > ' o , (ponP), 

admit no solution £ is that the associated equation 

(50 Jp*(P,q)v(P) = 0 , (qonQ), 

admit a positive solution rj. 

The ranges of the variables p and q need not be the same nor 
even of the same character. The two operators Jp and Jq may 
be of different character. 

Theorem 6 can be proved on the basis of a few simple postu
lates concerning the classes of functions considered and the 
linear operators, postulates which have been proved to hold in 
the classical instances. In particular, the theorem holds if p 
and q are ordinary real variables, the functions considered are 
continuous, and the operators indicate definite integration, in 
which case (5) and (50 would have the respective forms 

(7) f a(x,s)£(s)ds > ' 0 , (a£ xgb), 
J a 

and 
(77) I a(s,x)r)(s)ds = 0, (a g x ^ b). 

J a 

There are indications that the serious limitation that the 
kernel a be of finite rank is not essential to the truth of the 

* Transactions of the Royal Society of Canada, vol. 23, p. 141. 
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theorem, but no proof has been devised which will apply to a 
more general type of kernels. 

The question naturally arises as to whether a theorem 
analogous to Theorem 6 holds relative to the strong inequality 
(4). It is perhaps surprising that the answer is in the negative. 
A simple example shows that the expected theorem does not 
hold even for the strong integral inequality analogous to (7). 

We come now finally to a type of inequality which would 
naturally suggest itself first for consideration, but which has 
been deferred to give place to certain prerequisites. The 
inequality 

(8) £ ( * ) + ( a(x,s)£(s)ds > 0, (a^x^b), 

may, by analogy with the integral equation theory, be called a 
linear integral inequality of second kind. The theory of this 
inequality follows,* with the aid of some of our previous notions, 
from the theory of the analogous integral equation. For it is 
indeed equivalent to the equation 

(9) £0) + I a(x9s)£(s)ds = *•(*), (a S x S b), 
J a 

where w(x) is an arbitrary positive function. 
If the Fredholm determinant of the kernel <x(x, y) is different 

from zero, the general solution of the equation (9) and hence of 
the inequality (8) may be obtained in the ordinary Fredholm 
form and will involve the arbitrary positive function T(X). If 
on the other hand, the Fredholm determinant of the kernel 
a(x, y) is equal to zero, it follows from the Fredholm theory 
that the equation (9) will admit a solution £(x) if and only if 
the function w(x) is orthogonal to every solution rj(x) of the 
associated homogeneous equation 

(10) r/O) + I a(s,x)ri(s)ds = 0, 
J a 

or what amounts to the same thing if w(x) is orthogonal to 
each of a fundamental set of solutions of (10). Thus a condition 

* Transactions of this Society, vol. 30, p. 437. 
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is imposed upon the function TT(X). Suppose a fundamental set 
of solutions of (10 is before us, say rçi(*0> ̂ (x ) , • • • , r]v(x). Can 
a positive function ir(x) be determined which is orthogonal to 
each function of the set? We have the criterion in Theorem 5. 
Every linear combination of the functions must change sign 
on the interval in question. But the linear combinations of these 
functions constitute all the non-trivial solutions of equation 
(10). Hence we have the following theorem. 

THEOREM 7. A necessary and sufficient condition that the 
integral inequality (8) admit a solution £ is that every non-trivial 
solution 7] of the associated integral equation (10) shall change 
sign,* 

I t may be noted that this theorem can be stated in a form 
exactly analogous to Theorem 2 of the algebraic theory. 

Time does not warrant a discussion of the generalization of 
the integral inequality of the second kind. Suffice it to «ay 
that it admits of complete generalization! on the basis of 
Moore's generalized integral equation theory and a few ad
ditional postulates. 

To summarize briefly the ideas which I have tried to present, 
two types of systems of algebraic inequalities have been con
sidered: (1) and (3). Each admits a theory somewhat analogous 
to the classical theory of a system of linear equations. As in the 
classical theory, so here, there are two points of view: one in 
which attention is focused on the matrix of coefficients—the 
rank, the /-rank or ilf-rank; the other which finds its interest 
in the relationship between the given system and an associated 
system. Theorem 1 is typical for the former and Theorem 2 
for the latter. 

An at tempt has been made to extend the algebraic theory, 
by way of analogy and generalization, to other types of linear 
inequalities. The general principle has been to replace the ranges 
of the variables and the summation operator by more general 
or at least by different ranges and operators. The attempted 
generalization has been partially successful. Naturally some 

* The case in which the Fredholm determinant is different from zero is 
compatible with this theorem. 

t This Bulletin, vol. 33, p. 695. 
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methods which were effective in the algebraic case are not 
extensible. Some of the resulting gaps and limitations have been 
taken care of by alternative methods. Others may be welcomed 
as outstanding questions, challenges. For example, in Theorem 
5, a statement is made relative to definite set of functions: can 
the restriction of finiteness be removed? Again in Theorem 6, 
the kernel is required to be of finite rank: can this restriction be 
removed? 

For one type of non-algebraic inequality a somewhat com
plete and satisfactory theory can be given, namely the linear 
integral inequality of second kind (8) and its generalization in 
the sense of General Analysis. Some other results, such as 
Theorem 5, while incomplete from our present point of view, 
may I hope find points of contact with other investigations in 
analysis. 

T H E UNIVERSITY OF SASKATCHEWAN 
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