CONCERNING A SET OF AXIOMS FOR THE SEMI-QUADRATIC GEOMETRY OF A THREE-SPACE*

BY J. L. DORROH

In his paper *Sets of metrical hypotheses for geometry*, † R. L. Moore raises the question whether the set O of order axioms and the set C of congruence axioms employed therein, together with M, the proposition that every segment has a mid-point, and P_2, a form of the parallel postulate, are sufficient to give the semi-quadratic geometry of a three-space. At the same time, he states that this question may be answered in the affirmative if it can be proved on the basis of O, C, and M that all right angles in space are congruent to each other. In the present paper it will be shown that O and C are sufficient to require that all right angles in space be congruent to each other.

It is a result of a recent paper‡ of the present author that the theorems of sections 1, 2, 3, and 4 of M.H. are consequences of O and C. Theorems from these sections of M.H. will be quoted without further mention of this justification of their use.

Theorem 1. If A, B, C, D are four non-coplanar points such that $\angle ABD$ is a right angle§ and $\angle CBD$ is a right angle, and E is any point distinct from B and in the plane ABC, then $\angle EBD$ is a right angle.

Proof. If E is a point of the line AB, or of the line CB, then, by hypothesis, $\angle EBD$ is a right angle.

Suppose, then, that E belongs to the plane ABC, is distinct from B, and belongs neither to the line AB nor to the line BC. Let C' denote a point such that CBC'. It follows by a corollary

* Presented to the Society, September 6, 1928.
† Transactions of this Society, vol. 9 (1908), pp. 487–512. The notation M. H. will be used to designate this paper. Similarly, S. A. will be used to denote O. Veblen’s paper, *A system of axioms for geometry*, ibid., vol. 5 (1904), pp. 343–384.
§ See Definition 7 of M. H., §3.
of Theorem 16 of S.A. that the line BE contains a point H such that AHC or AHC'. Let G denote one of the points C or C' so that AHG. Let F denote a point such that DBF and $DB \equiv BF$. Since by hypothesis the line BD is perpendicular to the line AB and to the line BG, it follows that $DG \equiv FG$ and $AD \equiv AF$. Since $AG \equiv AG$ and $AH \equiv AH$, it follows* that $DIH \equiv FH$. Hence, by definition, $\angle DBH$ is a right angle.

Theorem 2. If L, M, N, O are four non-coplanar points such that $\angle LON$ is a right angle and $\angle MON$ is a right angle, then $\angle LON \equiv \angle MON$.

Proof. Since L, M, N, O are non-coplanar, L, O, M are non-collinear. Let E denote a point such that the ray OE bisects $\angle LOM$.† Let M' denote a point in the order MOM', and let Q denote a point such that the ray OQ bisects $\angle M'OL$. Then $\angle EOQ$ is a right angle.‡ Let P denote a point such that QOP and $OP \equiv OQ$; then $QE \equiv PE$. Also, since by Theorem 1 $\angle NOP \equiv \angle NOQ$, $QN \equiv PN$. The ray OM contains a point K such that PKE, and the ray OL contains a point R such that QRE. By Theorem 1 of M.H. §3, $OK \equiv OR$ and $EK \equiv ER$. Since PKE, QRE, $EP \equiv EQ$, $NE \equiv NE$, $NP \equiv NQ$, and $EK \equiv ER$, then $NK \equiv NR$,§ and, by definition, $\angle NOR \equiv \angle NOK$.

Theorem 3. If α_1 and α_2 are two intersecting planes and ϕ_1 is a right angle in α_1 and ϕ_2 is a right angle in α_2, then $\phi_1 \equiv \phi_2$.

Proof. Let k denote the line of intersection|| of α_1 and α_2. Let k_1 denote a line in α_1 perpendicular to k at a point O of k, and let k_2 denote a line in α_2 perpendicular to k at O. Let ψ_1 be a right angle formed by k_1 and k, and let ψ_2 be a right angle formed by k_2 and k. It follows from Theorem 2 that $\psi_1 \equiv \psi_2$.

* A special case of Theorem 11 of M. H. §1 may be stated as follows: If A, B, C are three non-collinear points and A', B', C' are three non-collinear points, and ADC, $A'D'C'$, $AB \equiv A'B'$, $AC \equiv A'C'$, $AD \equiv A'D'$, $BC \equiv B'C'$, then $BD \equiv B'D'$. For the suggestion that the figure used in the proof of Theorem 1 and the use of the particular theorem just stated would shorten the arguments I had previously given for Theorems 1 and 2, I am indebted to H. G. Forder.

† See a corollary of Theorem 6 of M. H., §3.

‡ See proof of Theorem 7 of M. H., §3.

§ See the theorem stated in a footnote on Theorem 1.

By Theorem 1 of M.H. §4, \(\phi_1 = \psi_1 \), and \(\phi_2 = \psi_2 \). It follows, then, from Theorem 14 of M.H. §1, that \(\phi_1 = \phi_2 \).

Theorem 4. If \(\phi_1 \) and \(\phi_2 \) are two right angles in space, then \(\phi_1 = \phi_2 \).

Proof. If \(\phi_1 \) and \(\phi_2 \) are in the same plane, \(\phi_1 = \phi_2 \) by Theorem 1 of M.H. §4. If \(\phi_1 \) and \(\phi_2 \) are not in the same plane, they lie in intersecting planes or in non-intersecting planes. If they lie in intersecting planes, they are congruent to each other by Theorem 3. If \(\phi_1 \) and \(\phi_2 \) lie in the planes \(\alpha_1 \) and \(\alpha_2 \), respectively, and \(\alpha_1 \) does not intersect \(\alpha_2 \), there exists a plane \(\alpha_3 \) which intersects both \(\alpha_1 \) and \(\alpha_2 \). There exists in \(\alpha_3 \) a right angle \(\phi_3 \). By Theorem 3, \(\phi_1 = \phi_3 \) and \(\phi_2 = \phi_3 \); hence, by Theorem 14 of M.H. §1, we have \(\phi_1 = \phi_2 \).

THE UNIVERSITY OF TEXAS

CERTAIN QUINARY FORMS RELATED TO THE SUM OF FIVE SQUARES*

BY B. W. JONES†

1. **Introduction.** The number of solutions in integers \(x, y, z \) of the equation \(n = x^2 + y^2 + z^2 \) is a function of the binary class number of \(n \). For numerous forms \(f = ax^2 + by^2 + cz^2 \), the expression of the number of solutions of \(f = n \) in terms of the class number is another way of showing that the number of representations of \(n \) by \(f \) is a function of the number of representations of various multiples of \(n \) as the sum of three squares.‡

Similarly, the number of solutions of the equation \(n = x^2 + y^2 + z^2 + t^2 \) in integers is the sum of the positive odd divisors of \(n \), multiplied by 8 or 24, according as \(n \) is odd or even. There are various forms \(f = ax^2 + by^2 + cz^2 + dt^2 \) for which the number of representations of \(n \) by \(f \) is a multiple of the sum of the odd divisors of \(n \). The number of representations of \(n \) by one of

* Presented to the Society, April 5, 1930.
† National Research Fellow.