SOME THEOREMS ON PLANE CURVES

BY W. V. PARKER

In applying Abel's theorem to hyperelliptic integrals, we are interested in the intersections of certain curves with a curve \(C \) of the type \(y^2 = f(x) \), where \(f(x) \) is a polynomial. The functions used in the following are all polynomials of degree indicated by their subscripts. If \(f_n(x) = f_k(x)f_{n-k}(x) \) we may without any loss of generality assume that \(n \geq k \geq n/2 \) and this assumption will be made throughout.

LEMMA. If \(C \) is the curve \(y^2 = f_n(x) \equiv f_k(x)f_{n-k}(x) \), \(c_1 \) the curve \(y = f_k(x) \) and \(c_2 \) the curve \(y = f_{n-k}(x) \), then all the finite points of intersection of \(c_1 \) and \(c_2 \) are on \(C \), and the curve \(S \) whose equation is \(y = \left[f_k(x) + f_{n-k}(x) \right]/2 \) is tangent to \(C \) at each of these \(k \) points.

Suppose \((\alpha, \beta)\) is any one of the \(k \) points of intersection of \(c_1 \) and \(c_2 \); then \(\beta = f_k(\alpha) \) and \(\beta = f_{n-k}(\alpha) \) and therefore \(\beta^2 = f_k(\alpha)f_{n-k}(\alpha) = f_n(\alpha) \), that is \((\alpha, \beta)\) is on \(C \). Obviously \(S \) passes through the \(k \) points of intersection of \(c_1 \) and \(c_2 \) and hence meets \(C \) in these \(k \) points. Eliminating \(y \) from the equations of \(S \) and \(C \) we get

\[
\left[\frac{f_k(x) + f_{n-k}(x)}{2} \right]^2 - f_k(x)f_{n-k}(x) = \left[\frac{f_k(x) - f_{n-k}(x)}{2} \right]^2 = 0
\]

as the equation giving the abscissas of the \(2k \) points of intersection of \(S \) and \(C \). Since the left hand side of this equation is a perfect square each abscissa is counted twice, and therefore since, in \(S \), \(y \) is a one-valued function of \(x \), \(S \) is tangent to \(C \) at each of these \(k \) points.

As an immediate consequence of this lemma we have the following result.

Theorem 1. If \(C \) is the curve \(y^2 = \phi_n(x) \), where \(\phi_n(e_i) = 0 \), \((i = 1, \ldots, n)\), and \((\alpha, \beta), (\beta \neq 0)\), is a point on \(C \), and \(c_1 \) is the curve of the form \(y = \phi_k(x) \) determined by \((\alpha, \beta)\) and any \(k \) of the points \((e_i, 0)\), and \(c_2 \) is the curve of the form \(y = \phi_{n-k}(x) \) determined by \((\alpha, \beta)\) and the remaining \(n-k \) of the points \((e_i, 0)\), then \(c_1 \) and
c_2 have all their k points of intersection* on C, and the curve S whose
equation is $y = \left[\phi_k(x) + \phi_{n-k}(x)\right]/2$ is tangent to C at each of these
k points.

Since $\phi_n(x) = \phi_k(x)\phi_{n-k}(x)$ for $n+1$ values of x, we have
$\phi_n(x) = \phi_k(x)\phi_{n-k}(x)$ and the theorem follows from the lemma.

That all curves S of the form $y = g_k(x)$ which are tangent to a
curve C of the form $y^2 = g_n(x)$ at each of k points can be obtained
by this process, is a consequence of the following theorem.

Theorem 2. If (α_i, β_i), $(i = 1, 2, \ldots, k)$, are k points on the
curve C whose equation is $y^2 = g_n(x)$ such that there exists a curve S
of the form $y = g_k(x)$ which is tangent to C at each of these k points,
and if the curve c_1 whose equation is $y = h_k(x)$ meets C in the k
points (α_i, β_i) and the point $(e_\lambda, 0)$, where e_λ is any zero of $g_n(x)$,
then $h_k(x)$ is a factor of $g_n(x)$.

Since S is tangent to C at each of the k points, the equation
$g_k^2(x) - g_n(x) = 0$ has the roots $\alpha_1, \alpha_2, \ldots, \alpha_k$, each counted
twice, and since c_1 meets S in the k points (α_i, β_i), the equation
$g_k(x) - h_k(x) = 0$ has the roots $\alpha_1, \alpha_2, \ldots, \alpha_k$.

We have therefore

$$[g_k(x) - h_k(x)]^2 = \mu [g_k^2(x) - g_n(x)],$$

and hence

$$[g_k(e_\lambda) - h_k(e_\lambda)]^2 = \mu [g_k^2(e_\lambda) - g_n(e_\lambda)];$$

but $h_k(e_\lambda) = g_n(e_\lambda) = 0$, hence $\mu = 1$, and we have

$$g_k^2(x) - 2g_k(x)h_k(x) + h_k^2(x) \equiv g_k^2(x) - g_n(x),$$

or

$$g_n(x) \equiv h_k(x)[2g_k(x) - h_k(x)].$$

If c_1 is the curve $y = a_0 x^k + a_1 x^{k-1} + \cdots + a_{k-1} x + a_k$ deter-
mined by the k points (α_i, β_i) and one of the n points $(e_\lambda, 0)$, the
coefficient a_0 may be zero and the degree of the right hand side
less than k. For suppose we choose a particular one, say e_1, of

* Only finite points of intersection are considered here. In certain special
cases when n is even and $k = \frac{n}{2}$, c_1 and c_2 may coincide or they may have less than k
finite points of intersection. The lemma and Theorem 1 are still true for
these cases when finite points of intersection are considered.
the zeros of $g_n(x)$ and find that the expression on the right is of degree k; then it will have as zeros k of the zeros of $g_n(x)$, say e_1, e_2, \ldots, e_k. Then the curve $y = b_0x^k + b_1x^{k-1} + \cdots + b_{k-1}x + b_k$ determined by the k points (α_i, β_i) and one of the remaining points $(e_i, 0)$, say $(e_{k+1}, 0)$, will have its right hand side of degree $n - k$ at most. For suppose the right hand side of degree $m > n - k$; then it will have as zeros m of the zeros of $g_n(x)$ and hence at least one of the e_1, e_2, \ldots, e_k and therefore $a_0x^k + a_1x^{k-1} + \cdots + a_k = b_0x^k + b_1x^{k-1} + \cdots + b_k$ for at least $k+1$ values. But since $b_0x^k + b_1x^{k-1} + \cdots + b_k$ has at least one zero which is not a zero of $a_0x^k + a_1x^{k-1} + \cdots + a_k$ this is impossible. It follows as a consequence of Theorem 1 that the degree of the right hand side is either k or $n - k$ depending on which zero of $g_n(x)$ is chosen for determining the curve c_i.

If in the above the degree of $h_k(x)$ is k, the degree of $2g_k(x) - h_k(x)$ will be $n - k$; if we denote the latter by $h_{n-k}(x)$, we shall have $g_k(x) = [h_k(x) + h_{n-k}(x)]/2$. That is, the curve S is $y = [h_k(x) + h_{n-k}(x)]/2$, where the curve $y = h_k(x)$ is determined by some k of the points $(e_i, 0)$ and one of the points (α_i, β_i), and the curve $y = h_{n-k}(x)$ is determined by the remaining $n-k$ of the points $(e_i, 0)$ and the same one of the points (α_i, β_i).

Thus far it has not been necessary to say anything about the nature of the zeros e_1, e_2, \ldots, e_n. When these zeros are distinct we have the following theorem.

Theorem 3. The number of curves of the type $y = g_k(x)$ which are tangent to a curve C of the type $y^2 = g_n(x)$ at any fixed point (α, β) and at $k-1$ other points, is C_k^k for $k > n/2$ and $\frac{1}{2}C_k^k$ for $k = n/2$, provided that the zeros of $g_n(x)$ are distinct.

For by Theorem 1 we get a curve of this type corresponding to any k of the zeros of $g_n(x)$ and by Theorem 2 all curves of this type are obtained by this process. It must be shown, therefore, that when $k > n/2$ the same curve cannot be obtained from two different sets of k zeros of $g_n(x)$. Suppose $y = \phi_k(x)$ and $y = \psi_k(x)$ are both of degree k and cut out the same set of k points (α_i, β_i) on C; then $\phi_k(x)$ and $\psi_k(x)$ must have at least one zero in common and therefore $\phi_k(x) = \psi_k(x)$. If n is even and $k = \frac{1}{2}n$, then each set of k such points is cut out by two and only two of these curves by Theorem 1.

From Theorem 1, the ordinary construction for drawing a
tangent to a conic at a point \(P \) on it, when the axes and vertices are known, follows immediately.

The following example is a rather interesting illustration of Theorem 1. Let \(C \) be the curve

\[
y^2 = f_\theta(x) = -x^6 + 14x^4 - 49x^2 + 36.
\]

The zeros of \(f_\theta(x) \) are 1, \(-1\), 2, \(-2\), 3, \(-3\). Let the curve \(c_1 : y = f_\theta(x) \) be determined by \((0, 6)\) \((1, 0)\) \((-1, 0)\) \((3, 0)\) and the curve \(c_2 : y = g_\theta(x) \) be determined by \((0, 6)\) \((2, 0)\) \((-2, 0)\) \((-3, 0)\); then we have

\[
\begin{align*}
f_\theta(x) &= 2x^3 - 6x^2 - 2x + 6, \\
g_\theta(x) &= -\frac{1}{2}x^3 - \frac{3}{2}x^2 + 2x + 6.
\end{align*}
\]

These curves \(c_1 \) and \(c_2 \) meet on \(C \) in three points whose abscissas are 0, \((9 + \sqrt{241})/10\), \((9 - \sqrt{241})/10\). The curve \(S \) whose equation is

\[
y = \frac{f_\theta(x) + g_\theta(x)}{2} = \frac{3}{4}x^3 - \frac{15}{4}x^2 + 6
\]

is tangent to \(C \) at each of these three points.

If we take for \(c_1 \) the curve \(y = g_\theta(x) \) determined by \((0, 6)\), and for \(c_2 \) the curve \(y = g_\theta(x) \) determined by \((0, 6)\) \((1, 0)\) \((-1, 0)\) \((2, 0)\) \((-2, 0)\) \((3, 0)\) \((-3, 0)\), we get

\[
\begin{align*}
g_\theta(x) &= 6, \\
g_\theta(x) &= -\frac{1}{6}x^6 + \frac{7}{3}x^4 - \frac{49}{6}x^2 + 6.
\end{align*}
\]

The curves \(c_1 \) and \(c_2 \) are each tangent to \(C \) at each of the three points \((0, 6)\) \((\sqrt{7}, 6)\) \((-\sqrt{7}, 6)\) and the curve \(S \) whose equation is

\[
y = \frac{g_\theta(x) + g_\theta(x)}{2} = -\frac{1}{12}x^6 + \frac{7}{6}x^4 - \frac{49}{12}x^2 + 6
\]

meets \(C \) four times at each of the three points.