1. Introduction. Consider an algebra \((K, +, \times)\), such as ordinary real algebra, in which there are two elements “0” and “1” having the properties that, for any element \(a\),

\[
(1) \quad a + 0 = 0 + a = a, \quad a1 = 1a = a.
\]

Let

\[
(x_1, x_2, \ldots, x_m; a_1, a_2, \ldots, a_m)
\]

denote a unit-zero function with respect to the sequence of \(m\) elements, \(a_1, a_2, \ldots, a_m\) of \(K\), that is, a function \(f(x_1, x_2, \ldots, x_m)\) of \(m\) elements \(x_1, x_2, \ldots, x_m\) such that \(f = 1\) or \(0\), according as the equalities, \(x_i = a_i\) \((i = 1, 2, \ldots, m)\), all hold or do not all hold. Accordingly, \((x; a)\) will denote a unit-zero function with respect to \(a\), that is, a function \(f(x)\) such that \(f(x) = 1\) or \(0\), according as \(x = a\) or \(x \neq a\). Then the following propositions (2)–(4) evidently hold:

\[
(2) \quad (x_1, x_2, \ldots, x_m; a_1, a_2, \ldots, a_m) = (x_1; a_1)(x_2; a_2)\cdots(x_m; a_m);
\]

\[
(3) \quad a(x_1, x_2, \ldots, x_m; a_1, a_2, \ldots, a_m) = a \text{ or } 0,
\]

according as \(x_i = a_i\) \((i = 1, 2, \ldots, m)\), all hold or do not all hold;

\[
(4) \quad a(x_1, x_2, \ldots, x_m; a_1, a_2, \ldots, a_m)
\]

\[
+ b(x_1, x_2, \ldots, x_m; b_1, b_2, \ldots, b_m) = a, \text{ or } b, \text{ or } 0,
\]

according as \(x_i = a_i\) all hold, or \(x_i = b_i\) all hold, or neither \(x_i = a_i\) all hold nor \(x_i = b_i\) all hold, \((i = 1, 2, \ldots, m; a_i \neq b_i\) for some \(i)\).

In a previous paper† propositions (1)–(4) were made the basis of a method of obtaining arithmetic representations of arbitrary operations and relations in a finite class of elements. Since

* Presented to the Society, April 11, 1931.

propositions (1)–(4) also hold when the symbols belong to Boolean algebra, the question naturally arises: To what extent can unit-zero functions be used analogously to obtain Boolean representations of arbitrary operations and relations? The object of the present paper is to answer this question.

2. Determination of Boolean Unit-Zero Algebras. The possibility of representing arbitrary operations and relations by unit-zero functions of an algebra hinges on the existence in this algebra of a unit-zero function for every sequence of \(m \) of its elements. Let us call an algebra which has a unit-zero function for every sequence of \(m \) of its elements a \textit{unit-zero algebra}. I proceed first to determine all Boolean unit-zero algebras.

This determination is made easy by noting at the outset that a unit-zero Boolean function must satisfy proposition (2) above and also that it must be single-valued. We therefore need to look only for Boolean unit-zero functions \(f(x) \) of a \textit{single} variable \(x \) of the form

\[
(x; a) = (1; a)x + (0; a)x'.
\]

From (5) we see, by putting \(a = 0, 1 \), that in a Boolean algebra of \textit{two} elements, \(x \) is the unit-zero function of \(x \) with respect to 1, and \(x' \) is the unit-zero function of \(x \) with respect to 0; in symbols,

\[
(x; 1) = x, \quad (x; 0) = x'.
\]

We have, then, that a \textit{two-element Boolean algebra is a unit-zero algebra, the unit-zero functions of one variable \(x \) being given by (6).}

By (2) and (6), \textit{all the unit-zero functions of a two-element Boolean algebra can be readily written down. Thus, the unit-zero functions of two variables \(x, y \) are given by}

\[
\begin{align*}
(x, y; 1, 1) &= xy, \quad (x, y; 1, 0) = xy', \\
(x, y; 0, 1) &= x'y, \quad (x, y; 0, 0) = x'y'.
\end{align*}
\]

In general, \textit{the unit-zero functions of \(m \) variables are the \(2^m \) constituents in the normal development of 1 with respect to the \(m \) variables.}

* The usual Boolean notations are employed: \(a + b, ab, a', 0, 1 \) are respectively the sum of \(a \) and \(b \), the product of \(a \) and \(b \), the negative of \(a \), the zero element, the \textit{whole}.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
Let us now consider a Boolean algebra A of more than two elements. A must have an element $e \neq 0, 1$. Suppose, first, that A has a unit-zero function $f(x)$, of form (5), with respect to e. Then

(i) \[f(e) = 1, f(0) = 0, f(1) = 0, \quad (e \neq 0, 1). \]

But (i) is inconsistent with (5). Hence, our algebra A has no unit-zero function with respect to a sequence containing the element e.

Suppose, next, that the algebra A has a unit-zero function $f(x)$, of form (5) with respect to 0. Then

(ii) \[f(0) = 1, f(1) = 0, f(e) = 0, \quad (e \neq 0, 1). \]

Hence, by (5),

(iii) \[f(x) = x', f(e) = 0, \quad (e \neq 0, 1). \]

But equations (iii) are inconsistent. Hence, our algebra A has no unit-zero function with respect to a sequence containing the element 0.

Similarly, our algebra A has no unit-zero function with respect to a sequence containing the element 1. Hence, a Boolean algebra of more than two elements has no unit-zero functions at all.

Our main result is, then, the following theorem.

Theorem A. The only Boolean unit-zero algebra is a two-element Boolean algebra.

3. Dual Considerations. By the Principle of Duality in Boolean algebras each of the foregoing propositions about unit-zero Boolean functions has a dual proposition corresponding to it. To state these duals, let me use the notion of zero-unit function (to be distinguished from unit-zero function). By a zero-unit function of x_1, x_2, \cdots, x_m with respect to the sequence a_1, a_2, \cdots, a_m, symbolized by

\[[x_1, x_2; \cdots, x_m; a_1, a_2, \cdots, a_m], \]

let us mean a function $f(x_1, x_2, \cdots, x_m)$ such that $f = 0$ or 1, according as $x_i = a_i, (i = 1, 2, \cdots, m)$, all hold or do not all hold. The duals of (2), (3), and (4) are, then, respectively (2'), (3'), and (4') following:
(2') \[[x_1, x_2, \ldots, x_m; a_1, a_2, \ldots, a_m] = [x_1; a_1] + [x_2; a_2] + \cdots + [x_m; a_m]; \]
(3') \[a + [x_1, x_2, \ldots, x_m; a_1, a_2, \ldots, a_m] = a \text{ or } 1, \]
according as \(x_i = a_i \) (\(i = 1, 2, \ldots, m \)), all hold or do not all hold;
(4') \[\{ a + [x_1, x_2, \ldots, x_m; a_1, a_2, \ldots, a_m] \} \cdot \{ b + [x_1, x_2, \ldots, x_m; b_1, b_2, \ldots, b_m] \} = a, \text{ or } b, \text{ or } 1, \]
according as \(x_i = a_i \) all hold, or \(x_i = b_i \) all hold, or neither \(x_i = a_i \) all hold nor \(x_i = b_i \) all hold, \((i = 1, 2, \ldots, m; a_i \neq b_i \text{ for some } i)\).

The dual of Theorem A is

Theorem A'. The only zero-unit Boolean algebra is a two-element Boolean algebra.

For a two-element Boolean algebra we have, further:

(6') \[[x; 0] = x, \quad [x; 1] = x'; \]
(7') \[[x, y; 0, 0] = x + y, \quad [x, y; 0, 1] = x + y', \quad [x, y; 1, 0] = x' + y, \quad [x, y; 1, 1] = x' + y'. \]

In general, the zero-unit functions of \(m \) variables are the \(2^m \) factor-constituents in the dual normal development of 0 with respect to the \(m \) variables.

Propositions (2')–(7') will be used below in the representation of operations that do not satisfy the condition of closure.

4. **Representations.** It is now clear to what extent we can apply unit-zero Boolean functions in the representation of arbitrary operations and relations. From Theorem A, we have

Theorem B. A unit-zero Boolean representation of arbitrary operations and relations is possible when and only when the class consists of two elements.

For a two-element class \(K \), the theory of Boolean representation follows from propositions (2)–(7) and their duals. If we denote the two \(K \)-elements by the Boolean symbols 0, 1, the representations of all operations \(O \) and relations \(R \) in \(K \) are covered by the cases 1–3 following.

Case 1. \(O \) an \(m \)-ary operation satisfying the condition of closure. There is a \(K \)-element, 0 or 1, for every sequence \(e_1, e_2, \ldots, e_m \) taken from \(K \). Let the sequences to which 1 corresponds be
(i) $\alpha_{i1}, \alpha_{i2}, \ldots, \alpha_{im}; \alpha_{k1}, \alpha_{k2}, \ldots, \alpha_{km}$.

The representation of O is the Boolean function

$$\sum_{i=1}^{k} (x_1, x_2, \ldots, x_m; \alpha_{i1}, \alpha_{i2}, \ldots, \alpha_{im}).$$

Case 2. O an m-ary operation not satisfying the closure condition. There are sequences in K to which no K-elements correspond. Let these sequences be

(ii) $\beta_{i1}, \beta_{i2}, \ldots, \beta_{im}; \beta_{k1}, \beta_{k2}, \ldots, \beta_{km}$.

Consider the operation O' obtained from O by assigning a K-element, 0 for convenience, to each of the sequences (ii). Let $\phi(x_1, x_2, \ldots, x_m)$, obtained as in Case 1, be the representation of O'. Then the representation of O is the function

$$\phi(x_1, x_2, \ldots, x_m) + \sum_{i=1}^{k} 0/[x_1, x_2, \ldots, x_m; \beta_{i1}, \beta_{i2}, \ldots, \beta_{im}],$$

where a/b means the unique K-element q satisfying the condition $bq = a$. *

Case 3. R an m-adic relation. Let the sequences which do not satisfy R be

(iii) $\gamma_{i1}, \gamma_{i2}, \ldots, \gamma_{im}; \gamma_{k1}, \gamma_{k2}, \ldots, \gamma_{km}$.

Then the representation of R is the Boolean equation

$$\sum_{i=1}^{k} (x_1, x_2, \ldots, x_m; \gamma_{i1}, \gamma_{i2}, \ldots, \gamma_{im}) = 0.$$

Of course, by the Duality Principle, the theory of representation can be stated primarily in terms of zero-unit functions instead of unit-zero functions.

5. Illustrations. The following illustrations, one for each of the above three cases, will make the theory of representation quite clear.

a. Let O be the operation defined by

* For a two-element Boolean algebra the quotient can be defined precisely as in ordinary algebra.

† Instead of 0, we can use 1 in (10), provided (i) are the sequences which do satisfy R.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Its representation is

(ii) \((x, y; 0, 0) + (x, y; 1, 1) = x'y' + xy\).

\(\beta\). Let \(O\) be the operation

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

where the blanks indicate that there are no \(K\)-elements corresponding to the sequences 1, 0; 1, 1.

Consider the operation \(O'\) defined by

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

By Case 1, the representation of \(O'\) is

(v) \(x'y\).

Hence, the representation of \(O\) is

(vi) \(x'y + 0/[x, y; 1, 0] + 0/[x, y; 1, 1] = x'y + 0/(x' + y) + 0/(x' + y')\).

\(\gamma\). Let \(R\) be a relation defined by

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>1</td>
<td>+</td>
<td>-</td>
</tr>
</tbody>
</table>

where “+” indicates that \(R\) holds and “−” indicates that \(R\) does not hold. Its representation is the equation

(viii) \((x, y; 0, 0) + (x, y; 1, 1) = x'y' + xy = 0.\)

* For a complete set of Boolean representations of binary operations and dyadic relations in a two-element class, obtained from considerations other than the above, see my *Complete sets of representations of two-element algebras*, this Bulletin, vol. 30 (1924), pp. 24–30.