RESULTS AND PROBLEMS ABOUT \(n \)-WEBS
OF CURVES IN A PLANE

BY WILHELM BLASCHKE

If

\[
x^* = u(x, y), \quad y^* = v(x, y)
\]

is a topological mapping of the \(x, y \) plane, we call the function \(u \) topologically equivalent to \(x \) in this plane. Let us assume \(n \) such functions \(t_i(x, y), (i = 1, 2, \cdots, n) \), in the same simply connected domain \(D \). We have there \(n \) sheaves of curves \(t_i(x, y) = \text{const} \). We call this figure an \(n \)-web if two curves of different sheaves have not more than one point in common. We suppose the functions \(u_{ik}(t_i) \) to be continuous and strictly monotonic, so that for all pairs \(t_i \neq t_i' \), we have \(u_{ik}(t) \neq u_{ik}(t') \).

It seems to be interesting to study \(n \)-webs satisfying the condition that there are such functions \(u_{ik}(t_i) \) satisfying identically in \(D \) the relations

\[
\sum_{i=1}^{n} u_{ik}(t_i) = \text{const.}, \quad (k = 1, 2, 3, \cdots, m).
\]

We call these equations (1) linearly independent, if the identities

\[
\sum_{k=1}^{m} c_k u_{ik}(t_i) = \text{const.}
\]

imply for the constants \(c_k \) the trivial solution \(c_k = 0, (k = 1, 2, 3, \cdots, m) \). The following theorems hold.

Theorem 1. A 3-web satisfying one condition (1), \((n = 3, m = 1) \), is topologically equivalent to the tangents of a curve of class 3 (irreducible or not).

This was essentially found by Graf and Sauer\(^\dagger\) in 1924. Howe and I\(^\ddagger\), in 1932, proved the following theorem.

\(^\ddagger\) W. Blaschke and G. Howe, Hamburg Abhandlungen, vol. 9 (1932).
Theorem 2. A straight lined n-web satisfying (at least) one condition (1) is necessarily equivalent to the tangents of a curve of class n ($n \geq 3$).

Our result contains Theorem 1 as a special case, because a 3-web satisfying the equation

$$u_1 + u_2 + u_3 = \text{const.}$$

is equivalent to a special straight lined 3-web (hexagonal web), as we see if we assume u_1 and u_2 as parallel coordinates.

Howe observed that the following Theorem 3 is equivalent to S. Lie’s results about the surfaces, which are translation surfaces in different ways.

Theorem 3. A 4-web satisfying 3 linearly independent relations ($n = 4$, $m = 3$) is equivalent to the tangents of a curve of class 4.

A geometric interpretation of one condition (1) for a 4-web has been given by Bose and myself.† Bol‡ discovered a short time ago the following result.

Theorem 4. The maximum number m of linearly independent relations (1) for an n-web is

$$m = \frac{(n - 1)(n - 2)}{2}.$$

Almost equivalent to a theorem of Reidemeister§ are the following.

Theorem 5. A 4-web satisfying 3 linearly independent relations (1) with $u_{ii} = 0$ is equivalent to 4 pencils of straight lines, no 3 of the 4 vertices on a straight line.

Theorem 6. A 4-web satisfying 3 relations (1) with $u_{ii} = 0$, ($i = 1, 2, 3$), only two of them linearly independent, admits a continuous one-parameter group, the $t_i = \text{const.}$ being paths.

But between the proofs of these theorems there is an essential difference Only Theorem 1 and the greater part of Theorems 5 and 6 are proved without any further restrictions for the functions t_i, u_{ik}. The proofs already known for Theorems 2–6

contain regularity restrictions. Therefore the first problem to be solved is the following one.

Problem A. Do the Theorems 2–5 remain valid without further regularity restrictions?

Another question unsolved as far as I know is the following one.

Problem B. To extend our Theorem 3 to n-webs.

These problems seem to be interesting because, for example, they contain a kind of real geometrical interpretation of Abel's theorem on algebraic curves.

Finally a few words about more dimensions. The questions about webs of surfaces

\[S_i(x, y, z) = \text{const.} \]

in a 3-space can partially be reduced to our theorems on curve-webs in a 2-space. But if we consider sheaves of curves

\[s_i(x, y, z) = \text{const.}, \quad t_i(x, y, z) = \text{const.} \]

in a 3-space we may ask, for example, the following question.

Problem C. How many essentially different relations

\[u_1(s_1, t_1) + u_2(s_2, t_2) + u_3(s_3, t_3) = \text{const.} \]

can exist for a 3-web of curves

\[s_i, t_i = \text{const.}, \quad (i = 1, 2, 3), \]

in a 3-space?

This seems to me to be one of the most promising fields of geometric research.

The University of Chicago, and

The University of Hamburg