NOTE ON SETS OF POSITIVE MEASURE*

BY HENRY BLUMBERG

A recurring question concerning (L-measurable) sets of positive measure is what properties they have in common with the linear interval. The following theorem is concerned with such a property, stated for sets of n-dimensional positive measure lying in euclidean n space.

THEOREM. Let \(A_1, A_2, \ldots, A_p \) be \(p \) sets of positive measure lying in euclidean n space. Then there exist \(p \) n-dimensional spheres \(S_1, S_2, \ldots, S_p \) such that for every set of \(p \) points \(s_\nu \), \((\nu = 1, 2, \ldots, p)\), belonging respectively to these spheres, there exists a set of \(p \) points \(a_\nu \), \((\nu = 1, 2, \ldots, p)\), lying respectively in \(A_1, A_2, \ldots, A_p \), such that the sets \(\{a_\nu\} \) and \(\{s_\nu\} \) are congruent. Moreover, there exists a set of \(p \) congruent spheres \(S_\nu \) satisfying the condition just stated and a positive number \(\delta \) such that for every selected \(\{s_\nu\} \), with \(s_\nu \) belonging to \(S_\nu \), the associated \(\{a_\nu\} \) may be so chosen that \(a_1 \) ranges over a set of measure \(>\delta \).

PROOF. Since \(A_1 \) is of positive measure, there is a sphere \(S'_1 \) in which the relative measure of \(A_1 \) is greater than \(1 - \epsilon \), where \(\epsilon \) is a given positive number less than 1; that is, \(m(A_1, S'_1)/m(S'_1) > 1 - \epsilon, m(A) \) standing for the measure of \(A \). We may suppose, and we do so for simplicity of statement, that all the \(S'_\nu \), \((\nu = 1, \ldots, p)\), are equal, and we denote their common measure by \(\mu \), and their respective centers by \(c_\nu \). Let \(p \) be a positive number such that if a sphere of measure \(\mu \) is translated a distance \(<\rho \), the part belonging to the sphere in both positions is of measure \((1 - \epsilon)\mu \). Denote by \(v_\nu \), \((\nu = 1, \ldots, p-1)\), the vector represented by the segment \(c_\nu c_{\nu+1} \); and let \(w_\nu \), \((\nu = 1, \ldots, p)\), be a given set of \(n \)-dimensional vectors, each of length \(<\rho \). If a set \(A \) (or point \(a \)) is given a displacement represented by the vector \(\pm v \), we denote the set (or point) in its new position by \(A \pm (v) \) (or \(a \pm (v) \)). Writing \(A_\nu S'_\nu = T''(v) \) and \(T' = T'_1 \), we set

\[
T'_1 + (v_1 - w_1 + w_2) = T'_2; T'_2 T'''' = T'''_{1''};
\]

* Presented to the Society, April 14, 1923.
For the measures of the $T_\lambda^{(p)}$'s, we have the following inequalities: $m(T_1') > (1 - \epsilon)\mu$; $m(T_1''') > (1 - 4\epsilon)\mu$, since $m(T_1''') > (1 - \epsilon)\mu$ and the lengths of w_1 and w_2 are less than ρ; $m(T_1'''') > (1 - 7\epsilon)\mu$, and so on. We may thus conclude that $m(T_1^{(p)}) > [1 - (3\rho - 2)\epsilon]\mu$, which is positive if ϵ is taken small enough. We now define the spheres S_1, \ldots, S_p of our theorem as of radii all less than ρ, and such that their respective centers γ_ν satisfy the relations: vector $\gamma_{\nu}\gamma_{\nu+1} = v_\nu, (\nu = 1, \ldots, p - 1)$. If now $s_\nu, (\nu = 1, \ldots, p)$, is a point chosen from S_ν, we let vector $\gamma_\nu s_\nu = w_\nu$. Let a_p be a point of $T_1^{(p)}$, which, as we have seen, is not empty if ϵ is sufficiently small. We then define $a_{p-1}, a_{p-2}, \ldots, a_1$ by the relation

$$a_\nu = a_{\nu+1} + (v_{\nu-1} - w_{\nu-1} + w_\nu), \quad (\nu = 2, 3, \ldots, p).$$

Since a_p belongs to $T_1^{(p)}$, it belongs to A_p and also to $T_2^{(p-1)}$; hence a_{p-1} belongs to $T_1^{(p-1)}$ and therefore to A_{p-1} and $T_2^{(p-2)}$; hence a_{p-2} belongs to $T_1^{(p-2)}$, and so on. We conclude that $a_\nu, (\nu = 1, \ldots, p)$, belongs to A_ν. Since s_ν satisfies the equation $s_\nu = s_{\nu+1} + (v_{\nu-1} - w_{\nu-1} + w_\nu), (\nu = 2, \ldots, p)$, we see that the sets $\{a_\nu\}$ and $\{s_\nu\}$ are congruent. Furthermore, since a_p is an arbitrary point of $T_1^{(p)}$, whose measure is arbitrarily near μ, we can satisfy the last condition of our theorem by taking, for example, $\delta = \mu/2$, if ϵ is small enough.

If, in particular, the p given sets A_ν are identical, we may take the spheres S_ν' as identical, thus reducing the vectors v_ν to zero. The spheres S_ν may therefore be taken as identical, and we have the following corollary.

Corollary. If A is an n-dimensional set of positive measure, there exists an n-dimensional sphere S such that for every finite subset of S there is a congruent subset of A.

If A is a one-dimensional set, we obtain the theorem of Steinhaus,* that the set of distances between pairs of points of a

* Sur les distances des points, Fundamenta Mathematicae, vol. 1 (1920), p. 99. A simpler proof of this theorem, close in idea to our own, was published by Ruziewicz (after the present paper was read), Fundamenta Mathematicae, vol. 7 (1925), p. 141.
(linear) set of positive measure contains an interval with 0 as left end point.

We have proved that if \(S_1 \) is a set of positive measure and \(S_2 \) a finite set, there is a subset of \(S_1 \) similar* to \(S_2 \). To what extent can the condition of finiteness of \(S_2 \) be modified if the theorem is to remain valid? Since every set of positive measure contains a perfect subset of positive measure, it follows that if every set of positive measure contains a set similar to \(S_2 \), it contains a set similar to \(S_2 + S_2' \), where \(S_2' \) is the derivative of \(S_2 \). It thus suffices to restrict \(S_2 \) to being closed. Or we may restrict \(S_2 \) to being denumerable, since every set contains a denumerable subset which is dense in it. Not all sets of positive measure can contain a set similar to \(S_2 \) if \(S_2 \) is not non-dense. Since we naturally restrict \(S_2 \) to being bounded, we are led to ask: What bounded, non-dense sets \(S_2 \) are such that every set of positive measure contains a set similar to \(S_2 \)? That this property is not shared by every bounded, non-dense \(S_2 \), and therefore not by every bounded, non-dense, denumerable set, is shown by the following fact.

Theorem. If \(S_1 \) is a given bounded, non-dense, perfect set, there exists a perfect set \(S_2 \) of zero measure such that no subset of \(S_1 \) is similar to \(S_2 \).

While this theorem is meant to refer to \(n \)-dimensional sets, we assume in the proof that \(S_1 \) and \(S_2 \) are linear sets, there being no essential difference in the argument for \(n \)-dimensional sets. We suppose, as we may, that the given set \(S_1 \) lies in the interval \((0, 1) = I\). Let \(C(S_1) \) be the complement of \(S_1 \) in \(I \); \(\Delta \) a variable subinterval of \(I \); \(\mu_1(\Delta) \) the ratio of the maximum length of a connected portion of \(C(S_1) \) in \(\Delta \) to the length of \(\Delta \); and \(\sigma_1(h) \), for \(h \) a given positive number, the greatest lower bound of \(\mu_1(\Delta) \) for all subintervals \(\Delta \) of \(I \) of length \(h \). Then \(\sigma_1(h) \) is a positive, continuous function of \(h \). The perfect set \(S_2 \) will be defined as the complement in \(I \) of the set of intervals \(\Delta_m,i \), which are defined as follows: Insert in \(I \) a set of equally spaced intervals \(\Delta_{i,i}, (i = 1, 2, \cdots, m_1) \), of equal length \(l_1 \), such that \(m_1 l_1 = 1/2 \), the equality of spacing being understood in the sense that the

* We are using "similar" in the ordinary euclidean sense of the existence of a biunique correspondence with invariant ratio of distances.
space between any two adjacent \(\Delta_{1i} \) shall be equal to the spaces between 0, 1 and the first, last \(\Delta_{1i} \), respectively; moreover, \(m_1 \) is to be so large that \(\sigma_2(\lambda_1) < \sigma_1(\lambda_1) \), where \(\lambda_1 = 1 \), and \(\sigma_2 \) has the same meaning for the set \(S_2 \), now being defined, as \(\sigma_1 \) for \(S_1 \). Similarly insert in each of the intervals \(\Delta_{1i}^i, (i = 1, 2, \cdots, m_1 + 1) \), of length \(l_1' \), that are complementary to the \(\Delta_{1i} \), the same number of equally-spaced intervals \(\Delta_{2i}, (i = 1, 2, \cdots, m_2) \), of equal length \(l_2 \), where \(m_2 \) signifies the total number of the \(\Delta_{2i} \) in all the \(\Delta_{1i} \); moreover, the \(\Delta_{2i} \) are to be such that \(m_2 l_2 = 1/4 \), and \(m_2 \) so large that \(\sigma_2(\lambda_2) < \sigma_1(\lambda_2) \) for \(1 \leq t \leq 2 \), where \(2\lambda_2 = l_1' \). In general, let \(\{\Delta_{n-1,i}^n\} \) be the set of intervals of length \(l_{n-1}' \), complementary to the set of all \(\Delta_{n,i} \), \(n \leq n - 1 \). Insert in each \(\Delta_{n-1,i} \) the same number of equally spaced intervals \(\Delta_{ni} \) of equal length \(l_n \), such that \(m_n l_n = 1/2^n \), \(m_n \) being the total number of intervals \(\Delta_{ni} \) and \(m_n \) so large that \(\sigma_2(\lambda_n) < \sigma_1(\lambda_n) \) for \(1 \leq t \leq n \), where \(n\lambda_n = l_n - l_n' \). Suppose now that \(S_3 \) is any set whatsoever lying in \(I \) and similar to \(S_2 \); then \(S_3 \) cannot lie in \(S_1 \). For let \(k \) be the ratio of corresponding lengths in \(S_2 \) and \(S_3 \), and \(n \) an integer greater than \(k \). If \(\epsilon \) is a given positive number, we can find an interval \(\Delta \) of length \(\lambda_n \) lying between two points of \(S_3 \), and such that \(|\mu_3(\Delta) - \sigma_3(k\lambda_n)| < \epsilon \), \(\mu_3 \) having the same meaning for \(S_3 \) as \(\mu_1 \) for \(S_1 \). Hence, on account of the inequality \(\sigma_3(k\lambda_n) < \sigma_1(\lambda_n) \), we conclude that \(\mu_3(\Delta) < \sigma_1(\lambda_n) \leq \mu_1(\Delta) \), if \(\epsilon \) is small enough. That is to say, the maximum length of a connected portion of \(C(S_3)\Delta \) is less than such maximum length for \(C(S_1)\Delta \), and therefore \(S_3 \) cannot lie in \(S_1 \).

The Ohio State University