nacci series 0, 1, 2, 3, 5, 8, 13, · · · giving the values of the Lucas function \(U_n \) associated with the polynomial \(x^2 - x - 1 \). This polynomial is irreducible modulo 13, so that the period of the Fibonacci series modulo 13 gives the period of the mark \(\alpha \) associated with \(x^2 - x - 1 \) in the finite field of order 13. We have \(\omega = 7, \) norm \(\alpha = -1, \theta = 2, k = 2, \sigma = 2, \ p - 1 = 12. \) Hence (2) becomes \((2, 2) | \delta | (2, 12), \) so that \(\delta = 2. \) Hence the period is 28, which is easily verified directly. It seems quite difficult to determine the exact value of \(\delta \) in all cases.*

California Institute of Technology

ON A PROBLEM OF KNASTER AND ZARANKIEWICZ†

BY J. H. ROBERTS

Knaster and Zarankiewicz have proposed the following problem:‡ "Does every continuum \(A \) contain a subcontinuum \(B \) such that \(A - B \) is connected?" Knaster has shown,§ by an example in 3-space, that the answer is in the negative. In the present paper an example is given of a plane continuum \(M \) such that every non-degenerate proper subcontinuum of \(M \) disconnects \(M \).

The point sets considered in this paper all lie in a plane.

DEFINITION OF \(F(C; X, Y; \epsilon) \). Let \(C \) be any simple closed curve, \(X \) and \(Y \) distinct points of \(C \), and \(\epsilon \) any positive number. There exists a finite set of points \(A_1, A_2, \ldots, A_n \) \((n > 2)\), such that (a) \(A_1 + A_2 + \cdots + A_n \) contains \(X + Y \), (b) \(A_1, A_2, \ldots, A_n \) lie on \(C \) in the order \(A_1A_2 \cdots A_nA_1 \), and (c) \(A_1 \) and \(A_{i+1} \) (subscripts are to be reduced modulo \(n \)) are the end points of an arc \(t_i \) of diameter <\(\epsilon \) which is a subset of \(C \) not containing \(A_{i+2} \). There exists a set of mutually exclusive arc segments \(v_1, v_2, \ldots, v_n \) lying within \(C \) such that \(v_i + t_i \) is a simple closed curve \(w_i \) of diameter <\(\epsilon \). Let \(J \) denote the simple closed curve

* See the discussion at the close of my paper, Transactions of this Society, vol. 33 (1931), p. 165.
† Presented to the Society, December 1, 1933.
‡ Fundamenta Mathematicae, vol. 8 (1926), Problem 42, p. 376.
There exist infinite sequences of simple closed curves C_{ij}, ($i=1, 2, \cdots, n$; $j=1, 2, \cdots$), such that (1) C_{ij} contains A_i but otherwise lies within J, (2) the sequence $C_{i1}, C_{i2}, C_{i3}, \cdots$ has as sequential limit set the arc $A_i + v_i + A_{i+1}$, (3) C_{ij} is of diameter $< \epsilon$, (4) $C_{ik} \cap C_{ih} = A_i$ ($i \neq k$), and $C_{ij}, C_{ih} = 0$, ($i \neq h$), and (5) no point of C_{ij} lies within any C_{ih}. The set $F(C; X, Y; \epsilon)$ is defined as the sum of all the curves C_{ij} and the n curves w_i:

$$F(C; X, Y; \epsilon) = \sum_{i=1}^{n} \left[w_i + \sum_{j=1}^{\infty} C_{ij} \right].$$

Definition of M. Let E be any simple closed curve, X and Y any two points of E. Let K_1 denote a set $F(E; X, Y; 1)$. Then $K_1 = \sum_{i=1}^{\infty} E_{i,0}$, where for each i, $E_{i,0}$ is a simple closed curve of diameter < 1, and the common part of $E_{i,0}$ and the sum of the other curves $E_{1,1}, E_{2,1}, \cdots$ either is one point, or is two points. Thus $E_{i,0}$ contains distinct points $X_{i,0}$ and $Y_{i,0}$ such that no other point of $E_{i,0}$ belongs to $E_{i,j}$, ($i \neq j$). For each i let $G_{i,1}$ be a set $F(E_{i,1}; X_{i,1}, Y_{i,1}; 1/2)$ and let K_2 be $G_{1,1} + G_{1,2} + \cdots$.

Suppose K_1, K_2, \cdots, K_n, ($n > 1$), have been defined, K_1 being as defined above and, for each i, the following properties obtain:

I. K_i is the sum of a countable set of simple closed curves $E_{1,1}, E_{2,1}, \cdots$.

II. Each curve $E_{i,h}$ has, in common with the sum of the other curves $E_{1,h}, E_{2,h}, \cdots$, either one point or two points.

III. $X_{i,h}$ and $Y_{i,h}$ are distinct points of $E_{i,h}$ such that no other point of $E_{i,h}$ belongs to the sum of the other curves $E_{1,h}, E_{2,h}, \cdots$.

IV. No point is common to the interiors of two curves $E_{i,h}$ and $E_{i,k}$, ($h \neq k$).

V. K_{i+1}, ($i < n$), is a subset of the sum of K_i and the interiors of all the curves $E_{1,1}, E_{2,1}, \cdots$.

VI. The subset of K_{i+1}, ($i < n$), which lies on and within $E_{i,h}$ is a set $F(E_{i,h}; X_{i,h}, Y_{i,h}; 1/[i+1])$.

For $n = 2$, the sets K_1 and K_2 defined above have these properties. For each i, ($i \leq n$), let U_i be the set of all points of K_i each of which belongs to at least two curves of the set $E_{1,1}, E_{2,1}, \cdots$, and let D_i denote K_i plus the interiors of all the curves $E_{1,1}, E_{2,1}, \cdots$.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
For each \(k \) let \(G_{nk} \) be a set \(F(E_{nk}; X_{nk}, Y_{nk}; 1/[n+1]) \), and let
\(K_{n+1} = G_{n1} + G_{n2} + \cdots \). Then it readily follows that the sequence
\(K_1, K_2, \cdots, K_n, K_{n+1} \) has the properties I–VI above.
Hence there is an infinite sequence \(K_1, K_2, \cdots \) with properties
I–VI; \(K_1 \) being a set \(F(E; X, Y; 1) \). Let \(M \) be \(K_1 + K_2 + \cdots \)
plus all limit points. This is the same as the common part of
\(D_1, D_2, \cdots \).

Proof that \(M - H \) **is not connected.** Suppose \(H \) is a non-
degenerate proper subcontinuum of \(M \). Suppose \(M - H \) is connected.
Now the components of \(M - U_n \) are of diameter \(< 1/n \).
Hence there exists an \(n \) such that \(H \) contains a point \(P \) of \(U_n \).
It will be shown that if \(H \) contains a point of \(U_n \), then it contains all of \(U_n \). In view of this, and the fact that \(U_n \) is a subset
of \(U_{n+1} \) and that \(M = (U_1 + U_2 + \cdots) \) plus limit points, it follows that \(H = M \), which is a contradiction.

It remains to show that if \(H \) contains a point \(P \) of \(U_n \), then it contains all of \(U_n \). Let \(h \) be such that \(P \) belongs to \(E_{nh} \). The subset of \(K_{n+1} \) which lies on and within \(E_{nh} \) is a set \(F(E_{nh}; X_{nh}, Y_{nh}; 1/[n+1]) \). The points of \(U_{n+1} \) in this set can be labeled \(B_1, B_2, \cdots, B_k \), so that they lie on \(E_{nh} \) in the order
\(B_1B_2\cdots B_kB_1 \). Now each of the infinity of components of
\(K_{n+1} - B_i \) is a subset of a different component of \(M - B_i \). Hence
if \(H \) contains \(B_i \), and \(M - H \) is connected, \(H \) must contain all
save one of these components. But \(B_{i+1} \) is a limit point of the sum of the components of \(K_{n+1} - B_i \). Hence, if \(H \) contains \(B_i \), it contains \(B_{i+1} \). But for some \(i \), \(P = B_i \). Thus \(H \) contains all the points of \(U_{n+1} \) on \(E_{nh} \), and therefore the one or two points of \(U_n \) on \(E_{nh} \). Now any two curves \(E_{nh} \) and \(E_{nk} \), of the set
\(E_{n1}, E_{n2}, \cdots \), can be joined by a finite chain \(L_1, L_2, \cdots, L_e \) of
curves of the set \(E_{n1}, E_{n2}, \cdots, L_1 \) having a point in common
with \(E_{nh}, L_i \) having a point in common with \(L_{i+1}, (i < e) \), and \(L_e \)
having a point in common with \(E_{nk} \). Since these common points are in \(U_n \), and \(H \) contains a point of \(U_n \) in \(E_{nh} \), it readily follows,
by repeated application of the above argument, that \(H \) contains every point of \(U_n \) in \(E_{nh} + L_1 + L_2 + \cdots + L_e + E_{nk} \), and therefore \(H \) contains every point of \(U_n \).

Duke University