CONGRUENCES WITH A COMMON MIDDLE ENVELOPE*

BY MALCOLM FOSTER

1. Introduction. Let C and \bar{C} be two rectilinear congruences whose corresponding rays l and \bar{l} are parallel; and let M be the point on the unit sphere S at which the normal is parallel to l and \bar{l}. We refer the sphere to any isothermal system and take the linear element in the form $ds^2 = e^{2\lambda}(du^2 + dv^2)$.† Relative to the moving trihedral at M, whose x axis is chosen tangent to the curve $v = \text{const.}$, the coordinates of the points in which l and \bar{l} pierce the xy plane will be denoted by (a, b) and (\bar{a}, \bar{b}), respectively. Distances on l and \bar{l} will be measured from these points, and the positive direction will be that which corresponds to the outward-drawn normal at M.

It is the purpose of this note to consider such pairs of congruences as C and \bar{C} when they have a common middle envelope, that is, when the distances to the middle points on l and \bar{l} are equal.

2. Condition that C and \bar{C} have a Common Middle Envelope. A necessary and sufficient condition that C and \bar{C} have a common middle envelope is that

$$
\frac{\partial a}{\partial u} + \frac{\partial b}{\partial v} + ar_1 - br + 2\xi = \frac{\partial \bar{a}}{\partial u} + \frac{\partial \bar{b}}{\partial v} + \bar{a}r_1 - \bar{b}r + 2\xi
$$

This may be written

$$
\frac{\partial}{\partial u} (a - \bar{a}) + \frac{\partial}{\partial v} (b - \bar{b}) + (a - \bar{a}) \frac{\partial \lambda}{\partial u} + (b - \bar{b}) \frac{\partial \lambda}{\partial v} = 0,
$$

which, upon multiplication by e^{λ}, becomes

$$
\frac{\partial}{\partial u} [e^{\lambda}(a - \bar{a})] = -\frac{\partial}{\partial v} [e^{\lambda}(b - \bar{b})];
$$

* Presented to the Society, February 23, 1935.
‡ Foster, loc. cit., p. 163, equation (17).
hence

\[a - \bar{a} = e^{-\lambda} \frac{\partial R}{\partial v}, \quad b - \bar{b} = -e^{-\lambda} \frac{\partial R}{\partial u}, \]

where \(R \) is an arbitrary function of \(u \) and \(v \). From (1) we have the following theorem.*

Theorem 1. A necessary and sufficient condition that the congruences \(C \) and \(\overline{C} \) have a common middle envelope is that the congruence defined by the point \((a - \bar{a}, b - \bar{b})\) has for its middle envelope a point, namely, the center of \(S \).

3. Rotated Congruences. Let \(C \) be the congruence defined by \((a, b)\); and let this point be rotated through an angle \(\pi/2 \) about the corresponding normal to the point \((-b, a)\).† If \(\overline{C} \) be the congruence defined by the point \((-b, a)\), we say \(C \) and \(\overline{C} \) constitute a pair of rotated congruences. We wish to determine those congruences \(C(a, b) \), which with \(\overline{C}(-b, a) \), have a common middle envelope. From (1) we must have

\[a + b = e^{-\lambda} \frac{\partial R}{\partial v}, \quad b - a = -e^{-\lambda} \frac{\partial R}{\partial u}. \]

The solution of these simultaneous equations will obviously give us the required condition:

\[a = \frac{e^{-\lambda}}{2} \left(\frac{\partial R}{\partial v} + \frac{\partial R}{\partial u} \right), \quad b = \frac{e^{-\lambda}}{2} \left(\frac{\partial R}{\partial v} - \frac{\partial R}{\partial u} \right). \]

We therefore have the following result.

Theorem 2. A necessary and sufficient condition that a congruence \(C(a, b) \) and its rotated congruence \(\overline{C} \) have a common middle envelope is that \(a \) and \(b \) have the values given in (2).

Suppose now that \(C(a, b) \) has for its middle envelope the center of \(S \). Then \(a = e^{-\lambda}(\partial R/\partial v), b = -e^{-\lambda}(\partial R/\partial u) \). If \(C(a, b) \) be rotated to \(\overline{C}(-b, a) \), we know that \(\overline{C} \) is a normal congruence.‡

* Foster, loc. cit., p. 173.
† The direction of rotation is immaterial.
‡ Foster, loc. cit., p. 166, Theorem 1.
Let us now consider the middle point of the line joining \((a, b)\) and \((-b, a)\); its coordinates are \([(a-b)/2, (a+b)/2]\), or

\[
\left[\frac{e^{-\lambda}}{2} \left(\frac{\partial R}{\partial v} + \frac{\partial R}{\partial u} \right), \frac{e^{-\lambda}}{2} \left(\frac{\partial R}{\partial v} - \frac{\partial R}{\partial u} \right) \right].
\]

Since (3) is identical with (2), we have the following theorem.

Theorem 3. Given a square \(ABCD\), central with \(M\), which lies in the \(xy\) plane of the trihedral. If the point \(A\) defines a congruence whose middle envelope is the center of \(S\), so also does \(C\), the opposite vertex, while the opposite vertices \(B\) and \(D\) define normal congruences; and the four points which bisect the sides of the square define four congruences with a common middle envelope.

4. \(C\) and \(\bar{C}\) Each Normal. Let \(C\) and \(\bar{C}\) be normal congruences. Then*

\[
\begin{align*}
a &= e^{-\lambda} \frac{\partial P}{\partial u}, & \bar{a} &= e^{-\lambda} \frac{\partial \bar{P}}{\partial u}, & b &= e^{-\lambda} \frac{\partial P}{\partial v}, & \bar{b} &= e^{-\lambda} \frac{\partial \bar{P}}{\partial v}.
\end{align*}
\]

By (1) and (4), a necessary and sufficient condition that the congruences \(C\) and \(\bar{C}\) have a common middle envelope is that

\[
\begin{align*}
a - \bar{a} &= e^{-\lambda} \left(\frac{\partial P}{\partial u} - \frac{\partial \bar{P}}{\partial u} \right) = e^{-\lambda} \frac{\partial R}{\partial v}, \tag{5} \\
b - \bar{b} &= e^{-\lambda} \left(\frac{\partial P}{\partial v} - \frac{\partial \bar{P}}{\partial v} \right) = -e^{-\lambda} \frac{\partial R}{\partial u}.
\end{align*}
\]

From (5), we have, from \(\partial^2 R/\partial u \partial v = \partial^2 R/\partial v \partial u\), which is the condition of integrability,

\[
\frac{\partial^2}{\partial u^2} (P - \bar{P}) + \frac{\partial^2}{\partial v^2} (P - \bar{P}) = 0.
\]

We have therefore the following theorem.

Theorem 4. A necessary and sufficient condition that the normal congruences (4) have a common middle envelope is that \((P - \bar{P})\) be a solution of Laplace's equation.

Wesleyan University

* Foster, loc. cit., p. 173.*