TRANSFORMS OF FUCHSIAN GROUPS

BY P. K. REES

This paper gives four theorems concerning the relative sizes of the isometric circles of the transformations, \(T(z) = (az + c)/(cz + \bar{a}) \), of a Fuchsian group and those of the transforms, \(S(z) = GTG^{-1}(z) = (A\bar{z} + \bar{C})/(C\bar{z} + \bar{A}) \), of \(T \) in which \(G(z) = (\alpha z + \nu)/(\nu z + \bar{\alpha}) \) is considered as fixed and \(T \) any transformation of the Fuchsian group.

THEOREM 1. The necessary and sufficient condition that the radii, \(r_s \) and \(r_t \), of the isometric circles of \(S \) and \(T \) be equal is that the midpoint, \((a - \bar{a})/(2c) - m\), of the line segment joining the centers, \(g_t \) and \(g'_t \), of the isometric circles, \(I_t \) and \(I'_t \), of \(T \) and \(T^{-1} \) be on the circle \(Q_\delta(z) \) with the origin and the center, \(g = -\bar{\alpha}/\nu \), of the isometric circle of \(G \) as opposite ends of a diameter or on the circle \(Q'_\delta(z) \) with the origin and \(1/\bar{\delta} \) as opposite ends of a diameter.

PROOF. The equations of \(Q_\delta(z) \) and \(Q'_\delta(z) \) are
\[
Q_\delta(z) = 2\bar{\nu}zz + \alpha \nu z + \bar{\alpha} \nu \bar{z} = 0, \quad Q'_\delta(z) = 2\alpha \bar{\nu}zz + \alpha \nu z + \bar{\alpha} \nu \bar{z} = 0.
\]
If \(z \) lies on either \(Q_\delta \) or \(Q'_\delta \), then \(Q_\delta(z)Q'_\delta(z) = 0 \). But
\[
\frac{1}{r_s^2} - \frac{1}{r_t^2} = -\frac{(a - \bar{a})(-\alpha \nu \bar{c} + \bar{\alpha} \nu c) - \alpha \bar{\alpha} \nu \nu[\alpha - \bar{a})^2 - 2c\bar{c}]}{(\alpha \nu \bar{c})^2 - (\bar{\alpha} \nu c)^2},
\]
which vanishes if and only if \(r_s = r_t \). Multiplying (1) equated to zero by \(-(a - \bar{a})(2c\bar{c}) \) and replacing \((a - \bar{a})/(2c) \) by \(m \), we have \(Q_\delta(m)Q'_\delta(m) = 0 \).

THEOREM 2a. The necessary and sufficient condition that \(r_s < r_t \) \((r_s > r_t) \) is that \(z = m \) substituted in the expression for \(Q_\delta Q'_\delta \) makes that expression positive (negative).

PROOF. \(r_s \leq r_t \) according as \(1/r_s^2 - 1/r_t^2 \geq 0 \). Furthermore
\[
Q_\delta Q'_\delta = -\left(\frac{1}{r_s^2} - \frac{1}{r_t^2}\right)(a - \bar{a})^2 / 4c^2\bar{c}^2.
\]

* Presented at the Southwestern Section of the A.A.A.S., April, 1935.
Therefore \(Q_5Q_6 \leq 0 \) according as \(1/r_s^2 - 1/r_t^2 \leq 0 \), that is, according as \(r_s \geq r_t \).

Theorem 2b. The necessary and sufficient condition that \(r_s < r_t \) is that \(m \) be outside both \(Q_5 \) and \(Q_6 \) or inside both; the necessary and sufficient condition that \(r_s > r_t \) is that \(m \) be inside \(Q_5 \) or \(Q_6 \) and outside the other.

Proof. The expressions for each \(Q_5 \) and \(Q_6 \) are negative (positive) according as \(m \) is inside (outside) the circle. Theorem 2b follows from this and Theorem 2a.

Remark 1. The diameter of \(Q_5 \) is equal to \(|g| = |\bar{a}/\nu| \). This can be made as large as one may wish by choosing \(|\nu| \) sufficiently near zero. Furthermore, the radius of \(Q_6 \) is the reciprocal of that of \(Q_5 \). Hence, by choosing \(G \) with \(|\nu| \) sufficiently near zero, one can make the region inside \(Q_5 \) or \(Q_6 \) and outside the other as nearly a half-plane as desired. Therefore, for \(g \) sufficiently large, those transformations of the group \(T \) with \(m \) in approximately one half-plane (the one \(g \) is in) have their isometric circles increased in magnitude by transforming by \(G \) whereas those with \(m \) in the other approximate half-plane have \(r_s < r_t \).

Furthermore by choosing \(|g| \) sufficiently near to unity one can make the region inside \(Q_5 \) or \(Q_6 \) and outside the other as small as he may wish. Thus the transformations with \(m \) in as nearly the entire plane as desired have their isometric circles decreased in magnitude by transforming by \(G \).

Theorem 3. The necessary and sufficient condition that \(r_s = r_t/k \), \(k \) a non-negative real number, is that \(m \) lie on the locus

\[
(2) \quad (2a\bar{a}\bar{v}v \bar{z} + a\bar{v}v \bar{z} + a\bar{a}\bar{v}z)(2a\bar{a}\bar{v}v \bar{z} + a\bar{v}v \bar{z} + a^2\bar{v}z) = k^2\bar{z}\bar{z}a\bar{a}\bar{v}v.
\]

Proof. From the definitions of \(r_s \) and \(r_t \) and from the equation \(r_s = r_t/k \), we have \((r_t/r_s)^2 = (C\bar{C})/(c\bar{c}) = k^2 \). Replacing \(C\bar{C} \) by its value in terms of the coefficients of \(T \) and \(G \) and then replacing \((a-\bar{a})/(2c)\) by \(m \), we have (2), since \(c/\bar{c} = -\bar{m}/m \).

Remark 2. The number \(k \) is not determined by (2) for a real, since then \(m = 0 \). However, \(m \) is on both \(Q_5 \) and \(Q_6 \) for \(m = 0 \), and therefore, by Theorem 1, \(k = 1 \).
Corollary 1. The absolute minimum value of \(k \) is zero; this value is taken on if the midpoint of the line segments \((g_t, g'_t)\) and \((g, 1/\bar{g})\) coincide and is possible only for \(T \) an elliptic transformation.

Proof. Substituting \(m = -\frac{(\alpha \bar{\alpha} + \nu \bar{\nu})}{(2\alpha \nu)} \) into (2), we see that \(k = 0 \) if \((a - \bar{a})/(2c) = -\frac{(\alpha \bar{\alpha} + \nu \bar{\nu})}{(2\alpha \nu)} \). Furthermore, we have \(Q_0\left[-\frac{(\alpha \bar{\alpha} + \nu \bar{\nu})}{(2\alpha \nu)}\right] > 0 \) for all \(G \) and all \(T \) of Fuchsian type, whereas \(Q_0\left[\frac{(a - \bar{a})}{(2c)}\right] > 0 \) for \(T \) elliptic only.

Remark 3. Changing (2) to trigonometric form, one finds the discriminant of the resulting quadratic in \(\rho \) to be

\[
 f(k) = 4(\alpha \nu e^{i\theta} + \bar{\alpha} \bar{\nu} e^{-i\theta})^2 - 16\alpha \bar{\alpha} \nu \bar{\nu} (1 - k^2).
\]

This is a perfect square if and only if \(k = 1 \) or 0; hence (2) is factorable rationally in terms of the coefficients of \(G \) in these two cases and only in them. The factors for \(k = 1 \) are \(Q_0 \) and \(Q_0 \) of Theorem 1, and for \(k = 0 \) they are immediate from (2).

STATE COLLEGE OF NEW MEXICO

THE EQUATION \(2^x - 3^y = d^* \)

BY AARON HERSCHELF

1. Introduction. According to Dickson’s History of the Theory of Numbers,† Leo Hebreus, or Levi Ben Gerson (1288–1344), proved that \(3^m \pm 1 \neq 2^n \) if \(m > 2 \), by showing that \(3^m \pm 1 \) has an odd prime factor. The problem had been proposed to him by Philipp von Vitry in the following form: All powers of 2 and 3 differ by more than unity except the pairs 1 and 2, 2 and 3, 3 and 4, 8 and 9. In 1923 an elegant short proof by Philip Franklin appeared in the American Mathematical Monthly.‡

In 1918 G. Polya§ published a very general theorem which, as was later pointed out by S. Sivasankaranarayana Pillai,‖ proved as special cases that the equations

* Presented to the Society, October 26, 1935.
‡ Vol. 30 (1923), p. 81, problem 2927.