A CHARACTERIZATION OF MANIFOLD BOUNDARIES IN E^n DEPENDENT ONLY ON LOWER DIMENSIONAL CONNECTIVITIES OF THE COMPLEMENT*

BY R. L. WILDER

In my recent paper Generalized closed manifolds in n-space† it was shown‡ that a compact point set B in E_n, common boundary of (at least) two domains D and D_1 which are respectively u.l.i.c.§ for $0 \leq i \leq j$ and $0 \leq i \leq n-j-3$ (where $n-2 > j \geq (n-3)/2$), and such that the Betti numbers $p_i^1(D)$, $p_i^{i+2}(D)$, \ldots, $p_i^{n-2}(D)$ are finite, is a g.c.$(n-1)$-m. This constituted a generalization of a former result|| to the effect that when $n = 3$, D and D_1 are u.l.i.c., and $p_i(D)$ is finite, B is a closed 2-manifold. In the present note I propose to show, as principal result, that the above conditions on the numbers $p_i^{i+2}(D)$, \ldots, $p_i^{n-2}(D)$ are irrelevant, and furthermore that it is immaterial whether we place the restriction as to finiteness on $p_i^{i+1}(D)$ or on $p_i^{n-i-2}(D_1)$. It turns out that the only essential requirements are that the upper limits on the dimensions for which D and D_1 are u.l.i.c. must total at least $n-3$, and that one of the domains have a finite Betti number as just stated.

For the sake of brevity we make the following definitions. We shall understand without explicit statement hereafter that the imbedding space is $E_n(n \geq 3)$ (euclidean space of n dimensions).

DEFINITION. A metric space will be said to be completely i-avoidable¶ at a point P if for every $\epsilon > 0$ there exist δ and η, $\epsilon > \delta > \eta > 0$, such that if γ^i is a cycle on $F(P, \delta)$, then $\gamma^i \sim 0$ on $S(P, \epsilon) - S(P, \eta)$.

* Presented to the Society, December 29, 1934.
† Annals of Mathematics, vol. 35 (1934), pp. 876–903; to be referred to hereafter as G.C.M.
‡ Principal Theorem E of G.C.M.
§ u.l.i.c. = uniformly locally i-connected; see G.C.M. for definition.
¶ See condition (3), definition M_i^a, of G.C.M.
THEOREM 1. Let M be the boundary of a u.l.i-c. domain D, $(0 \leq i \leq n-j-2)$, and P a point of M at which M is completely $(n-j-2)$-avoidable. Then there exists for every $\epsilon > 0$ an $\eta > 0$ such that if $\gamma^i \subset S(P, \eta)$ links M, then γ^i is linked with a cycle Γ^{n-i-1} of $D \cdot S(P, \epsilon)$, and with a cycle Γ^{n-i-1} of $M \cdot S(P, \epsilon)$.*

PROOF. Let ϵ' be an arbitrary positive number $< \epsilon$, and let δ and η be such that a γ^{n-i-2} of $M \cdot F(P, \delta)$ is homologous to zero on $M \cdot [S(P, \epsilon') - S(P, \eta)]$. Suppose $\gamma^i \subset S(P, \eta)$ links M. Let $H = M \cdot S(P, \delta)$ and $K = M \cdot S(P, \epsilon')$. Then γ^i links K. For suppose not. Then there exists a chain $C_i^{i+1} \rightarrow \gamma^i$ in $E_n - K$, and hence in $E_n - H$. A chain $C_1^{i+1} \rightarrow \gamma^i$ in $S(P, \eta)$ lies also in $E_n - (M - H)$. Then the cycle $C_1^{i+1} - C_2^{i+1}$ must link $H \cdot M - H$, else by the Alexander Addition Theorem γ^i does not link $H + M - H = M$. But then $C_1^{i+1} - C_2^{i+1}$ is linked with an $(n-j-2)$-cycle of $M \cdot F(P, \delta)$, since $H \cdot M - H \subset M \cdot F(P, \delta)$. But such a cycle bounds on $M \cdot [S(P, \epsilon') - S(P, \eta)] \subset E_n - C_1^{i+1} - C_2^{i+1}$,† and we have a contradiction. Thus γ^i links K.

As γ^i links K, it is linked with a cycle Γ^{n-i-1} of K. Since D is u.l.i-c. for $0 \leq i \leq n-j-2$, there lies in $D \cdot S(P, \epsilon)$ a cycle Γ^{n-i-1} approximating Γ^{n-i-1} and linked with γ^i.

THEOREM 2. Let the compact point set M be the common boundary of (at least) two domains D_1 and D_2 such that D_k, $(k = 1, 2)$, is u.l.i-c. for $0 \leq i \leq n_k$, where $n_1 + n_2 = n - 3$. Also, let (n_1+1)-cycles of D_1 of diameter less than some fixed positive number θ bound in D_1. Then M is a g.c. $(n-1)$-m..§

PROOF. CASE 1. Suppose $n_1 \geq n_2$. By Theorem 3 of G.C.M., M is completely i-avoidable at all points, for $0 \leq i \leq n_2$. We first prove that D_1 is u.l. (n_1+1)-c. If D_1 is not u.l. (n_1+1)-c., there exist $P \subset M$ and $\epsilon > 0$ such that for each $\eta > 0$ there exists a

* Theorem 1 is a generalization of Theorem 4 of my paper Concerning a problem of K. Borsuk, Fundamenta Mathematica, vol. 21 (1933), pp. 156-167. It should be noted that the neighborhoods $S(P, \epsilon)$ are relative to E_n, not merely to M.

† If L is a chain, by $|L|$ we denote the set of points on L.

‡ See Lemma 2a of G.C.M. (A typographical error occurs in the statement of the lemma; the last "for" should be "1".)

§ Theorem 2 is an exact generalization of Theorem 8 of the paper in Fundamenta Mathematica, vol. 21, cited above.
cycle γ^{n+1} in $D_1 \cdot S(P, \eta)$ that does not bound in $D_1 \cdot S(P, \epsilon)$. However, let us choose δ and η to satisfy the complete i-avoidability requirement with $\eta < \theta$. By hypothesis, there exists $K_1\gamma^{n+2} \rightarrow \gamma^{n+1}$, in D_1 and hence (for $i = n_2$) in $E_n - H$ (H as defined in proof of Theorem 1). Any $K_2\gamma^{n+2} \rightarrow \gamma^{n+1}$ in $S(P, \eta)$ also lies in $E_n - [F(P, \epsilon) + M - H]$. Then $K_1\gamma^{n+2} - K_2\gamma^{n+2}$ must link a cycle of $M \cdot F(P, \delta)$, else γ^{n+1} bounds in $D_1 \cdot S(P, \epsilon)$. But then it is linked with a Γ^m of $M \cdot F(P, \delta)$, where $M = n - (n_1 + 2) - 1 = n_2$; such a cycle, however, bounds on $M \cdot [S(P, \epsilon) - S(P, \eta)]$, hence in $E_n - (K_1\gamma^{n+2} - K_2\gamma^{n+2})$. Thus the supposition that γ^{n+1} does not bound in $D_1 \cdot S(P, \epsilon)$ leads to a contradiction.

We may now show that D_1 is u.l.i-c. for $n_1 + 2 \leq i \leq n - 2$. Let j be such a fixed value of i; we note that $n_2 \geq n - j - 1 \geq 1$. Suppose D_1 not u.l.i-c. Then we may determine a point P of M and an $\epsilon > 0$ such that for each $\eta > 0$ there is a cycle γ^j of $D_1 \cdot S(P, \eta)$ that fails to bound in $D_1 \cdot S(P, \epsilon)$. Let δ and η be such that (1) $\epsilon > \delta > \eta > 0$, (2) any $(n - j - 2)$-cycle of $M \cdot S(P, \delta)$ bounds in $M \cdot [S(P, \epsilon) - S(P, \eta)]$, (3) any $(n - j - 1)$-cycle of $D_2 \cdot S(P, \delta)$ bounds in $D_2 \cdot S(P, \epsilon)$ and hence in D_2, and (4) if an γ^j links M, then (Theorem 1) it is linked with an $(n - j - 1)$-cycle of $D_2 \cdot S(P, \delta)$. Now if an γ^j of D_1 were linked with M, we could by condition (4) determine an $(n - j - 1)$-cycle of $D_2 \cdot S(P, \delta)$ with which γ^j is linked. As this would not be possible by condition (3), we can suppose that γ^j does not link M. Then there exists a chain $K_1\gamma^{i+1} \rightarrow \gamma^j$ in $E_n - M$, hence in $E_n - M \cdot S(P, \delta)$. Let $K_2\gamma^{i+1}$ be an arbitrary chain of $S(P, \eta)$ bounded by γ^j, and we have $K_2\gamma^{i+1} \rightarrow \gamma^j$ in $E_n - [F(P, \epsilon) + M - M \cdot S(P, \delta)]$. As before, we see by applying condition (2) that γ^j bounds in $D_1 \cdot S(P, \epsilon)$.

Thus D_1 is u.l.i-c. for $0 \leq i \leq n - 2$, and for this case the theorem follows from Principal Theorem C of G.C.M.*

Case 2. Suppose $n_1 < n_2$. In this case we show that D_2 is u.l.i-c. for $n_2 + 1 \leq i \leq n - 2$. We note that M is completely $(n - j - 2)$-avoidable for $0 \leq n - j - 2 \leq n_1$ at all points. The proof then follows the general method of Case 1.

The following corollary is obvious.

* That D_1 is simply $(n - 1)$-connected follows from the fact that M, being a common boundary of two domains, is a continuum.
Corollary. A compact set that is the common boundary of (at least) two domains D_1 and D_2 such that D_k, $(k = 1, 2)$, is u.l.i.c. for $0 \leq i \leq n_k$, where $n_1 + n_2 = n - 2$, is a g.c.(n-1)-m.

Theorem 3. Let M be a common boundary of (at least) two domains D_1 and D_2 such that D_k, $(k = 1, 2)$, is u.l.i.c. for $0 \leq i \leq n_k$, where $n_1 + n_2 = n - 3$. Then if $p^{n_k+1}(D_k)$ is finite for either $k = 1$ or 2, there exists a $\theta > 0$ such that (n_k+1)-cycles of D_k of diameter $< \theta$ bound in D_k.*

Proof. Take, for instance, $p^{n_1+1}(D_1)$ finite. Let $n_1 + 1 = k$. Denote the cycles of a k-basis of D_1 by $\Gamma^k_i, (i = 1, 2, \ldots, m)$. By the method of proof of Theorem 5 of G.C.M. we can prove the following lemma.

Lemma. Let D be a u.l.i.c. domain, $(0 \leq i \leq j)$, and let $\Gamma^k_i, (i = 1, 2, \ldots, m; 0 \leq n - k - 1 \leq j + 1)$, be a set of independent cycles linking D. Then in D there exist independent cycles $\gamma^{n-k-1}_i, (i = 1, 2, \ldots, m)$, such that every linear combination of the Γ's is linked with at least one γ.

Applying the lemma, we see that there exists in D_2 a set of $(n-k-1)$-cycles $\gamma^{n-k-1}_i, (i = 1, 2, \ldots, m)$, such that every linear combination of the Γ's is linked with at least one of the γ^{n-k-1}_i. The remainder of the proof is similar to that for Theorem 14 of D.B. From Theorems 2 and 3 we have our principal result.

Principal Theorem. Let a compact point set M be a common boundary of (at least) two domains D_1 and D_2 such that D_k, $(k = 1, 2)$, is u.l.i.c. for $0 \leq i \leq n_k$, where $n_1 + n_2 = n - 3$. Then, if one of the numbers $p^{n_k+1}(D_k)$ is finite, M is a g.c.(n-1)-m.

For the case $n = 3$, where necessarily the numbers n_1 and n_2 as defined above must equal 0, I have shown in D.B. that without the single condition as to the finiteness of one of the numbers $p^{n_k+1}(D_k)$, not only may the boundary fail to be a manifold, but it may be the common boundary of three or more domains. However, if M has a single point P such that all 1-cycles of $D_k \cdot S(P, \epsilon)$ bound in D_k, then M is the common boundary

* Compare Theorem 14 of D.B.
of only two domains. (Theorem 11 of D.B.) We now extend the latter result to higher dimensions.*

Theorem 4. Let M be a common boundary of two domains D_1 and D_2 such that D_k, $(k = 1, 2)$, is u.i.-c. for $0 \leq i \leq n_k$, where $n_1 + n_2 = n - 3$. Then, if for (at least) one of the values of k, there exists a point P of M and an $\epsilon > 0$ such that all $(n_k + 1)$-cycles of $D_k \cdot S(P, \epsilon)$ bound in D_k, it follows that M is the common boundary of only two domains. Indeed, at P, M is locally a g.c.$(n-1)$-m.†

Proof. Let $n_1 \geq n_2$. As both D_1 and D_2 are u.i.0-c., M is a Jordan (or Peano) continuum, and the component C of $M \cdot S(P, \epsilon)$ determined by P is an open subset of M. By the method of argument used for Theorem 9 of D.B., C is the common boundary of two u.i.-c., $(0 \leq i \leq n_k)$, domains D_k', $(k = 1, 2)$, in $S(P, \epsilon)$, where all points of D_k' in a certain neighborhood U (rel. E_n) of C belong to D_k and conversely. As in Theorem 3 of G.C.M. we show that C is completely i-avoidable at all points for $0 \leq i \leq n_2$.

We may now proceed, as in Theorem 2 above, to show that one of the domains D_k' is u.i.-c. for $0 \leq i \leq n - 2$ at all points of C. Following this, we may show by methods such as those used to prove Theorem 12 of G.C.M. that in U there exist only points of $C + D_1 + D_2$.

In conclusion we note that in higher dimensions there exist, a priori, further possibilities concerning common boundaries of several domains. For instance, does there exist for some E_n a common boundary of three domains D_k, $(k = 1, 2, 3)$, such that D_k is u.i.-c. for $0 \leq i \leq n_k$, where $n_1 > n_2 > n_3$? The answer, in case $n_1 + n_3 \geq n - 3$, is clearly negative by virtue of the corollary to Theorem 2 above; and indeed we must have $n_1 + n_2 \leq n - 3$ in such a case. For the case $n_1 + n_2 = n - 3$, let us consider the Betti numbers $p^{n+m}(E_n - M)$, where $n_1 + m \leq n - 2$ and $n - (n_1 + m) - 1 \leq n_3$ (if any such exist). By the proof of Theorem 4 of G.C.M. we may show $p^i(B)$ finite for $0 \leq i \leq n_3$. Consequently the num-

* It will be noted that we show now that the “ϵ-condition” is needed only for one domain.

† That is, conditions (2), (3) of definition M^{n-1} of G.C.M. are satisfied for some connected open neighborhood U of P, and so on.
bers $p^{n+m}(E_n-M)$ are all finite. Thus we have the following theorem.

Theorem 5. Let M be a common boundary of three distinct domains D_k, $(k=1, 2, 3)$, such that D_k is u.l.i-c. for $0 \leq i \leq n_k$, and $n_1 \geq n_2 \geq n_3$. Then $n_1 + n_2 \leq n - 3$, and if there exists $m > 0$ such that $n_1 + m \leq n - 2$ and $n - (n_1 + m) - 1 \leq n_3$, the Betti numbers $p^{n+m}(E_n-B)$ and $p^i(B)$, $(0 \leq i \leq n_3)$, are all finite.*

* Thus, although we have no actual example, it is conceivable that there exists, in E_3, a common boundary M of three domains D_k each of which is u.l.i-c. for $i=0, 1$. If so, $p^i(D_k)$ is infinite for $k=1, 2, 3$; and $p^i(E_3-M)$ is finite.

† Grace and Young, *The Algebra of Invariants*, 1903, Chapter 11.