ON THE GENERATION OF THE FUNCTIONS Cpq AND Np OF LUKASIEWICZ AND TARSKI
BY MEANS OF A SINGLE BINARY OPERATION

BY J. C. C. MCKINSEY*

Indicating the n "truth-values" of a Lukasiewicz-Tarski logic† by the n numbers $1, 2, \ldots, n$, we define the functions Cpq and Np as follows:

\[
\begin{align*}
Cpq &= 1, \text{ when } p \geq q, \\
Cpq &= q - p + 1, \text{ when } p < q, \\
Np &= n - p + 1.
\end{align*}
\]

Thus, for example, for $n = 3$ we have

<table>
<thead>
<tr>
<th>C</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>p</th>
<th>Np</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

I shall denote a Lukasiewicz-Tarski logic of n truth-values by L_n.

In this paper I define,‡ in terms of Cpq and Np, a function $Eipq$ such that, in each L_n, Cpq and Np are in turn definable in terms of $E_{n-2}pq$. The function $Eipq$ is defined by means of the following series of definitions.

DEFINITION 1. $A_0p = p, A_{i+1}p = CNpA_i p$.

DEFINITION 2. $B_0p = Np, B_{i+1}p = CpB_i p$.

DEFINITION 3. $D_i p = CA_i pNCpNB_i p$.

DEFINITION 4. $E_{i}pq = CpD_{i}q$.

* Blumenthal Research Fellow.

† For a general discussion of this logic, see Lewis and Langford, *Symbolic Logic*, pp. 199–234.

‡ D. L. Webb has recently found (*The generation of any n-valued logic by one binary operation*, Proceedings of the National Academy of Sciences, vol. 21 (1935), pp. 252–254) a binary operation by means of which it is possible to generate any operation of any n-valued logic. His operation, however, cannot be defined in terms of Cpq and Np except when $n = 2$. This can be seen from the fact that the operations Cpq and Np are class-closing on the elements 1, n; whereas the operation found by Webb has not this property.
In terms of E_{ipq} I define certain other functions as follows:

Definition 5. $F_{ip} = E_{i}E_{ip}ppE_{i}E_{ip}pp$.
Definition 6. $M_{ip} = E_{i}F_{ip}$.
Definition 7. $I_{ipq} = E_{i}E_{ip}F_{i}qq$.

I shall now show that, in L_n, $M_{n-2} = Np$, and $I_{n-2pq} = Cpq$; hence that, in L_n, Cpq and Np are definable in terms of the single binary operation E_{n-2pq}.

Theorem 1. For every n in L_n we have

$$A_{n-2n} = n, \quad \text{and} \quad A_{n-2p} = 1 \text{ for } p \neq n.$$

Proof. I prove the first part of the theorem by mathematical induction on i. By Definition 1, $A_{n} = n$. Suppose that $A_{kn} = n$; then $A_{k+1n} = CNnA_{k}n = CNnn = Cln = n$. Hence for every i we have $A_{in} = n$; so, in particular, $A_{n-2n} = n$.

I prove the second part of the theorem by reductio ad absurdum. Suppose, if possible, that the second part of the theorem is false, so that there exists a $p_0 < n$ for which $A_{n-2p_0} > 1$. I first show that, on this supposition, $A_{ip_0} > 1$ for every $i \leq n - 2$; for if we had $A_{ip_0} = 1$ we should have $A_{i+1p_0} = CNp_0A_{i}p_0 = CNp_1 = 1$, so we should have $A_{n-2p_0} = 1$, contrary to hypothesis. It can be shown that $A_{1p_0} \leq n - 2$; for from $p_0 < n$ follows $p_0 \leq n - 1$, whence $2p_0 \leq 2n - 2$, whence $2p_0 - n \leq n - 2$; and, since $A_{1p_0} \neq 1$, we have $A_{1p_0} = CNp_0 - (Np_0) + 1 = p_0 - (n - p_0 + 1) = 2p_0 - n$. It can also be shown that for each k, $(n - 2 > k > 1)$, we have $A_{k+1p_0} < A_{1p_0}$; for from $p_0 < n$ follows $n - p_0 + 1 > 1$, so $Np_0 > 1$; whence $A_{k+1p_0} = Np_0 + 1 < A_{k}p_0$, and since $A_{k+1p_0} \neq 1$, we have $A_{k+1p_0} = A_{k}p_0 - Np_0 + 1$. Thus we have

$$A_{n-2p_0} < A_{n-3p_0} < \cdots < A_{2p_0} < A_{1p_0} \leq n - 2.$$

Hence

$$A_{n-2p_0} \leq A_{1p_0} - (n - 3) \leq (n - 2) - (n - 3),$$

and $A_{n-3p} \leq 1$. But this is contrary to hypothesis. Hence the second part of the theorem is true.

The proof of the following theorem is similar.

Theorem 2. For every n in L_n we have

$$B_{n-21} = n, \quad \text{and} \quad B_{n-2p} = 1 \text{ for } p \neq 1.$$
Theorem 3. For every n in L_n we have

$$D_{n-2}1 = n, \quad D_{n-2}n = 1, \quad D_{n-2}p = p \text{ for } p \neq 1, n.$$

Proof. By Theorems 1 and 2, and the definitions of Cpq and Np, we have $D_{n-2}1 = CA_{n-2}1NC1NB_{n-2}1 = C1NC1Nn = C1 NC11 = C1n = n,$ $D_{n-2}n = CA_{n-2}nNCnB_{n-2}n = CnNCn1 = Cn Nn = Cn1 = 1.$ Suppose now that $p \neq 1, n$. Then $D_{n-2}p = CA_{n-2}pNCpNB_{n-2}p = C1NCpN1 = C1 NCp = C1 (n - p + 1)$ $= C1 [n - (n - p + 1) + 1] = C1 p = p.$

Theorem 4. For every $p \neq 1$ in L_n, $E_{n-2}pp = 1$; and $E_{n-2}q = q$.

Proof. If $p \neq 1$, n then, by Theorem 3, $E_{n-2}pp = CppD_{n-2}p = Cpp = 1.$ If $p = n$, then $E_{n-2}pp = CnD_{n-2}n = Cn1 = 1.$ If $p = 1$, finally, $E_{n-2}pp = C1 D_{n-2}1 = C1 n = n.$

Theorem 5. For every p in L_n, $F_{n-2}p = 1$.

Proof. If $p \neq 1$, then, by Theorem 4, we have

$$F_{n-2}p = E_{n-2}E_{n-2}ppE_{n-2}E_{n-2}pppE_{n-2}pp = E_{n-2}1E_{n-2}11$$

$$= E_{n-2}11 = C1 D_{n-2}1 = C11 = 1.$$

If $p = 1$, then, again by Theorem 4,

$$F_{n-2}p = E_{n-2}E_{n-2}11E_{n-2}E_{n-2}11E_{n-2}11 = E_{n-2}nE_{n-2}nn$$

$$= E_{n-2}n1CnD_{n-2}1 = Cnn = 1.$$

Theorem 6. For every p in L_n, $M_{n-2}p = Np$.

Proof. $M_{n-2}p = E_{n-2}pF_{n-2}p = E_{n-2}p1 = CppD_{n-2}1 = Cpn = Np$.

Theorem 7. For every p and q in L_n, $I_{n-2}pq = Cpq$.

Proof. $I_{n-2}pq = E_{n-2}pE_{n-2}F_{n-2}qq = E_{n-2}pE_{n-2}q$

$$= E_{n-2}pC1D_{n-2}q = E_{n-2}pD_{n-2}q = CpD_{n-2}D_{n-2}q.$$ But, by Theorem 3, we have $D_{n-2}D_{n-2}q = q$. Hence $I_{n-2}pq = Cpq$.

Thus we have shown that in each L_n it is possible to define in terms of Cpq and Np a function, namely, $E_{n-2}pq$, in terms of which Cpq and Np are again definable.

New York University