A NOTE ON YOUNG-STIELTJES INTEGRALS*

BY F. G. DRESSEL

THEOREM 1. If \(f(x) \) is bounded and measurable Borel, and \(g_1(x), g_2(x) \) are of bounded variation, then the following equality holds:

\[
\int_0^1 f(x) d[g_1(x)g_2(x)] = \int_0^1 f(x)g_1(x + 0)dg_2(x) + \int_0^1 f(x)g_2(x - 0)dg_1(x).
\]

Proof. In a recent article Evans† showed that if \(g_1(x) \) and \(g_2(x) \) have no common points of discontinuity, then

\[
\int_0^1 f(x) d[g_1(x)g_2(x)] = \int_0^1 f(x)g_1(x)dg_2(x) + \int_0^1 f(x)g_2(x)dg_1(x).
\]

Therefore (1) holds if either \(g_1(x) \) or \(g_2(x) \) are continuous. It remains to show that the theorem holds when \(g_1(x) \) and \(g_2(x) \) are both step functions. Under these circumstances we have

\[
\int_0^1 f(x)g_1(x + 0)dg_2(x) + \int_0^1 f(x)g_2(x - 0)dg_1(x)
= \sum f(\alpha_i)g_1(\alpha_i + 0)\left[g_2(\alpha_i + 0) - g_2(\alpha_i - 0)\right]
+ \sum f(\alpha_i)g_2(\alpha_i - 0)\left[g_1(\alpha_i + 0) - g_1(\alpha_i - 0)\right]
= \sum f(\alpha_i)[g_1(\alpha_i + 0)g_2(\alpha_i + 0) - g_1(\alpha_i - 0)g_2(\alpha_i - 0)]
= \int_0^1 f(x) d[g_1(x)g_2(x)],
\]

where the summations are taken over all the discontinuities of \(g_1(x) \) and \(g_2(x) \).

The following lemmas are immediate applications of equation (1).

* Presented to the Society, November 30, 1935.
Lemma 1. If \(f(x) \) is positive, bounded, and Borel measurable, and \(g_1(x), g_2(x) \) are monotone increasing, bounded, continuous on the left, then

\[
\int_0^1 f(x) d\left[g_1(x)g_2(x)\right] \leq \int_0^1 f(x) g_1(x) dg_2(x) + \int_0^1 f(x) g_2(x) dg_1(x).
\]

Lemma 2. If in Lemma 1 the \(g_1(x) \) and \(g_2(x) \) are monotone decreasing functions continuous on the right, the inequality sign in (2) is reversed.

W. C. Randels* used Lemma 1 in proving the existence of a solution of

\[
f(x) = m(x) + \lambda \int_0^x f(y) dK(x, y).
\]

In essentially the same manner, by making use of Lemma 2, we may prove the following theorem.

Theorem 2. If \(g(x) \) is of bounded variation and if (a) \(K(x, y) \) is Borel measurable in \(y \) for every \(x \), (b) \(K(x + 0, y) = K(x, y) \), (c) \(K(x, x) = 0 \), (d) \(|K(x_1, y) - K(x_2, y)| \leq |T(x_1) - T(x_2)| \), where the function \(T(x) \) is bounded and non-decreasing with \(x \), then

\[
f(x) = g(x) + \lambda \int_0^x K(x, y) df(y)
\]

has a unique solution of bounded variation.

Duke University
