BRANCH-POINT MANIFOLDS ASSOCIATED WITH
A LINEAR SYSTEM OF PRIMALS*

BY T. R. HOLLcroft

1. Introduction. Linear \(\alpha \) systems of primais in \(S_r \) have been treated only for \(\alpha = 1, 2 \). The properties of a linear system are obtained from the characteristics of the jacobian and of the branch-point manifold associated with the system. There are, at present, no means for deriving most of the characteristics of a singular primal or manifold in \(S_r \), especially for \(r > 4 \).

In this paper, a theorem is developed giving a set of characteristics of the branch-point manifolds of the system and its sub-systems. This is a step, not only toward the characterization of a general linear system in \(S_r \), but also toward the study of singular manifolds which contain both nodal and cuspidal manifolds.‡

2. Definitions and Basic Considerations. In \(S_r \), the linear \(\infty^r \) system, \(F_r \), of primais is defined by the equation

\[
\sum \lambda_i f_i = 0, \quad (i = 1, 2, \ldots, r+1),
\]

in which the \(f_i \) are general algebraic functions of order \(n \) in the \(r+1 \) homogeneous variables \(x_i \). Then \(f_i = 0 \) is the equation of a primal of order \(n \) without singularities in \(S_r \).

The primais of \(F_r \) in the \(r \)-space \((x)\) are in \((1, 1)\) correspondence with the primes \(\sum a_i y_i = 0, \quad (i = 1, 2, \ldots, r+1) \), of an \(r \)-space \((y)\). This correspondence is defined by the equations

\[
\rho y_i = f_i, \quad (i = 1, 2, \ldots, r+1).
\]

* Presented to the Society, September 12, 1935.
‡ These terms will be used: *node*, a double point of a manifold at which the quadric hypercone is entirely general; *nodal manifold of a manifold f*, a manifold for every point of which (except points on pinch and singular loci) the two tangent linear manifolds to \(f \) are distinct; *cuspidal manifold of f*, a manifold for all points of which the two tangent linear manifolds to \(f \) coincide; *cone* to mean *hypercone* for \(r > 3 \).
To a point P of (y), considered as bearing ∞^{r-1} primes, corresponds n^r points of (x). These n^r points are the basis points of the ∞^{r-1} linear system of primals F_{r-1} in which the primals are in $(1, 1)$ correspondence with the primes in (y) through P. Since (y) contains ∞^r points, F_r contains ∞^r linear systems F_{r-1}.

In the general case, to an S_k of (y), $(k \leq r-1)$, considered as bearing ∞^{r-k-1} primes, corresponds in (x) the basis manifold M_k (of dimension k and order n^{r-k}) of an ∞^{r-k-1} linear system of primals F_{r-k-1} in which the primals are in $(1, 1)$ correspondence with the primes of (y) through S_k. Since (y) contains $\infty^{(k+1)(r_k)}$ linear manifolds S_k, the system F_r contains $\infty^{(k+1)(r-k)}$ linear systems F_{r-k-1}.

The jacobian J of the linear system F_r is a primal of order $(r+1)(n-1)$. It is the locus of double points and contacts of primals of F_r. The jacobian J also contains the jacobian manifolds of all the linear systems of primals contained in F_r such that the Jacobians of the systems F_{r-k-1} form a $(k+1)(r-k)$-parameter linear system of manifolds on J. Likewise J contains the singularities of higher order and contacts of higher order of primals of F_r and of all linear systems of primals contained in F_r. The jacobian J has no actual singularities, only apparent singular manifolds.

The $(1, 1)$ correspondence between the primals of F_r and the primes of (y) establishes a $(1, n^r)$ involution between the points of (y) and (x), and J is the locus of coincidences of this involution. The image of J in (y) is the branch-point primal L, the locus of points such that all primals of each associated F_{r-1} have contact with a line at a point on J. The ∞^{r-1} contacts generate J.

L is also the envelope of primes of (y) which correspond to primals of F_r that have a node. To the points of contact of primes with L correspond uniquely the nodes, which lie on J.

The order μ_0 of L is the number of points in which J and $r-1$ primals of F_r intersect, that is, $\mu_0 = (r+1)(n-1)n^{r-1}$.

The classes of L are defined as follows:

- μ_1, the order of the tangent cone to L from a point;
- μ_2, the order of the tangent cone to L from a line;
- μ_{k+1}, the order of the tangent cone to L from an S_k;
- μ_{r-1}, the number of tangent primes to L from an S_{r-2}.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
3. A Theorem Defining Branch-Point Manifolds of the F_{r-k-1}.

The primals of an F_{r-k-1} of F_r of (x) are in $(1, 1)$ correspondence with the primes of S_{r-k-1}, a sub-space of (y). This establishes a $(1, 1)$ correspondence between the points of S_{r-k-1} and the basis manifolds M_{k-1} of the $(r-k-2)$-parameter linear systems of primals contained in F_{r-k-1}. The locus of points of S_{r-k-1} for which all of the primals of the associated $(r-k-2)$-parameter linear systems have contact at one point with a line is the branch-point manifold L_{r-k-2} (primal of S_{r-k-1}) and the locus of contacts in (x) is the jacobian manifold J_{r-k-2}.

As shown in §2, the primals of an $(r-k-1)$-parameter linear system of primals belonging to F_r in (x) are in $(1, 1)$ correspondence with the primes of (y) through an S_k. The $(k+1)$st class of L, μ_{k+1}, is the order of the tangent cone enveloped by primes through S_k tangent to L. To each such tangent prime corresponds a primal of F_{r-1} and of F_r with a node.

Consider any given S_{r-k-1} of (y). S_{r-k-1} intersects each of the primes through S_k in an S_{r-k-2}, which is a prime of S_{r-k-1}. The primals of F_{r-k-1} are in $(1, 1)$ correspondence with these primes $[S_{r-k-2}$ of $(y)]$ of S_{r-k-1}.

Since the order of the tangent cone to L from S_k is μ_{k+1}, the section of this tangent cone by S_{r-k-1} is a manifold V_{r-k-2} of dimension $r-k-2$ and order μ_{k+1}. This manifold V_{r-k-2} is the envelope of the primes of S_{r-k-1} which are sections by S_{r-k-1} of the primes of (y) through S_k tangent to L. Therefore the primes in S_{r-k-1} enveloping V_{r-k-2} are in $(1, 1)$ correspondence with the primals of F_{r-k-1} which have a node. But, as previously shown, the $(1, 1)$ correspondence between the primals of F_{r-k-1} and the primes of S_{r-k-1} establish an involution in which the branch-point manifold L_{r-k-2} of S_{r-k-1} is defined as the envelope of primes of S_{r-k-1} which correspond uniquely to primals of F_{r-k-1} that have a node. Therefore, in S_{r-k-1},

$$L_{r-k-2} = V_{r-k-2}.$$

This identity establishes the following theorem.*

*This theorem has been established for three dimensions. See T. R. Hollcroft, *The general web of algebraic surfaces of order n and the involution defined by it*, Transactions of this Society, vol. 35 (1933), p. 859.
with an \(r \)-parameter linear system of primais \(F_r \) of an \(r \)-space \((x) \), is the branch-point manifold \(L_{r-k-2} \) of \(S_{r-k-1} \) associated with a linear \((r-k-1) \)-parameter system of primais \(F_{r-k-1} \) belonging to \(F_r \).

The order \(\mu_{k+1} \) of \(L_{r-k-2} \) is also the order of the contour manifolds on \(L \) of the tangent cones from an \(S_k \). These contour manifolds, of dimension \(r-k-2 \), form a linear system on \(L \) and are the respective images of the jacobian manifolds of the \(F_{r-k-1} \) contained in \(F_r \). These jacobian manifolds form a linear system on \(J \) of the same respective dimension as the associated linear system of contour manifolds on \(L \). Its contour manifold, \(L_{r-k-2} \), and its associated jacobian manifold are all in \((1,1)\) correspondence.

4. Relations Resulting from the Theorem. By the above theorem, the \((k+1)\)st class \(\mu_{k+1} \) of \(L \) is the order of the branch-point manifold \(L_{r-k-2} \) associated with an \(F_{r-k-1} \) belonging to \(F_r \).

In the \((1, n^{r-k-1})\) involution associated with \(F_{r-k-1} \), the condition for a point to lie on \(L_{r-k-2} \) is that the primais of \(F_{r-k-1} \) have a common tangent \(S_{k+2} \) at a common point. The condition that \(r-k-1 \) primais have a common tangent \(S_{k+2} \) at a common point is the tact-invariant of this system of primais. The order of this tact-invariant is

\[
\mu_{k+1} = \frac{1}{(k+2)!} (r+1)r(r-1)(r-2) \cdots (r-k)(n-1)^{k+2}M^{r-k-2}.
\]

This is, therefore, the order of \(L_{r-k-2} \) and the value of \(\mu_{k+1} \), the \((k+1)\)st class of \(L \).

The order \(\mu_0 \) of \(L \) results from the above formula for \(k = -1 \), that is, the order \(\mu_0 \) is the tact-invariant of \(r \) primais of \(F_r \). The final class of \(L \), \(\mu_{r-1} = (r+1)(n-1)^r \), is the order of the discriminant of a primal of \(F_r \) and is not a tact-invariant, since it involves only one primal. The value of \(\mu_{r-1} \), however, is also given by the above formula for \(k = r-2 \).

The class \(\mu_{r-2} \) of \(L \) is the order of the tangent cone to \(L \) from an \(S_{r-3} \). This is also the order of the branch-point curve \(L_1 \) associated with a net of primais of \(F_r \). The complete set of charac-

teristics of L_1 is given in a former paper.* These are also the characteristics of a tangent cone (surface) to L from an S_{r-3}. The characteristics of L_2 and therefore of the tangent cone to L from an S_{r-4} have been found† for $n = 2$, but not for a general n.

Since the final class‡ of a section of L made by an S_{k+2} is μ_{k+1}, the above value of μ_{k+1} gives the final classes of all sections of L by a linear manifold as well as the orders of all tangent cones to L from a linear manifold. The order of the section of L by any linear manifold is μ_0.

In general, L in (y) has both a nodal and a cuspidal manifold, each of dimension $r-2$, and these manifolds are themselves singular. For a linear system of dimension r in S_{r-1}, however, L has only a nodal manifold of dimension $r-2$, containing a pinch manifold of dimension $r-3$.

WELLS COLLEGE

‡ By final class of an S_{k+2} section of L is meant the number of S_{k-1} through an arbitrary S_k (all in S_{k+2}) tangent to L.