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THE FOUR-VERTEX THEOREM FOR A CERTAIN 
TYPE OF SPACE CURVES.* 

BY W. C. GRAUSTEIN AND S. B. JACKSON 

It is the purpose of this note to establish for a certain type, A, 
of space curves the new form of the four-vertex theorem recently 
stated and proved for plane ovals, f 

A space curve C shall be said to be of type A provided (a) 
it is a closed regular curve of class C", (b) its curvature never 
vanishes, (c) the projection of its tangent indicatrix 7 on a plane 
T perpendicular to the line joining the origin 0 to the center of 
gravity G of I is an oval or, if G coincides with 0, the projection 
of / on some plane, T, is an oval, and (d) this oval is traced just 
once when C is traced once. 

By a vertex shall be meant a point, or an arc of constant 
curvature, for which the curvature has a relative extremum with 
respect to the neighboring arcs on either side. A vertex shall be 
said to be primary if the curvature at it has a maximum (mini
mum) which is greater (less) than the average curvature of the 
curve with respect to the arc. Otherwise, a vertex shall be 
termed secondary.% 

The theorem to be established may now be formulated as fol
lows. 

STATEMENT I. On a curve of type A, whose curvature is not con-
stanty there are at least four primary vertices. More precisely, the 
number of primary vertices, if finite, exceeds the number of second
ary vertices by at least four, and is infinite if the number of second-
ary vertices is infinite. 

* Presented to the Society, March 26, 1937. 
t W. C. Graustein, A new form of the four-vertex theorem, Monatshefte für 

Mathematik und Physik, vol. 43 (1936), pp. 381-384; for a related theorem, 
see Hayashi, Some general applications of Fourier series, Rendiconti del Circolo 
Matematico di Palermo, vol. 50 (1926), p. 100. For other work on the four-
vertex theorem in space see Süss, Ein Vierscheitelsatz bei geschlossenen Raum-
kurven, Tôhoku Mathematical Journal, vol. 29 (1928), pp. 359-362; Takasu, 
Vierscheitelsatz fur Raumkurven, Tôhoku Mathematical Journal, vol. 39 (1934), 
pp. 292-298, and vol. 41 (1936), pp. 317, 318. 

t Ibid., p. 381. 
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The theorem may be stated more simply in terms of the con
cept of a transition of the curvature.* If 1/R is the curvature 
of the curve and 1/A the average curvature with respect to the 
arc, a transition of the curvature is defined as a point, or arc, 
of the curve for which 1/R has the value 1/A and 1/R—1/A 
changes sign, that is, has opposite signs for neighboring arcs on 
either side. 

A transition of the curvature is never a vertex, by definition. 
Moreover, from the continuity of 1/R —1/A it follows that the 
number of primary vertices between two consecutive transitions 
of the curvature exceeds the number of secondary vertices on 
this arc by exactly one, or both types of vertices are infinite in 
number.f Hence our theorem may be restated as follows: 

STATEMENT II . On a curve of type A, whose curvature is not 
constant, there are at least four transitions of the curvature. 

In the proof of the theorem we shall prefer to deal with the 
radius of curvature of the given curve C rather than with the 
curvature and to employ, as parameter, not the arc s of C, but 
the arc <f> of the tangent indicatrix / . If </> is measured in the 
direction of increasing s, we have 

1 d<j> 

R ds 

Hence, since 1/R>0, </> is an admissible parameter for both C 
and I. Furthermore, since 1/R is a continuous function of s 
which is periodic of period D<—the length of C, R is a single-
valued continuous function of <f> which is periodic of period d— 
the length of I. 

From the relations ds = Rd(f> and d<j> — ds/Ry it follows that 

/

>d rD ds 

Rd<j> = D, I — = d. 
o J o R 

* Ibid., p. 382. 
f This statement may be expressed quantitatively by the equation 

P = S+T 
where P, S, and T denote, respectively, the number of primary vertices, second
ary vertices, and transitions of curvature, and where, furthermore, it is under
stood that if S or T is infinite the equation is simply to mean that P is infinite. 
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Consequently, the average radius of curvature of C with respect 
to the arc 0 of J, namely A ~D/d, is the reciprocal of the aver
age curvature of C with respect to the arc s of C, namely, 
1/A =d/D. Thus the definitions of primary and secondary ver
tices and that of a transition of the curvature might just as well 
have been based on comparisons of the radius of curvature with 
the average radius of curvature with respect to 0. 

The tangent indicatrix, 7, of the curve C has the parametric 
equations 

y% = «<(*), (i = 1, 2, 3), 

where au ai, az are the direction cosines of the directed tangent 
to C at the point 0 = 0 . For C itself we have the equations 

dxi = RoLid(j>, (i = 1, 2, 3), 

with the conditions of closure 

. d 

f' Rcad4> = 0, (i = 1, 2, 3). 

These conditions, together with the fact that A is the aver
age value of R with respect to 0, may be written in the forms 

ƒ> d /» d 

(R-A)d<t> = 0, I (R - A)aid(j> = - Dâ{, ( z = 1 ,2 ,3 ) , 
0 J Q 

where (aj, <&2, 83) are the coordinates of the center of gravity, G, 
of the curve 7, and hence in the form of the identity 

ƒ. 
d 

(a0 + aKXi + a2a2 + dzctz)(R — A)d</> 
0 

= — D(aiâi + 020:2 + #30:3) 

in the arbitrary constants a0, au #2, #3. 
The right-hand side of this identity vanishes if the direction 

with the components ai, a2y az is perpendicular to the line OG 
or if, as in the case of a plane oval, G coincides with 0. Thus, we 
pass to the following conclusion. 

LEMMA 1. The relation 

» d 

ƒ. (a0 + aioci + a2a2 + a3«3)(^ — A)d<j> = 0 
0 
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holds for every plane #o+#i#i+#2#2+dW3= ^ which is perpendicu
lar to the plane T associated with the given curve C of type A after 
the manner described in the definition of a curve of this type. 

We may now establish our theorem, by assuming that it is 
false. There are, then, since R^A, just two transitions of the 
curvature. In other words, there exist two points P , Q on I such 
that R—A is of one sign or zero for one of the arcs, PQy into 
which the points divide I and is of the opposite sign or zero for 
the other arc, QP, 

Consider, next, the function a^+a^ai+02^2+^3^3, where the 
a's are so chosen that ao+#i#i+#2#2+#3#3 = 0 represents the 
plané through P and Q which is perpendicular to 7r. This plane 
cuts the oval which is the projection of Ion T in just two points, 
which are necessarily the projections of P and Q, and of P and Q 
only. Hence, it divides the oval into two arcs, one on either side 
of it, and these arcs must be the projections of the arcs PQ and 
QP of / . It follows, then, that the function in question is posi
tive or zero for one of the latter arcs, and negative or zero for 
the other. 

It is now evident that the expression 

(a0 + aiai + a2a2 + aza3)(R — A), 

never changes sign, and so the integral of it extended around I 
cannot be zero. But this contradicts Lemma 1 and our theorem 
is established. 

The reader may observe that, when the center of gravity of I 
is at the origin, it is unnecessary to assume that there exists a 
plane on which the projection of I is an oval. I t is sufficient to 
make the less restrictive assumption that through each two 
points of I there passes a plane, p, dividing I into exactly two 
arcs, one on either side of p. This follows from the fact that, 
when â t = 0 , i = l, 2, 3, Lemma 1 holds for any plane whatever. 

The existence of twisted curves of type A is readily estab
lished. Fujiwara has shown that a closed curve on the unit 
sphere is the tangent indicatrix of a closed space curve if and 
only if the center, 0, of the sphere lies interior to the convex 
hull of the curve.* The problem of exhibiting a twisted space 

* M. Fujiwara, Über die kleinsten eineKurve enthaltenden konvexen Körper, 
The Science Reports of the Tôhoku Imperial University, vol. 4 (1915), p. 341. 
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curve of type A is thus reduced to that of finding a spherical 
curve, other than a great circle, whose convex hull has 0 as an 
interior point and which projects into an oval on a properly 
chosen plane. 

On the unit sphere x\ = sin <j> cos 0, x% = sin cj> sin 0, x% = cos 0, 
consider the curve I8 : 

<t> = h ô( | + sin 2»0), 

where n is a positive integer and ô is a small positive constant. 
This curve cuts through the (#i, x2)-plane at 4n points regularly 
distributed in pairs about the circle <£=7r/2, and hence 0 is in
terior to the convex hull of these points. A similar statement 
can then be made concerning the point (0, 0, e) with respect to 
the points in which the plane xs = e meets is, provided e$0 is 
sufficiently small in numerical value. Consequently, 0 is interior 
to the convex hull of i j . 

Since 1$ is symmetric in the #3-axis, its center of gravity lies 
on this axis. That G does not coincide with 0 is evident from 
the fact that the maximum value of <j> is 7r/2 +(3 /2)5 , whereas 
the minimum value is w/2 — 5/2. Hence, a plane w of the defini
tion of a curve of type A is in this case a horizontal plane, say, 
the (xi, x2)-plane. But, for ô sufficiently small, the projection 
of Is on the (xi, x2)-plane is certainly an oval, inasmuch as the 
curvature of the projection is a continuous function of 5 and, 
when S approaches zero, the projection approaches the circle 
(j> =7r/2. Therefore, the curve /g, for sufficiently small values of 5, 
is the tangent indicatrix of a twisted curve of type A. 

An example of a curve on the unit sphere which is the tangent 
indicatrix of a twisted curve of type A and has its center of 
gravity at 0 is given by 0 ==ir/2 + ô sin 2nd, where n is a positive 
integer and ô is a positive constant, sufficiently small. 

HARVARD UNIVERSITY 

See also Fenchel, Geschlossene Raumkurven mit vorgeschriebenen Tangentenbild, 
Jahresbericht der Deutschen Mathematiker Vereinigung, vol. 39 (1930), pp. 
183-185. 


