SOME INVARIANTS UNDER MONOTONE TRANSFORMATIONS*

D. W. HALL† AND A. D. WALLACE

We assume that S is a locally connected, connected, compact metric space and that P is a property of point sets. For any two points a and b of S we denote by $C(ab)$ (respectively $C_i(ab)$) a closed (closed irreducible) cutting of S between the points a and b. We consider the following properties:

- $\Delta_0(P)$. If S is the sum of two continua, their product has property P.
- $\Delta_1(P)$. If K is a subcontinuum of S and R is a component of $S - K$, then the boundary of R, $(F(R) = \overline{R} - R)$, has property P.
- $\Delta_2(P)$. Each $C_i(ab)$ has property P.
- $\Delta_3(P)$. If A and B are disjoint closed sets containing the points a and b, respectively, there is a $C(ab)$ disjoint from $A + B$ and having property P.

If P is the property of being connected, the four properties $\Delta_i(P)$ are equivalent as shown by Kuratowski. Indeed it may be seen that Kuratowski’s proofs allow us to state the following theorem:

Theorem 1. For any property P of point sets, $\Delta_i(P)$ implies $\Delta_{i+1}(P)$ for $i = 0, 1, 2$.

This result is the best possible in the sense that there is a property (that of being totally disconnected) for which no other implication holds.

The single-valued continuous transformation $T(S) = S'$ is said to be monotone if the inverse of every point is connected. It may be seen that the following statements are true:

(i) The inverse of every connected set is connected.
(ii) If the set X separates S between the inverses of the points x and y, then $T(X)$ separates S' between x and $y.$

Theorem 2. If the property P is invariant under monotone trans-
transformations, then for each \(i = 0, 1, 2, 3 \), the property \(\Delta_i(P) \) is invariant under the monotone transformation \(T(S) = S' \).

Proof. (0) If \(S' = L + M \), the summands being continua, then \(S = L^{-1} + M^{-1} \) is a sum of continua. Hence the set \(L^{-1} \cdot M^{-1} \) has property \(P \) and \(L \cdot M = T(L^{-1} \cdot M^{-1}) \) then has property \(P \).

(1) If \(R \) is a component of \(S' - K \), where \(K \) is a continuum, then \(R^{-1} \) is a component of the complement of the continuum \(K^{-1} \). By assumption, \(F(R^{-1}) \) has property \(P \). It follows that its image has property \(P \). But we have \(T(F(R^{-1})) = T(R^{-1} - R^{-1}) = T(R^{-1}) - R = F(R) \).

(2) Assume that \(C \) is a \(C(a, b) \) in \(S' \). From the continuity of \(T \) it follows that \(C^{-1} \) is a \(C(p, q) \) in \(S \), where \(a \) and \(b \) are any two points in the inverses of \(a \) and \(b \), respectively. Since the inverses of \(a \) and \(b \) are connected, there exists a cutting \(K \) of \(S \) between these two sets such that \(K \) is a \(C(x, y) \), where \(T(x) = a \) and \(T(y) = b \); and further \(K \) is a subset of \(C^{-1} \). Thus \(K \) has property \(P \); hence \(T(K) \) has. But \(T(K) \subseteq C \), and \(T(K) \) is a \(C(a, b) \). It follows that \(T(K) = C \) and from this that \(C \) has property \(P \).

(3) Let \(A \) and \(B \) denote disjoint closed subsets of \(S' \) containing \(a \) and \(b \). If \(x \) and \(y \) are points which map into \(a \) and \(b \), then by hypothesis there is a cutting \(K \) of \(S \) between \(x \) and \(y \) that is disjoint with \(A^{-1} \) and \(B^{-1} \) and has property \(P \). Since, clearly, \(K \) is a cutting of \(S \) between the inverses of \(a \) and \(b \), it follows that \(T(K) \) cuts \(S' \) between \(a \) and \(b \), is disjoint with \(A + B \), and has property \(P \).

As an application we have the following known results:

Theorem 3. The property of a locally connected continuum to be a dendrite, a regular curve, or a rational curve is a monotone invariant.

To see this we take \(P \) to be the property of being a point, a finite set of points, or a countable set of points and apply the invariance of \(\Delta_3(P) \).

The University of Virginia

* If \(X \) is a subset of \(S' \), we denote by \(X^{-1} \) the inverse of \(X \).
‡ See the fourth footnote and references given there.