ON THE DETERMINANT OF AN AUTOMORPH OF A NONSINGULAR SKEW-SYMMETRIC MATRIX

JOHN WILLIAMSON

Let \(G \) be the skew-symmetric matrix of order \(2n \),

\[
G = \begin{pmatrix}
0 & E_n \\
- E_n & 0
\end{pmatrix},
\]

where \(E_n \) is the unit matrix of order \(n \). If \(F \) is a matrix which satisfies

\[
FGF' = G,
\]

then \(|F|^2 = 1 \), so that \(|F| = \pm 1 \). That \(|F| = +1 \) is well known and is in fact a consequence of a theorem of Frobenius.* A simple proof communicated to me by Professor Wintner depends on the polar factorization of \(F \), which reduces the problem at once to the case in which \(F \) is orthogonal. This proof is, of course, not valid in any field. It is our intention here to give a simple direct proof, applicable in any field, of the fact that \(|F| = +1 \).

On writing \(F \) as a matrix of matrices of orders, \(F = (F_{ij}) \), \((i, j = 1, 2)\), we have, as a consequence of (1),

\[
F_{11}F_{12} - F_{12}F_{11} = F_{21}F_{22} - F_{22}F_{21} = 0,
\]

\[
F_{11}F_{22} - F_{12}F_{21} = F_{22}F_{11} = F_{21}F_{12} = E.
\]

Let \(|F_{11}| \neq 0 \). Then

\[
F = \begin{pmatrix}
F_{11} & F_{12}F_{11}' \\
F_{21} & F_{22}F_{11}'
\end{pmatrix}
\begin{pmatrix}
E_n & 0 \\
0 & (F_{11}')^{-1}
\end{pmatrix}.
\]

On, applying (2), we have

\[
|F_{11}'| |F| = \begin{vmatrix}
F_{11} & F_{12}F_{11}' \\
F_{21} & F_{22}F_{11}'
\end{vmatrix}
\begin{vmatrix}
F_{11} & F_{12}F_{11}' - F_{11}F_{12}' \\
F_{21} & F_{22}F_{11}' - F_{21}F_{12}'
\end{vmatrix}
\begin{vmatrix}
F_{11} & 0 \\
F_{21} & E_n
\end{vmatrix}
= |F_{11}|.
\]

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
Therefore \(|F| = +1 \), and we have proved the following lemma:

Lemma 1. If \(F_{11} \) is nonsingular, \(|F| = +1 \).

It also follows from (2) that if \(F_{12} = F_{21} = 0 \), \(F_{11}F_{22} = E_n \), so that \(F_{11} \) is nonsingular and accordingly \(|F| = +1 \).

Let \(P_{ij} \) be the permutation matrix of order \(n \), which by post-multiplication interchanges the \(i \)th and the \(j \)th columns of a matrix, and let \(P \) be the diagonal block matrix

\[
P = [P_{ij}, P_{ij}] = \begin{pmatrix} P_{ij} & 0 \\ 0 & P_{ij} \end{pmatrix}.
\]

Since \(P_{ij} \) is symmetric and involutory, \(PGP' = G \), the matrix \(FP \) satisfies (1), and \(|FP| = |F| \). Consequently we have the following lemma:

Lemma 2. Any matrix \(F_1 \) obtained from \(F \) by a permutation of its first \(n \) columns and the same permutation of its last \(n \) columns also satisfies (1) and \(|F_1| = |F| \).

The matrix \(W = (W_{ij}), (i, j = 1, 2) \), where \(W_{11} = W_{22} = [0, E_{n-1}] \) and \(W_{12} = -W_{21} = [E_1, 0] \), satisfies (1) and has determinant unity. The matrix \(FW \) is obtained from \(F \) by replacing the first column by minus the \((n+1)\)st column and the \((n+1)\)st by the first. If, for convenience, we now write \(F_{11} = A \) and \(F_{12} = B \) and denote the columns of \(A \) and \(B \) by \(a_i \) and \(b_i \), respectively, we have, as a consequence of Lemma 2, the following lemma:

Lemma 3. The matrix \(A = F_{11} \) in \(F \) may be replaced by \(C = (c_1, c_2, \ldots, c_n) \), where \(c_i = a_i \) or \(-b_i \).

Therefore by Lemma 1, since \(|W| = +1 \), we have our fourth lemma:

Lemma 4. If there exists a matrix \(C \) such that \(|C| \neq 0 \), then \(|F| = +1 \).

Let every determinant of order \(n \) formed from \((A, B)\), in which less than \(r \) pairs of columns \(a_i, b_i \) occur with the same suffix \(i \), be zero, but let at least one determinant with exactly \(r \) pairs of columns \(a_i, b_i \) be different from zero. As a consequence of Lemma 2 there is no loss in generality in assuming that

\[
(3) \quad |a_ib_iX| \neq 0,
\]

where the matrix \(X \) contains exactly \(r - 1 \) pairs of columns \(a_i, b_i \) with the same subscript \(i \) and does not contain either of the columns \(a_2 \) or \(b_2 \). Let \(Q \) be the diagonal block matrix
Then \(|Q| = +1 \), \(QGQ' = G \), and \(FQ \) satisfies (1). The matrix of the first \(n \) rows of \(FQ \) is \((H, K)\), where the \(n \) columns \(h_i \) of \(H \) are given by
\[
h_i = a_j, \quad j \neq 2, \quad h_2 = a_1 + a_2,
\]
and the \(n \) columns \(k_i \) of \(K \) by
\[
k_i = b_i, \quad i \neq 1, \quad k_1 = b_1 - b_2.
\]
Since the matrix \(X \) in (3) does not contain any of the columns \(a_3, b_1, a_2, b_2 \), it follows from (4) and (5) that the matrix \(T = (h_2 k_1 X) \) is a submatrix of \((H, K)\), which contains exactly \(r-1 \) pairs of columns \(h_i, k_i \) with the same suffix \(i \), and that
\[
|T| = |a_1 + a_2, b_1 - b_2, X| = |a_1 b_1 X| - |a_1 b_2 X| + |a_2 b_1 X| - |a_2 b_2 X|.
\]
But, by hypothesis,
\[
|a_1 b_2 X| = |a_2 b_1 X| = 0.
\]
Since \(|a_1 a_2 X| \) is also zero and \(|a_1 b_1 X| \) is not zero by (3), \(a_2 \) and \(b_2 \) are both linear combinations of the \(n-1 \) columns of the matrix \((a_1 X)\). Hence \(|a_2 b_2 X| = 0\) and, as a consequence of (6) and (7), \(|T| = |a_1 b_1 X| \neq 0\).

Therefore in \((H, K)\) there is one nonzero subdeterminant of order \(n \) which contains exactly \(r-1 \) pairs of columns \(h_i, k_i \) with the same suffix \(i \).

Now \(|FQ| = |F| \), and \(FQ \) satisfies (1). Further, the matrix \(C \) in Lemma 4 contains exactly \(r = 0 \) pairs of columns \(a_i, b_i \). By a simple induction proof we therefore have the following lemma:

Lemma 5. If in \((A, B)\) there is one nonzero subdeterminant of order \(n \) which contains \(r \leq n \) pairs of columns \(a_i, b_i \) with the same suffix \(i \), then \(|F| = +1 \).

Since any matrix \(F \) which satisfies (1) is nonsingular, the rank of \((A, B)\) is \(n \) and Lemma 5 implies the following statement:

Theorem. If \(FGF' = G \), \(|F| = +1 \).

This proof is valid in any field.