
THE STIELTJES MOMENT PROBLEM FOR FUNCTIONS 
OF BOUNDED VARIATION 

R. P. BOAS, JR.* 

1. Introduction. We shall establish the following theorem, which 
at first sight appears quite unexpected : 

THEOREM 1. Any sequence {/xw} of real numbers can be represented 
in the form 

lin = I tnda(t), 
J o 

n = 0, 1, 2, 

J o 

The problem of determining necessary and sufficient conditions for 
a sequence of numbers {ixn\ to have the form 

(1.2) nn = I tnda(f), a(t) non-decreasing, n = 0, 1, 2, • • • , 
•J o 

was set and solved by T. J. Stieltjes. It would be natural to at tempt 
to generalize the problem by requiring merely that a(t) should be a 
function of bounded variation on (0, °o ) ; but the generalized prob­
lem has, as Theorem 1 shows, a trivial solution. 

To establish Theorem 1, we shall exhibit an arbitrary real se­
quence {fxn} as the difference of two sequences {Xw} and {vn}, each 
of the form (1.2).f The construction will also lead to the result that 
any sequence {jutw} of positive numbers of sufficiently rapid growth 
has the form (1.2); it is sufficient, for example, that 

( 1 . 3 ) MO à 1 , Mn è (^Mn-l)W , » M . 

A specimen sequence satisfying (1.3) is /*o = 1 ,Mn = ^nn, (w = 1,2, • • • ). 
As an application J of Theorem 1, it will be shown that 

* National Research Fellow. 
f Added in proof: Other proofs of Theorem 1 have been given by G. Pólya {Sur 

r indétermination d'un problème voisin du problème des moments, Comptes Rendus de 
l'Académie des Sciences, Paris, vol. 207 (1938), pp. 708-711). Pólya points out that 
a theorem of which Theorem 1 is an immediate consequence was proved by Ê. Borel 
in 1894. 

% For another application of Theorem 1, see J. Shohat, Sur les polynômes orthogo­
naux généralisés, Comptes Rendus de TAcadémie des Sciences, Paris, vol. 207 (1938), 
pp 556-558. 
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with 

f(x) = I x(t)da(t), 
J o 

I tn | da(f) | < oo , 
J o 

n = 1, 2, 

is not the general linear functional on any very interesting space of 
functions x = x(t), containing an infinite number of the functions tn, 
(n = l, 2, • • • ) (see §4 for a precise statement). Other negative re­
sults of this character have been obtained by J. W. Tukey and the 
author;* the reader is referred to their paper for a discussion of the 
significance of such results. 

2. Proof of Theorem 1. We use the notation 

M0M2 * * * M2; In J 

MO Ml * * ' Mn 

Ml M2 * * • Mn+1 

Mw 

0, 1, 2, 

Mn+1 * * * M2n 

Then a necessary and sufficient condition for {/j,n} to have the form 
1.2 isf 

(2.1) [jUoM2 * * * M2n] è 0, [M1M3 ' ' * M2n+l] ^ 0 , fl = 0, 1, 2, • • • . 

We choose positive numbers Xo, Xi, vo, vi, so that X0 — *>o=Mo, 
Ai —PI=/XI. We now proceed to define the sequences {An}, \vn} by 
induction. Suppose that 

(2.2) 

for k=0, 1, 2, 

(2.3) 

X& — *>& = M& 

• , 2^ — 1, and that the determinants 

[X0X2 • • • X 2 & ] , [v0V2 • • • V2k], 

[X1X3 • • • X2&+1J, ^ 1 ^ 3 * * * J^fc+lJ , 

- , n — 1. We have (with undeter-are positive for & = 0, 1, 2, • • • , n-
mined X2n) 

[X0X2 • • * X2nJ = X2nLXoX2 

where P is a polynomial in Xo, Ai, • • 

* A2n-2j + P, 

A2n-iî and there is a corre-

* R. P. Boas, Jr., and J. W. Tukey, A note on linear Junctionals, this Bulletin, vol. 
44 (1938), pp. 523-528. 

f See, for example, O. Perron, Die Lehre von den Ketteribriichen, 1929, p. 410; cf. 
also M. Riesz, Sur le problème des moments, troisième note, Arkiv för Matematik, 
Astronomi och Fysik, vol. 17 (1922-1923), no. 16. 
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sponding rela t ion for [VQV2 • • • ^2n]. Since [X0X2 • • • X2 n -2]>0, and 
[v0V2 • • • ^ - 2 ] > 0 , we can choose X2n and v2n so t h a t X2 

and so large t h a t [X0X2 • • • X2 n ]>0 , [v0V2 • • • *>2n]>0. Similarly 
we can then choose X2n+i and j^n+i so t h a t X2n+i — *,

2n+i = M2n+i, 
[X1X3 • • • X 2 n +i ]>0 , [v\Vz • • • ^2n+i]>0. Th i s completes t he induc­
t ion : we can find sequences {Xn}, {vn\ such t h a t for k = 0y 1, 2, • • • , 
(2.2) is satisfied, and all the determinants (2.3) are positive. Then 
{Xn} and {vn} satisfy (2.1), and consequently have the form (1.2), 
so that {iJLn} has the form (1.1). 

3. Rapidly increasing sequences. We now prove the following 
theorem : 

THEOREM 2. If 

(3.1) Mo è 1, Mn ̂  (wMn-i)w, n = 1, 2, • • • , 

then {fJLn} has the form (1.2). 

For the proof, we modify the construction of the sequence {Xn} of 
§2. We have, for w = l, 2, • • • , 

2n-l 

( 3 . 2 ) [/X0M2 * * * M2n] = M2n[M0M2 ' * * M2n-2] + z J ± M*#*> 

where t he Dk a re w-rowed minors of [MOM2 • * * M2n] and do no t in­
volve M2n. Similar ly, for n = l, 2, • • • , 

2n 

(3.3) [jUiM3 * ' • M2n+l] = M2n+lUlM3 * ' * M2n-l] + Z l ± M*Afc , 

where t he Dk' are w-rowed minors of [MIM3 • * * M2n+i], no t involving 

M2n+1-

Suppose that for k^n — 1, (w=l , 2, • • • ), 

(3.4) [/J0M2 ' ' • M2Ar] à 1, [jWlM3 ' ' * M2fc+l] = 1-

Assuming (3.1), we shall show that (3.4) is satisfied also for k = n. 
Clearly, Mm^l for m = l, 2, • • • . Hence we have 

* W \ m ^ 1 / / o s (^+4)/4 (m+2)/2 

Mm ̂  (mjjLm-i) > 2{m/2) Mm-i , w — 2, 3, 

Therefore 

,~ e N . , . (n+2)/2 n+1 (n+2)/2 n+1 
{O.b) M2n > 1 + n M2n-1, M2n+1 > 1 + W M2n • 

Now, (3.1) implies in particular that Mm+i = Mm> ( w ^ l ) ; hence the 
elements of the determinants Dk do not exceed M2n-i, and the ele-
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ments of the Dk' do not exceed /x2n. Then by Hadamard's theorem,* 

| Dk | ^ \Hn-\n , k = n, n + 1, • • • , In — 1, 

| D{ | S vinn , k = n + 1, w + 2, • • • , 2^. 

Therefore, using (3.2), (3.3), (3.4), (3.5), we obtain 

r i ^ i+«/2 n+i 
LM0M2 * * • M2nJ è M2n — ^ M2n-1 > 1 , 

r 1 ^ 1 + W / 2 n + 1 ^ 1 
lMlM3 ' ' * M2/J+1J ^ M2n+1 — n M2n > 1 . 

Thus (3.4) holds for k = w if it holds for & <w; but it holds for k = 0 
by assumption, and consequently holds for all k; therefore {/xn} has 
the form (1.2). 

The moment problem (1.2) is said to be determined or undeter­
mined according as the function a(t) is or is not unique (after being 
normalized by the conditions a ( 0 ) = 0 , a(t) = [a(t+)+a(t — )]/2 for 
/ > 0 ) . A consequence of Theorem 2 is that the moment problem (1.2) 
is not only solvable for any sequence {jun} of sufficiently rapid 
growth, but is even undetermined. In fact, if {juw} satisfies (3.1) 
and if in addition /x2^ ( 2 M I + 2 ) 2 , we define a sequence {*>n} by setting 
v\ = JJLI + 1 , vn = jjLn f or n 9e 1. Then {vn} satisfies (3.1); consequently for 
» = 0, 1,2, • • • , 

V2n = I t2ndfi(t) = I undp(u^2) = I undy(u), 
J o J 0 •* 0 

say ; while 

V2n = M2n = I /2wd«(0 = I Undb(u) , 
•Jo J o 

where 7(w) and S(w) are normalized and non-decreasing. But y(u) 
and ô(w) are distinct, since 

ƒ
, 00 ~ 00 

ul'2dy(u) = 1 + 1 ul**dô(u) = 1 + ML 
o «Jo 

Hence the moment problem for the sequence {//2n} is undetermined. 
4. Linear functionals. We use the terminology of S. Banach's 

book, f Let R be a topological vector space of elements x, let P be a 

* G. H. Hardy, J. E. Littlewood, and G. Pólya, Inequalities, 1934, p. 34. 
f Theorie des Opérations Linéaires, 1932. 
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space of elements p, and let fP(x) be a functional with domain R, 
defined for each p in P . We say that a general linear functional in R 
is fp(x), if the following conditions are satisfied: 

(i) fp(x) is a linear functional f or every p e P. 
(ii) Every linear functional g(x) with domain R is identically equal 

to some fp(x). 

In the application to be made here, the elements of P are the 
functions p = p(f), of bounded variation on (0, <*>), such that 

ƒ
> 00 

H^(fll<°°» 
n 

» = 1 , 2, 

the elements of R are measurable functions x = x{t), defined on (0, <*> ) ; 
and 

(4.1) ƒ„(*) = f x(t)dp(t), 
J o 

where the integral is a Lebesgue-Stieltjes integral. We have the 
following result: 

THEOREM 3. Let R be a topological vector space with the following 
property* 

(Q) • If x t R and an—>0, then anx—>©.f 
Then if R contains an infinite number of functions tn, (w = 0, 1, 

2, • • • ), there is some p t P for which (4.1) is not a linear functional 
on R. 

In particular, we see that, under the hypotheses of Theorem 3, 
(4.1) is not a general linear functional on R. 

Suppose that (4.1) is, for every p e P , a linear functional on a space 
R with the specified properties. Let 5 be the subspace composed of 
all finite linear combinations of the elements tn which are in R (with 
the topology of R). If ƒ is an arbitrary distributive (that is, additive 
and homogeneous) functional with domain 5, we define a sequence 
{Mn} by setting fxn=f(tn) when tn z R, and Mn = 0 otherwise. By 
Theorem 1, there is a p t P such that 

»n= f tndp(t), n = 0, 1, 2, • • • . 
J o 

Since ƒ is distributive, we then have 

* In particular, a space of type F has this property. 
f © denotes the zero element of R. 
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(4.2) f(x) = I x(t)dp(t), xzS. 
J o 

Now (4.1) is a linear functional on R, and consequently a linear 
functional on S. Hence (4.2) states that every distributive functional 
on S is linear; but this is impossible unless 5 is finite-dimensional,* 
which it is not. This contradiction establishes the theorem. 

NORTON, MASSACHUSETTS 

ON FUNDAMENTAL SYSTEMS OF SYMMETRIC 
FUNCTIONS! 

H. T. ENGSTROM 

A set S of n polynomials over a field K, symmetric in n variables, 
said to form a fundamental system if any rational 

function over K, symmetric in these variables, can be expressed ra­
tionally in terms of the polynomials of S. In this paper we show that 
any n algebraically independent symmetric polynomials over a field 
K of characteristic zero form a fundamental system if the product of 
their degrees is less than 2n\. 

The result follows from a theorem due to Perron :J 

THEOREM 1. Between n+1 polynomials (not constant), j \ , j2, • • •, fn+u 
in n variables, of degrees m\, ra2, • • • , mn+i, respectively, there is always 
an identity of the form 

Z-jCnV2...Vn+1fif2 • • • fn+1 = 0, 

where in each term, 
n + l n+1 

X) miVi = I I mi-

* Let every distributive functional on S be linear, where 5 is a topological vector 
space with the property (Q). If S is infinite dimensional, let {xn}, (n = l, 2, • • • ), be 
an infinite set of linearly independent elements. Since \imk+Mk~lxn = O, we can choose 
yn e S, (» = 1, 2, • • • ), linearly independent, with :yn—>0. We set ƒ 6 0 = 1, f(oc)=0 
when x is not a finite linear combination of the yny f(ax-\-by) = af(x) -\-bf(y) for any 
x e S, y e S; then ƒ is a distributive functional on S, and hence is linear on S. Since 
yn—>©, f(yn)—>0 as w—><*>; but this contradicts f(yn) = 1. Consequently S is finite 
dimensional. 

t Presented to the Society, February 25, 1939, under the title A note on funda­
mental systems of symmetric functions. 

% O. Perron, Bemerkung zur Algebra, Sitzungsberichte der Bayerischen Akademie, 
mathematisch-naturwissenschaftliche Abteilung, 1924, pp. 87-101. 
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