THE STIELTJES MOMENT PROBLEM FOR FUNCTIONS
OF BOUNDED VARIATION

R. P. BOAS, JR.*

1. Introduction. We shall establish the following theorem, which
at first sight appears quite unexpected:

THEOREM 1. Any sequence {,u,,} of real numbers can be represented
in the form

p,n=f trda(t), n=2012.--,
1.1) ’

)

fo | da(t) | < .

The problem of determining necessary and sufficient conditions for
a sequence of numbers {u.} to have the form

.

(1.2) P = f t*da(t), «(#) non-decreasing, » = 0,1,2,-- -,
0

was set and solved by T. J. Stieltjes. It would be natural to attempt
to generalize the problem by requiring merely that a(¢) should be a
function of bounded variation on (0, «); but the generalized prob-
lem has, as Theorem 1 shows, a trivial solution.

To establish Theorem 1, we shall exhibit an arbitrary real se-
quence {u,} as the difference of two sequences {\,} and {».}, each
of the form (1.2).T The construction will also lead to the result that
any sequence { M"} of positive numbers of sufficiently rapid growth
has the form (1.2); it is sufficient, for example, that

(1.3) mo=1, bn Z (Mp_1)™, n

A specimen sequence satisfying (1.3) ispo = 1, = 2", (n=1,2, - - - ).
As an applicationf of Theorem 1, it will be shown that

%

1.

* National Research Fellow.

1 Added in proof: Other proofs of Theorem 1 have been given by G. Pélya (Sur
Vindétermination d'un probléme voisin du probléme des moments, Comptes Rendus de
I’Académie des Sciences, Paris, vol. 207 (1938), pp. 708-711). Pélya points out that
a theorem of which Theorem 1 is an immediate consequence was proved by E. Borel
in 1894.

1 For another application of Theorem 1, see J. Shohat, Sur les polynomes orthogo-
naux généralisés, Comptes Rendus de 1’Académie des Sciences, Paris, vol. 207 (1938),
pp 556-558.
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(%) =f x()da(t),
0
with -
ft"lda(t)l<°0, n=1,2---,
0

is not the general linear functional on any very interesting space of
functions x =x(¢), containing an infinite number of the functions ¢*,
(n=1, 2, - - ) (see §4 for a precise statement). Other negative re-
sults of this character have been obtained by J. W. Tukey and the
author;* the reader is referred to their paper for a discussion of the
significance of such results.

2. Proof of Theorem 1. We use the notation

Mo M1ttt M
M1 M2t Magd

[/"0:“2"':“2?%]: ’ n=20,1,2-.-.
Mn  Magl " " " M2n

Then a necessary and sufficient condition for {u.} to have the form
1.2 ist

(2'1) [MOM2 ce I‘?n] g 0: [/‘1“3 st /"2n+1] g 0) n = 0’ 1, 2; Tt .

We choose positive numbers Ao, A1, 7o, ¥1, 80 that Ng—vo=po,
M—ri=u. We now proceed to define the sequences {)\n}, {vn} by
induction. Suppose that

(2.2) )\k-—vk=uk
for k=0,1,2, - -, 2n—1, and that the determinants
2.9 ol b,
[)\0\3 t )\2k+1], [V1V3 e V2k+1],
are positive for k=0, 1, 2, - - -, n—1. We have (with undeter-
mined Az,)

Norz « -+ Nan] = Agn[Aoha « -+ Nonea] + P,

where P is a polynomial in Ng, A1, * + -, Aen—1; and there is a corre-

* R. P. Boas, Jr., and J. W. Tukey, 4 note on linear functionals, this Bulletin, vol.
44 (1938), pp. 523-528.

t See, for example, O. Perron, Die Lehre von den Kettenbriichen, 1929, p. 410; cf.
also M. Riesz, Sur le probléme des moments, troisiéme note, Arkiv for Matematik,
Astronomi och Fysik, vol. 17 (1922-1923), no. 16.
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sponding relation for [vevs - - - ve,]. Since [Aohz + - - Agn—z2] >0, and
[vove -+ - * van_s] >0, we can choose Ny, and va, so that Ay —ven=pizn,
and so large that [AoAz - - - New]>0, [vove - - - v2n]>0. Similarly
we can then choose Ne,y1 and va,qa1 5o that Agarn —Vant1 =Hent1,
ANs « -+ Neny1] >0, [paws - - - vany1]>0. This completes the induc-
tion: we can find sequences {)\n}, {V,,} such that for £=0,1,2, - - -,
(2.2) is satisfied, and all the determinants (2.3) are positive. Then
{)\n} and {Vn} satisfy (2.1), and consequently have the form (1.2),
so that {u,} has the form (1.1).

3. Rapidly increasing sequences. We now prove the following
theorem:

THEOREM 2. If
(3.1) Mo = 1, pn = (Bn-1)™, n=12--,
then {,u,,} has the form (1.2).

For the proof, we modify the construction of the sequence {)\,,} of
§2. We have, for n=1, 2,

2n—1
(3.2) [oms - - - pon] = panlmopa - - - pan—a] + 22 & maDs,
k=n
where the Dy are n-rowed minors of [weus - - - usn] and do not in-

volve pg,. Similarly, for n=1, 2, -,

(3.3) (s -+« pong1] = ponpr[wims -« - poat] + Z uiDi

k=n+1
where the D{ are n-rowed minors of [uius * * * Many1], NOt involving
M2nt1.
Suppose that for k=n—1, (n=1, 2, - - - ),
(3.4) [uope « - - par] 2 1, [wps - -+ poppr] 21
Assuming (3.1), we shall show that (3.4) is satisfied also for k=mn.
Clearly, un=1 for m=1, 2, - - - . Hence we have
(m+4)/4 (m42)/2
fm Z (Mpma) > 2(m/2) Bm—1 M= 2,3, "
Therefore
(n+2)/2 n+1 (n+2)/2 n+1

(3.5) pwm>14n Hon—1, Bongr > 14+ n Mon -

Now, (3.1) implies in particular that gmyi=pm, (m=1); hence the
elements of the determinants D; do not exceed us,_1, and the ele-
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ments of the D{ do not exceed ug,. Then by Hadamard’s theorem,*

n n/2
| Di| = poaan” k=nn+1---, 20— 1,
| D¢ | < pan™”, E=n+1,n4+2---,2m.

Therefore, using (3.2), (3.3), (3.4), (3.5), we obtain

14n/2 n4l
[woms =« + pan] = poa — 7 Hona > 1,

14n/2 n+l
(s« * pons1] = ponps — 7 o > 1.

Thus (3.4) holds for k= if it holds for 2 <#; but it holds for =0
by assumption, and consequently holds for all &; therefore {u,} has
the form (1.2).

The moment problem (1.2) is said to be determined or undeter-
mined according as the function «(¢) is or is not unique (after being
normalized by the conditions a(0) =0, a(t) = [a(t+)+a(t—)]/2 for
t>0). A consequence of Theorem 2 is that the moment problem (1.2)
is not only solvable for any sequence {u,.} of sufficiently rapid
growth, but is even undetermined. In fact, if {;u,,} satisfies (3.1)
and if in addition us = (2u142)?, we define a sequence {r,} by setting
ri=m+1,v,=u, for n=1. Then {Vn} satisfies (3.1); consequently for
n=0,1,2,- -,

V2”=f 12ndB(t) =f urdpB(ul’?) =f urdy(u),
0 0 0

say; while

]

m=m=fﬂ%@=fu%@,
0 0

where v(u) and 6(u) are normalized and non-decreasing. But ()
and 6(u) are distinct, since

2 =f utl?dy(u) = 1 +f wl2do(u) = 1 + pa.
0 0
Hence the moment problem for the sequence {,ug,.} is undetermined.

4. Linear functionals. We use the terminology of S. Banach’s
book.} Let R be a topological vector space of elements x, let P be a

* G. H. Hardy, J. E. Littlewood, and G. Pélya, Inequalities, 1934, p. 34.
t Théorie des Opérations Linéaires, 1932,
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space of elements p, and let f,(x) be a functional with domain R,
defined for each p in P. We say that a general linear functional in R
is f»(x), if the following conditions are satisfied:

(1) fo(x) is a linear functional for every p e P.
(ii) Every linear functional g(x) with domain R is ideniically equal
to some f,(x).

In the application to be made here, the elements of P are the
functions p=p(¢), of bounded variation on (0, «), such that

f tnldp(t)l<°°7 n=1,2,---;
0
the elements of R are measurable functions x =x(¢), defined on (0, «);
and
¢.1) 5@ = [ s,

0

where the integral is a Lebesgue-Stieltjes integral. We have the
following result:

THEOREM 3. Let R be a topological vector space with the following
property:*

(Q): If x ¢ R and a,—0, then a,x—0.}

Then if R contains an infinite number of functions t*, (n=0, 1,
2, ), there is some p ¢ P for which (4.1) is not a linear functional
on R.

In particular, we see that, under the hypotheses of Theorem 3,
(4.1) is not a general linear functional on R.

Suppose that (4.1) is, for every p ¢ P, a linear functional on a space
R with the specified properties. Let S be the subspace composed of
all finite linear combinations of the elements #* which are in R (with
the topology of R). If f is an arbitrary distributive (that is, additive
and homogeneous) functional with domain S, we define a sequence
{un} by setting m.=f(#") when ¢ ¢ R, and u,=0 otherwise. By
Theorem 1, there is a p ¢ P such that

“"=f trdp(f), n=0,1,2---.
0

Since f is distributive, we then have

* In particular, a space of type F has this property.
t © denotes the zero element of R.
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4.2) f(x) = f x()dp(t), xeS.

Now (4.1) is a linear functional on R, and consequently a linear
functional on S. Hence (4.2) states that every distributive functional
on S is linear; but this is impossible unless S is finite-dimensional,*
which it is not. This contradiction establishes the theorem.

NORTON, MASSACHUSETTS

ON FUNDAMENTAL SYSTEMS OF SYMMETRIC
FUNCTIONSH

H. T. ENGSTROM

A set S of n polynomials over a field K, symmetric in # variables,
X1, X2, * * * , X, 18 said to form a fundamental system if any rational
function over K, symmetric in these variables, can be expressed ra-
tionally in terms of the polynomials of S. In this paper we show that
any # algebraically independent symmetric polynomials over a field
K of characteristic zero form a fundamental system if the product of
their degrees is less than 2n!.

The result follows from a theorem due to Perron:]

THEOREM 1. Between n+1 polynomsials (not constant), f1, fe, = * +, fat1,
in n variables, of degrees my, ma, - + -, Muy1, respectively, there is always
an identity of the form

vy Ve vl
ZCVIVZ"'”n+1f1f2 v f"+l = 07

where in each term,

n+1 n+1
2 omwi < [ ma.
i=1 =1

* Let every distributive functional on S be linear, where .S is a topological vector
space with the property (Q). If S is infinite dimensional, let {%.}, (n=1, 2, - - - ), be
an infinite set of linearly independent elements. Since limg.,k~1x, =©, we can choose
yneS, (=1, 2, -+ ), linearly independent, with y,—0. We set f(y.) =1, f(x) =0
when x is not a finite linear combination of the y., f(ax+by) =af(x) +bf(y) for any
x ¢S, ¥y e.S; then f is a distributive functional on .S, and hence is linear on S. Since
¥2—0, f(y:.)—0 as n—«; but this contradicts f(y.) =1. Consequently S is finite
dimensional.

1 Presented to the Society, February 25, 1939, under the title 4 note on funda-
mental systems of symmetric functions.

1 O. Perron, Bemerkung zur Algebra, Sitzungsberichte der Bayerischen Akademie,
mathematisch-naturwissenschaftliche Abteilung, 1924, pp. 87-101.
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