A DECOMPOSITION OF ADDITIVE SET FUNCTIONS

R. S. PHILLIPS

This paper is concerned with a decomposition theorem for additive functions on an additive family of sets to either real numbers or a Banach space. Additive bounded set functions have as yet been little studied. However the recent paper of Hildebrandt illustrates their importance.

We shall use the following notation:

(a) \(T \): an abstract class of arbitrary elements.

(b) \(\mathcal{J} \): a completely additive family of subsets \(T \) of \(T \); that is, \(T \in \mathcal{J} \), \(\tau \in \mathcal{J} \) implies \(T - \tau \in \mathcal{J} \), and \(\tau_n \in \mathcal{J} \) for \(n = 1, 2, \ldots \) implies \(\sum \tau_n \in \mathcal{J} \).

(c) \(\alpha \): a set function on \(\mathcal{J} \) to real numbers.

(d) \(\mathcal{A} \): the subclass of set functions on \(\mathcal{J} \) to real numbers which are additive and bounded; that is, \(\tau_1, \tau_2 \in \mathcal{J} \) and \(\tau_1 \cdot \tau_2 = 0 \) implies \(\alpha(\tau_1 + \tau_2) = \alpha(\tau_1) + \alpha(\tau_2) \).

(e) \(\mathcal{C} \): the subclass of set functions on \(\mathcal{J} \) to real numbers which are completely additive (c.a.), that is, \(\tau_n \in \mathcal{J} \) for \(n = 1, 2, \ldots \) and \(\tau_i \cdot \tau_j = 0 \) if \(i \neq j \) implies \(\alpha(\sum \tau_n) = \sum \alpha(\tau_n) \). The functions in \(\mathcal{C} \) are bounded.\(^3\)

The notations \(\mathcal{A}_P \) and \(\mathcal{C}_P \) refer to the subclasses of \(\mathcal{A} \) and \(\mathcal{C} \) respectively whose elements are nonnegative.

(f) \(x \): a set function on \(\mathcal{J} \) to a Banach space \(X \). The definitions of additive and c.a. set functions are formally retained. If \(\{ \tau_n \} \) is a sequence of disjoint sets of \(\mathcal{J} \) and \(x(\tau) \) is c.a., then \(\sum x(\tau_n) \) is unconditionally convergent.\(^5\)

(g) \(\mathcal{C}_X \): the class of c.a. set functions on \(\mathcal{J} \) to \(X \).

In the statement of the following theorems, \(\mathcal{D} \) will designate any one of the classes \(\mathcal{A}, \mathcal{A}_P, \mathcal{C}, \mathcal{C}_P \), and \(\mathcal{T} \) will denote the cardinal number of \(\tau \).

Theorem 1. Let \(\aleph \) be an infinite cardinal number not greater than \(\overline{\mathcal{T}} \). For every \(\alpha \in \mathcal{D} \) there exists an unique decomposition \(\alpha = \alpha_1 + \alpha_2 \) and a set \(R(\alpha) \in \mathcal{J} \) of cardinal number not greater than \(\aleph \) such that \(\alpha_1, \alpha_2 \in \mathcal{D} \).

\(^1\) Presented to the Society April 15, 1939, under the title On additive set functions.

\(^4\) S. Banach, Théorie des Opérations Linéaires, Monografje Matematyczne, Warsaw, 1932, chap. 5.

\(^5\) If \(x_n \) is a series of elements of \(X \) and if every subseries \(\sum x_n \) is convergent, then \(\sum x_n \) is said to be unconditionally convergent.
ADDITIVE SET FUNCTIONS

Let $\alpha_1(\tau) = \alpha(\tau \cdot T)$, $\alpha_2(\tau) = 0$ if $\tau \leq \aleph_0$.

Let $\Sigma = E_r [r \in \mathcal{R}, \tau \leq \aleph_0, \alpha(\tau) \neq 0]$. We define a transfinite sequence $(\tau_1, \tau_2, \ldots; \tau_n, \ldots, \tau_m, \ldots)$ as follows: τ_1 is an arbitrary element of Σ. Suppose τ_k have been defined for all $\lambda < \mu$. If there exists τ such that $\tau \cdot \sum_{\lambda < \mu} \alpha_\lambda = 0$ and $\tau \in \Sigma$, then we set $\tau = \tau_\mu$.

As $\alpha(\tau)$ is bounded, $\alpha(\tau)$ cannot differ from zero on a nondenumerable number of disjoint sets. The sequence therefore contains only a denumerable set of elements.

Let $\mathcal{R} = \sum_{\lambda \tau \lambda}$. Then $\mathcal{R} \in \mathfrak{S}$ and $\mathcal{R} \leq \aleph_0$. We define $\alpha_1(\tau) = \alpha(\mathcal{R} \cdot \tau)$, $\alpha_2(\tau) = \alpha(\tau) - \alpha_1(\tau) = \alpha(\tau - \mathcal{R} \cdot \tau)$. The $\alpha_1(\tau)$, $\alpha_2(\tau)$ are clearly elements of \mathfrak{S}. If $\tau \leq \aleph_0$, then by the definition of \mathcal{R}, $\alpha_1(\tau) = 0$.

Although the set \mathcal{R} is not unique, the function decomposition is unique: Suppose there exist two different sets \mathcal{R}_1, \mathcal{R}_2 having the properties of the \mathcal{R} defined above. The set identity $\mathcal{R}_1 \cdot \tau + (\mathcal{R}_2 - \mathcal{R}_1) \cdot \tau = \mathcal{R}_1 \cdot \tau + (\mathcal{R}_2 - \mathcal{R}_1) \cdot \tau$ and $\alpha[(\mathcal{R}_1 - \mathcal{R}_2) \cdot \tau] = 0 = \alpha[(\mathcal{R}_2 - \mathcal{R}_1) \cdot \tau]$ imply that $\alpha(\mathcal{R}_1 \cdot \tau) = \alpha(\mathcal{R}_2 \cdot \tau)$.

A set function α on \mathfrak{S} will be said to be nonsingular if for every $t \in \mathfrak{S}$, $\alpha(t) = 0$. A set function α on \mathfrak{S} will be called \aleph_0-homogeneous if there exists a set \mathcal{R} such that $\mathcal{R} \in \mathfrak{S}$, $\mathcal{R} \leq \aleph_0$, $\alpha(\tau) = \alpha(\mathcal{R} \cdot \tau)$, and $\alpha(\tau) = 0$ if $\tau < \aleph_0$.

Without loss of generality we may consider only nonsingular set functions because for every $\alpha \in \mathfrak{S}$ there exists a unique decomposition $\alpha = \alpha_1 + \alpha_2$ and a denumerable set $\{t_i\}$ of elements of \mathcal{T}, such that α_1, $\alpha_2 \in \mathfrak{S}$, $\alpha_1(\tau) = \sum_{i=0}^{\infty} \alpha_1(\tau \cdot t_i)$, and α_2 is nonsingular. We omit the proof.

Theorem 2. For every nonsingular $\alpha \in \mathfrak{S}$, there exists an unique decomposition $\alpha = \sum \alpha_i$, the sum being absolutely convergent, and such that α_i is \aleph_0-homogeneous and $\aleph_0 \neq \aleph_j$; if $i \neq j$.

In the proof of this theorem an induction is made on the infinite cardinals not exceeding that of \mathcal{T}, well-ordered according to magnitude. We define a transfinite sequence of set functions $(\alpha_1, \alpha_2, \ldots; \alpha_n, \ldots, \alpha_\lambda, \ldots)$ as follows: Suppose α_λ have been defined for all $\lambda < \mu$ and (1) only a denumerable number of the α_λ are not identically zero; (2) $\sum_{\lambda \leq \mu} |\alpha_\lambda(\tau)| < \infty$; and (3) $\alpha_\lambda \in \mathfrak{S}$ and is \aleph_0-homogeneous. By Theorem 1 there exist $\mathcal{R}_\mu \in \mathfrak{S}$ and a decomposition $\alpha = \alpha_1^1 + \alpha_2^2$ such that $\mathcal{R}_\mu \leq \aleph_0$, $\alpha_1^1(\tau) = \alpha(\mathcal{R}_\mu \cdot \tau)$, $\alpha_2^1(\tau) = 0$ if $\tau \leq \aleph_0$, and $\alpha_1^2, \alpha_2^2 \in \mathfrak{S}$. Clearly $\alpha_i(\tau) = \alpha(\mathcal{R}_\mu \cdot \mathcal{R}_i \cdot \tau)$ if $\lambda < \mu$.

Let $\alpha_\mu(\tau) = \alpha_\mu(\tau) - \sum_{\lambda < \mu} \alpha_\lambda(\tau)$. We consider the following cases:

1. $\alpha \in \mathcal{C}$, \mathcal{C}_p. Let $\mathcal{R}_\mu = \mathcal{R}_\mu - \sum_{t \in \mathfrak{S}} \mathcal{R}_\lambda$ where $\pi_\mu = E_\lambda[\lambda < \mu, \alpha_\lambda \neq 0]$. The sets \mathcal{R}_μ are disjoint. Suppose $\alpha_\lambda(\tau) = \alpha(\mathcal{R}_\lambda \cdot \tau)$ for $\lambda < \mu$. Then by (1)
\[\alpha_\mu(\tau) = \alpha(R_\mu \cdot \tau) - \sum_{\pi_\mu} \alpha_\lambda(\tau) = \alpha(R_\mu \cdot \tau) - \sum_{\pi_\mu} \alpha(R_\mu \cdot \overline{R}_\lambda \cdot \tau) \]

\[= \alpha \left[\left(R_\mu - \sum_{\pi_\mu} R_\mu \cdot \overline{R}_\lambda \right) \cdot \tau \right] = \alpha(R_\mu \cdot \tau). \]

It is clear that (1), (2), and (3) are satisfied for \(\mu + 1 \). \(\alpha_\lambda \neq 0 \) implies that \(\alpha(\tau) \neq 0 \) for some subset of \(\overline{R}_\lambda \). As the \(\overline{R}_\lambda \) are disjoint, the sequence will contain only a denumerable number of functions not identically zero.

II. \(\alpha \in A_P \). For \(\lambda_0 < \mu, \alpha(T) \geq a^1_\lambda(T) = \sum_{\lambda \leq \lambda_0} \alpha(T) = \sum_{\lambda \leq \lambda_0} \alpha_\lambda(T) \). Clearly (1) and (2) are satisfied for \(\mu + 1 \), and the sequence contains only a denumerable number of functions not identically zero. Let \(\lambda_i \) be a spanning sequence for \(E_\lambda[\lambda < \mu, \alpha_\lambda \neq 0] \). Then

\[\alpha_\mu(\tau) = \alpha_\mu^1(\tau) - \sum_{\lambda < \mu} \alpha_\lambda(\tau) = \alpha(R_\mu \cdot \tau) - \lim_{\tau \to \infty} \alpha_\mu^1(\tau) \]

\[= \alpha(R_\mu \cdot \tau) - \lim_{\tau \to \infty} \alpha(R_\mu \cdot R_{\lambda_i} \cdot \tau). \]

Hence (3) is likewise satisfied.

III. \(\alpha \in A \). Every \(\alpha \in A \) has a decomposition \(\alpha = \alpha_1 - \alpha_2 \) where \(\alpha_1, \alpha_2 \in A_P \). An application of II to \(\alpha_1 \) and \(\alpha_2 \) gives the desired decomposition.

The decomposition is unique: Any two sequences of homogeneous functions differ in a first function, \(\alpha_\mu \). But this is contrary to \(\alpha^1_\mu = \sum_{\lambda \leq \mu} \alpha_\lambda \) being unique.

In these theorems the restriction that the additive bounded set function be defined over an additive family \(\mathcal{S} \) is optional, since the range of definition of such a function can always be extended to an additive family. The type of argument used by Pettis\(^6\) will prove this statement.

We next consider the possibility of extending these theorems to functions \(x(\tau) \) on \(\mathcal{S} \) to a Banach space. The theorem is not in general valid for additive bounded set functions of this type. This is illustrated by \(x(\tau) \) defined on all subsets of \(T = (0, 1) \) to the space \(X \) of bounded functions on \(S = (0, 1) \) where \(x(\tau) \) is the characteristic function of the subset of \(S \) which has the same coordinate values as \(\tau \). Clearly there exists no denumerable set \(R \) such that \(x(\tau - R\tau) = 0 \) for all denumerable sets \(\tau \).

However analogous theorems are obtained for c.a. set functions on \(\mathcal{S} \) to \(X \).

Theorem 3. Let \mathfrak{N} be an infinite cardinal number not greater than \mathfrak{T}. For every $x \in C_X$ there exists a unique decomposition $x = x_1 + x_2$ and a set $R(x) \in \mathcal{S}$ of cardinal power not greater than \mathfrak{N} such that $x_1, x_2 \in C_X$, $x_1(\tau) = x(R_1 \cdot \tau)$, $x_2(\tau) = 0$ if $\tau \not\leq \mathfrak{N}$.

$x(\tau) \not= 0$ on at most a denumerable number of disjoint sets of \mathcal{S}. Suppose the contrary. Then there exists a denumerable sequence of disjoint sets $\{\tau_i\}$ and an $e > 0$ such that $\|x(\tau_i)\| > e$, $(i = 1, 2, \cdots)$. As $x(\tau)$ is c.a., $\sum_i x(\tau_i)$ converges. The supposition is therefore false.

The argument used in Theorem 1 will now prove the theorem.

Theorem 4. For every nonsingular $x \in C_X$, there exists an unique decomposition $x = \sum x_i$, the sum being unconditionally convergent, and such that x_i is \mathfrak{N}_i-homogeneous and $\mathfrak{N}_i \neq \mathfrak{N}_j$ if $i \neq j$.

The proof is identical with that of I in Theorem 2. Again there will exist disjoint R_μ's such that $x_\mu(\tau) = x(R_\mu \cdot \tau)$.

University of Michigan