A CORRECTION TO "A NOTE ON LINEAR FUNCTIONALS"

R. P. BOAS, JR., AND J. W. TUKEY

R. S. Phillips has called our attention to an error in our paper A note on linear functionals. On page 526, we have misquoted a theorem of Lebesgue's: the statement in the last display on that page is incorrect. It is, in fact, contradicted by the Riemann-Lebesgue theorem whenever the functions $x_n(t)$ are the elements of a uniformly bounded orthonormal set. Fortunately, however, the error does not affect the validity of any of our results. The correct consequence of Lebesgue's theorem is that

$$\sup_{0 \leq n < \infty} \sup_{0 \leq t \leq 1} |x_n(t)| < \infty;$$

that is, that $\sup_{0 \leq n < \infty} \|x_n\|_B < \infty$. From this it still follows that any linear functional on B is a linear functional on R; and we used our incorrect statement only to deduce this. This consequence is true in virtue of the following simple lemma.

Lemma. If a set $\{x\}$ forms a normed vector space under two norms, $\|x\|$ and $\|x\|_B$, and if $\lim_{n \to \infty} \|x_n\| = 0$ implies that $\sup_{0 \leq n < \infty} \|x_n\|_B < \infty$, then any distributive functional continuous with respect to the second norm is also continuous with respect to the first norm.

Proof. Let f be a distributive functional, continuous with respect to the norm $\| \cdots \|_B$, so that for some number H,

$$|f(x)| \leq H \|x\|_B$$

for every x. Suppose that f is not continuous with respect to the norm $\| \cdots \|$; then, as is well known (cf. S. Banach, *Théorie des Opérations Linéaires*, 1932, p. 55) there exist elements y_n such that $\|y_n\| = 1$, $|f(y_n)| > n$. The elements $z_n = n^{-1/2}y_n$ have the properties

$$\|z_n\| \to 0,$$

$$|f(z_n)| \to n^{1/2}. \tag{3}$$

By hypothesis, (3) implies that $\|z_n\|_B < K$, $n = 0, 1, 2, \cdots$, for some finite K. Then, by (2), $|f(z_n)| \leq HK$, contradicting (4) for large n.

Duke University and
Princeton University
