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suits in an important field, which will inspire and stimulate further 
research. 

J. SHOHAT 

Structure of Algebras. By A. Adrian Albert. (American Mathematical 
Society Colloquium Publications, vol. 24.) New York, American 
Mathematical Society, 1939. 11+210 pp. 

The study of algebras has been one of the most significant features 
of the present period in the history of mathematics; and in the theory 
of algebras a monument has been erected recording some of the char
acteristic traits of contemporary mathematical thought. 

One may say that algebras have been pushed into the centre of at
tention by the publication of Dickson's Algebras and their Arithme
tics] and from that moment on they have kept the interest of the 
mathematical public. In the meantime a great number of the prob
lems has been solved, methods have been streamlined so that a mo
ment propitious for the survey of the results has arrived. One of the 
principal actors in the movement has given an account of its results. 
The mathematical public certainly will be grateful for his effort, as 
he has been able to capture the inherent beauty of the theory of alge
bras and to communicate it to the reader. 

The book may be divided roughly into two parts, the first being 
concerned with the general theory, the second containing applications 
to related problems. It should be mentioned at once that the theory 
of representations has been "put in its place" ; that is, it appears as an 
application of the general theory and has not been used for the deriva
tion of the results of the general theory. 

The general theory of algebras may be defined as that part of the 
theory in which no special restrictions are imposed upon the field of 
reference. There are two main topics of discussion. The first is the 
reduction to simple algebras and the second the discussion of the 
simple algebras themselves. 

The reduction theory proceeds in two steps. One shows first the 
existence of a radical and the semisimplicity of the algebra modulo 
its radical. This semisimple difference algebra may be represented by 
some subalgebra of the original algebra, provided the difference alge
bra stays semisimple under every scalar extension (this result be
longs to a later phase of the theory, since changes of the field of 
reference have to be considered). But since both the investigation of 
nilpotent algebras and of the possible extensions of a nilpotent alge-
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bra by a semisimple algebra have started only recently, the state of 
the theory allows one only to speak of a theory of semisimple alge
bras and not yet of a theory of algebras. The second step in the 
reduction theory is the proof of the theorems that every semisimple 
algebra possesses an identity element and is the direct sum of uniquely 
determined (not only in the sense of equivalence) simple algebras; 
and thus it is clear how to construct the most general semisimple 
algebra, as soon as the simple algebras are known. It should be noted 
that the theorems concerning semisimple algebras are gotten as spe
cial cases of corresponding theorems concerning algebras which may 
or may not possess a radical. However the reduction contained in 
these more general theorems does not lead to a class of algebras as 
tractable as the simple ones. 

Every simple algebra is a direct product of a total matric algebra 
and a division algebra; and any two representations of this kind are 
conjugate, that is, may be transformed into each other by means of 
inner automorphisms. The inner automorphisms of simple algebras 
are exactly those automorphisms which leave the elements of the 
centrum invariant. The centrum of a simple algebra being a field, it 
may be taken as the field of reference, in which case we say that the 
the algebra is normal simple. Then the above theorem states that all 
the automorphisms of a normal simple algebra are inner. This theo
rem is supplemented by the fact that any equivalence of two simple 
subalgebras of a normal simple algebra may be induced by an auto
morphism of the containing algebra, provided the three algebras have 
the same identity element. 

It follows from the above that the structure of a normal simple al
gebra is completely determined by two invariants: the one numerical, 
namely, the degree of the total matric algebra in question, the other a 
structural invariant, namely, the structure of the division algebra 
mentioned above. Thus one may be led to the following construction. 
One considers all the normal simple algebras over a fixed field F. 
Those normal simple algebras over F which are only distinguished by 
the nature of the total matric algebra involved and lead to the same 
division algebra are put into one class and these classes form an abel-
ian group under direct multiplication (of its elements). 

If the field N is a finite, normal, and separable extension of the 
field F, then N determines a subgroup of the group of classes of nor
mal simple algebras over F as follows. There exist some normal simple 
algebras over F which contain N as a maximal subfield. The product 
of such an algebra by N is a total matric algebra over N, that is, is 
split by N; and each such algebra is a crossed product of N by the 
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Galois group of N over F. The classes of normal simple algebras over 
F which are split by N form a subgroup of the group of classes of 
algebras over F; and this subgroup is practically the same as the 
group of classes of associated factor sets of N over F. As each normal 
simple algebra over F is split by some such N, it suffices to consider 
these subgroups of the group of classes; and thus it is possible to use 
the theory of factor sets for proving theorems like the following one : 
every element of the group of classes is of finite order in this group; 
this order divides the degree of the characteristic division algebra and 
is divisible by every prime divisor of this degree. 

As to the methods of proof employed in the derivation of this the
ory two tools ought to be mentioned which the author uses with much 
dexterity and success. There is first the commutator of a subalgebra 
in a containing algebra, that is, the set of all those elements in the 
containing algebra which permute with every element in the given 
subalgebra—the adoption of this term commutator may be regretted, 
as this concept is called centralizer everywhere outside this theory. 
The importance of the commutator may be seen from the following 
theorems. If some algebra is the direct product of two algebras B 
and C such that B is normal simple and such that B and C have the 
same identity, then C is the commutator of B in their direct product, 
that is, one factor of the direct product determines the other one in a 
unique fashion. More generally: the simple subalgebras of a normal 
simple algebra occur in pairs such that each member of such a pair is 
the commutator of the other one ; and forming the commutator is an 
involutorial operation as far as simple subalgebras of a normal simple 
algebra are concerned. 

Observing that multiplication of the elements of an algebra by a 
fixed element is a linear transformation of the algebra, that the linear 
transformations form a total matric algebra, that the transformations 
gotten by left-multiplication with an element form exactly the com
mutator of those gotten by right-multiplication (and conversely), and 
that the second of these sets of transformations is isomorphic, the 
first anti-isomorphic to the given algebra, one proves the theorem 
that the direct product of a normal simple algebra by its reciprocal 
(anti-isomorphic) is a total matric algebra. This theorem is so power
ful a weapon in the theory because it permits a reduction of the proofs 
of theorems concerning normal simple algebras to the proofs of the 
corresponding theorems concerning total matric algebras. 

The following partial converse of the last theorem ought to be men
tioned. The direct product of two division algebras is a total matric 
algebra if, and only if, these two division algebras are reciprocal. 
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As an illustration of the author's methods in handling these tools 
we indicate a proof of the theorem that every automorphism of a 
normal simple algebra is an inner automorphism (our reason for 
choosing just this example is that the author does not use his methods 
for a proof of this theorem and that the proof given in the text is 
inconclusive). If A is a normal simple algebra, A' its reciprocal, then 
their direct product is a total matric algebra T=AXA'. If ƒ is an 
automorphism of A, then there exists one and only one automorphism 
of T which induces ƒ in A and leaves every element in A' invariant. 
As every automorphism of a total matric algebra is an inner auto
morphism, there exists some element / in T such that transformation 
by t induces in T just this automorphism. This element belongs 
clearly to the commutator of A' in T. Since the commutator of A' 
in T is just A, it follows that t belongs to A so that ƒ is the inner 
automorphism of A, induced by this element t. 

As a first application of the theory of algebras, the theory of repre
sentations has been treated. This theory is no longer concerned with 
the study of the structure of algebras but with the study of the struc
ture of homomorphisms between algebras. If both algebras are con
sidered over the same field, then there exists however a connection 
between the two theories which is very near to an equivalence. The 
following theorems may be mentioned as typical examples of this 
situation. A representation of the algebra A over F in the subalgebra 
A* of a total matric algebra M over F is irreducible if, and only if, 
A* is simple and the commutator of -4* in I f is a division algebra; 
it is fully decomposable if, and only if, A* is semisimple; it stays ir
reducible under every scalar extension if, and only if, -4* itself is a 
total matric algebra. On the other hand it must be admitted that by 
its very definition the theory of representations is much more compli
cated than the theory of algebras proper; and thus both theories are 
greatly improved by doing the simpler thing first and using it then 
for the derivation of the more involved theory. 

The most important application of the general theory and perhaps 
the most interesting part of the whole work is the enumeration of the 
normal simple algebras over finite algebraic number fields or—what 
amounts to the same thing—of the simple algebras over the field of 
rational numbers. The problem of how to construct all these algebras 
is settled by the famous theorem that every simple algebra over the 
field of rational numbers is not only similar to, but may actually be 
represented as, the crossed product of a cyclic extension of an alge
braic number field by its cyclic Galois group. In order to classify these 
algebras the author proceeds as follows. If the field F is a finite ex-
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tension of the field of rational numbers, V a valuation of F and A a 
normal simple algebra over F, then denote by Fy the essentially 
uniquely determined derived field of F with respect to the valuation 
V and by Ay the direct product of A and Fv (that is, the scalar ex
tension of A by Fy)- A reduction of the problem "in the large" to a 
problem "in the small" is contained in the theorem that the normal 
simple algebras A and B over F are equivalent if, and only if, Ay and 
By are equivalent for every valuation V. This theorem is a compara
tively simple consequence of the following lemma (which the author 
states without giving a proof) : an element in F is the norm of an ele
ment in the given finite and normal extension N of prime degree 
over F if, and only if, it is a norm of an element in Ny for every valua
tion V of N. Thus it suffices to determine these algebras Ay. There 
exists at most a finite number of valuations V of F such that Ay is 
not a total matric algebra. If Ay is not a total matric algebra, and if V 
is an archimedian valuation, then Ay is a real quaternion algebra. If 
Ay is not a total matric algebra, and if F is a non-archimedian valua
tion, then Ay is completely determined by two numerical invariants 
one of which is just the degree of the division algebra characteristic 
for the class of A y whereas the other one is derived from a certain 
normal form of representing A y as a crossed product. 

There is a great number of further equally interesting applications 
of the theory which find treatment in this book. But it would lead too 
far to discuss them here at great length. Suffice it to mention such 
topics as the cyclic systems, the modern theory of Riemann matrices 
and of involutions, and more special problems like the enumeration 
of all normal division algebras of degrees three and four. 

The standard source of reference for the theory of algebras has been 
in recent years Deuring's report on this topic. As to the material 
covered none of these works has been a subset of the other and even in 
their treatment of the common parts they differ widely. In the re
viewer's opinion Albert's text is the more easily accessible one of the 
two, so much so that he feels that the book will serve admirably as an 
introduction into the theory to all those who know the rudiments of 
present-day algebra. The expert on the other hand will find this ex
position interesting, stimulating and useful both because of the new 
material included and because of the more "streamlined" treatment 
of it. 

An extensive bibliography of recent publications on related topics 
has been added which will be welcome and helpful to every student 
of the field. 

REINHOLD BAER 


