ON REARRANGEMENTS OF SERIES

RALPH PALMER AGNEW

1. Introduction. Let E denote the metric space in which a point x is a permutation x_1, x_2, x_3, \ldots of the positive integers and the distance (x,y) between two points $x \equiv \{x_1, x_2, \ldots\}$ and $y \equiv \{y_1, y_2, \ldots\}$ of E is given by the Fréchet formula

$$ (x, y) = \sum_{n=1}^{\infty} \frac{1}{2^n} \frac{|x_n - y_n|}{1 + |x_n - y_n|}. $$

The space E is of the second category (Theorem 2).

Let $c_1 + c_2 + \cdots$ be a convergent series of real terms for which $\sum |c_n| = \infty$. To simplify typography, we write $c(n)$ for c_n. To each $x \in E$ corresponds a rearrangement $c(x_1) + c(x_2) + \cdots$ of the series $\sum c_n$. By a well known theorem of Riemann, $x \in E$ exists such that $c(x_1) + c(x_2) + \cdots$ converges to a preassigned number, diverges to $+\infty$ or to $-\infty$, or oscillates in a preassigned fashion.

The set A of $x \in E$ for which $c(x_1) + c(x_2) + \cdots$ converges is therefore a proper subset of E, and M. Kac has proposed the problem of determining whether $E - A$ is of the second category. The following theorem shows not only that A is of the first category (and hence that $E - A$ is of the second category) but also that the set of $x \in E$ for which the series $c(x_1) + c(x_2) + \cdots$ has unilaterally bounded partial sums is of the first category.

Theorem 1. For each $x \in E$ except those belonging to a set of the first category,

$$ \lim \inf_{N \to \infty} \sum_{n=1}^{N} c(x_n) = -\infty, \quad \lim \sup_{N \to \infty} \sum_{n=1}^{N} c(x_n) = \infty. $$

2. Proof of Theorem 1. The fact that the "coordinates" x_n and y_n of two points x and y of E are integers implies roughly that, if N is large, then $x_n = y_n$ for $n = 1, 2, \cdots, N$ if and only if (x, y) is near 0. To make this precise, let $x \in E$, $r > 0$, and let $S(x, r)$ denote the set of points y such that $(x, y) < r$, so that $S(x, r)$ is an open sphere with center at x and radius r. It is easy to show that if x and y are two points of E such that $y \in S(x, 2^{-N-1})$ then $x_n = y_n$ when $n = 1, 2, \cdots, N$; and that if x and y are such that $x_n = y_n$ when $n = 1, 2, \cdots, N$ then $y \in S(x, 2^{-N})$.

1 Presented to the Society, October 28, 1939.

797
To prove Theorem 1, let \(B \) denote the set of \(x \in E \) for which

\[
\limsup_{N \to \infty} \sum_{n=1}^{N} c(x_n) < \infty;
\]

and, for each \(h > 0 \), let \(B_h \) denote the set of \(x \in E \) for which

\[
\text{l.u.b.} \sum_{n=1}^{N} c(x_n) < h.
\]

Then

\[
B = B_1 + B_2 + B_3 + \cdots.
\]

We show that \(B \) is the first category by showing that \(B_h \) is nondense for each \(h > 0 \). Suppose \(h > 0 \) exists such that the closure \(\overline{B}_h \) of \(B_h \) contains a sphere \(S' \) with center at \(x' = \{ x'_1, x'_2, \ldots \} \) and radius \(r > 0 \). Choose \(m \) so great that \(2^{-m-1} + 2^{-m-2} + \cdots < r/2 \). Let \(x''_n = x'_n \) when \(1 \leq n \leq m \); and define \(x''_n \) for \(n > m \) in such a way that \(\sum c(x''_n) \) diverges to \(+\infty \). Then \((x', x'') < r/2 \) so that \(x'' \in S' \). Choose an index \(q \) such that

\[
c(x''_1) + c(x''_2) + \cdots + c(x''_q) > h,
\]

and then choose \(\delta > 0 \) such that \(x_k = y_k \) for \(k = 1, 2, \ldots, q \) whenever \(x, y \in E \) and \((x, y) < \delta \).

If \(x \) is a point within the sphere \(S'' \) with center at \(x'' \) and radius \(\delta \) (that is, if \((x, x'') < \delta \)), then \(c(x_1) + c(x_2) + \cdots + c(x_q) > h \) and \(x \) is not in \(B_h \). Thus \(B_h \) contains no point of \(S'' \) and consequently \(\overline{B}_h \) does not contain \(x'' \). This contradicts the assumption that \(\overline{B}_h \) contains \(S' \), and hence proves that \(B_h \) is nondense and \(B \) is of the first category. Similar considerations show that the set \(C \) of \(x \in E \) for which \(c(x_1) + \cdots + c(x_N) \) has inferior limit greater than \(-\infty \) is of the first category. Since the union of two sets \(B \) and \(C \) of the first category is itself of the first category, Theorem 1 is established.

If \(z_1 + z_2 + \cdots \) is a convergent series of complex terms for which \(\sum |z_n| = \infty \), it is easy to apply our theorem to the series of real and imaginary parts of \(z_n \) to show that the set of \(x \in E \) for which \(z(x_1) + z(x_2) + \cdots \) has bounded partial sums is a set of the first category.

3. The space \(E \). In this section we obtain some properties of \(E \) and prove the following result.

Theorem 2. The space \(E \) is of the second category at each of its points.
That the space E is not complete was pointed out to the author by Professor L. M. Graves. In fact if $x^{(n)}$ is the point

$$x^{(n)} = \{2, 3, \ldots, n - 1, n, 1, n + 1, n + 2, \ldots\}$$

of E, then $x^{(n)}$ is a Cauchy sequence in E which does not converge to a point of E. If \mathcal{E} is the space in which a point is a sequence of positive integers not necessarily a permutation of all positive integers, and the distance between two points of \mathcal{E} is given by the Fréchet formula, then \mathcal{E} is complete and E is a subspace of \mathcal{E}. It is easy to show that the closure of E in \mathcal{E} is the space \mathcal{E}_1 in which a point is a sequence of positive integers containing each positive integer at most once, and hence that \mathcal{E}_1 is the least complete subspace of \mathcal{E} which contains E. For example, $\{2, 4, 6, 8, \ldots\}$ is a point of \mathcal{E}_1 which is not a point of E.

If $\mathcal{E}_x\{x_n = k\}$ denotes, for each $n, k = 1, 2, \ldots$, the set of all $x \in \mathcal{E}$ for which $x_n = k$, then

$$\mathcal{E}_2 = \prod_{k=1}^{\infty} \sum_{n=1}^{\infty} \mathcal{E}_x\{x_n = k\}$$

is the subset of \mathcal{E} in which a point is a sequence containing each positive integer at least once. Since $\mathcal{E}_x\{x_n = k\}$ is an open subset of \mathcal{E} for each $n, k = 1, 2, \ldots$, \mathcal{E}_2 is the intersection of a countable set of open sets (that is, \mathcal{E}_2 is a G_δ) in \mathcal{E}. Since \mathcal{E}_1 is a closed subset of \mathcal{E} and $E = \mathcal{E}_1 \mathcal{E}_2$, it follows that E is a G_δ in the complete space \mathcal{E}.

Therefore, by a fundamental theorem whose proof is an easy extension of the familiar proof that a complete metric space is of the second category, E is of the second category at each of its points and Theorem 2 is proved.

Cornell University