The max $|l_1^{(n)}(x)|$ is attained at $x = \pm 1$ since (1) $\theta_{k+1} - \theta_k \leq 2\pi/(2n + \alpha + \beta - 1)$ provided $\frac{1}{2} \leq \alpha, \beta \leq \frac{3}{2}$ and $x_k = \cos \theta_k$. Using the second asymptotic formula and the fact that $n\theta_k \rightarrow j_k$ as $n \rightarrow \infty$ where j_k is the kth positive zero of $J_{\beta-1}(x)$, we find that

$$|l_1^{(n)}(1)| \rightarrow (\frac{1}{2} j_k)^{\beta - 2} |\Gamma(\beta)J_{\beta}(j_k)|^{-1}$$

as $n \rightarrow \infty$, k constant, $l_1^{(n)}(-1) \rightarrow 0$ which proves the theorem:

Theorem 7. Max $|l_1^{(n)}(x)| \rightarrow (\frac{1}{2} j_1)^{\beta - 2} |\Gamma(\beta)J_{\beta}(j_1)|^{-1}$ as $n \rightarrow \infty$ (where $\frac{1}{2} \leq \alpha, \beta \leq \frac{3}{2}$, j_1 is first positive zero of $J_{\beta-1}(x)$).

A similar result holds for $l_1^{(n)}(x)$ if β is replaced by α.

For Legendre polynomials ($\alpha = \beta = 1$) this limit is approximately 1.602. For $\alpha = \beta = \frac{1}{2}$ and $\alpha = \beta = \frac{3}{2}$ the limit of Theorem 7 is also an upper bound for max $|l_1^{(n)}(x)|$ and max $|l_1^{(n)}(x)|$. Whether this is true, in general, remains unanswered.

Purdue University

AN INVARIANCE THEOREM FOR SUBSETS OF S^n

SAMUEL EILENBERG

The purpose of this paper is to establish the following.

Invariance Theorem. Let A and B be two homeomorphic subsets of the n-sphere S^n. If the number of components of $S^n - A$ is finite, then it is equal to the number of components of $S^n - B$.

In the case when A and B are closed this theorem is a very well known consequence of Alexander's duality theorem and its generalizations. In our case we also derive our result as a consequence of a duality theorem. However, the duality is established only for the dimension $n-1$.

Given a metric space X we shall say that Γ^k is a k-cycle in X if there is a compact subset A of X such that Γ^k is a k-dimensional convergent (Vietoris) cycle in A with coefficients modulo 2. We shall write $\Gamma^k \sim 0$ if $\Gamma^k \sim 0$ holds in some compact subset of X. The homology group of X obtained this way will be denoted by $\mathfrak{H}^k(X)$; the corresponding connectivity number, by $\rho^k(X)$. The number $\rho^k(X)$ can be either finite or ∞.

1 Presented to the Society, December 28, 1939.
Duality theorem. Let $A \subset S^n$ and let z_0, z_1, \ldots, z_m belong to $m + 1$ different quasi-components3 of $S^n - A$. There are m linearly independent (modulo 2) $(n-1)$-cycles

(1) \[\Gamma_1^{n-1}, \ldots, \Gamma_m^{n-1} \]

of A such that

(2) \[v(\Gamma_i^{n-1}, \gamma_j^0) = \delta_{ij}, \quad i, j = 1, \ldots, m, \]

where γ_j^0 is the 0-cycle $z_0 + z_i$ (consisting of the two points z_0, z_i each of them with coefficient 1) and $v(\Gamma, \gamma)$ is the linking number.

In case $S^n - A$ has only $m + 1$ quasi-components, the cycles (1) form a basis for $3C^{n-1}(A)$.

Proof. In case A is closed the theorem turns out to be a particular case of the generalized Alexander duality theorem.3 We shall prove our theorem for arbitrary sets A using the theorem for closed sets.

Since z_0, z_1, \ldots, z_m belong to $m + 1$ different quasi-components of $S^n - A$ there is a decomposition $S^n - A = A_0 + A_1 + \cdots + A_m$ such that $z_i \subseteq A_i$ and $A_i A_j + A_j A_i = 0$ for $i \neq j$, $i, j = 0, 1, \ldots, m$. Let B_0, B_1, \ldots, B_m be open disjoint sets such that $A_i \subseteq B_i$ for $i = 0, 1, \ldots, m$ and let $B = S^n - (B_0 + B_1 + \cdots + B_m)$. Clearly B is a closed subset of A and z_0, z_1, \ldots, z_m belong to $m + 1$ different quasi-components (equals components) of $S^n - B$.

Applying the duality theorem to the closed set B we obtain the cycles (1) satisfying (2). In order to prove that they determine linearly independent elements modulo 2 of $3C^{n-1}(A)$ consider a cycle $\Gamma^{n-1} = a_1 \Gamma_1^{n-1} + \cdots + a_m \Gamma_m^{n-1}$ where $a_i = 0, 1$. It follows from (2) that $v(\Gamma^{n-1}, \gamma_j^0) = a_j$. Therefore $\Gamma^{n-1} \sim 0$ in A implies $a_1 = \cdots = a_m = 0$.

Suppose now that $S^n - A$ consists of exactly $m + 1$ quasi-components. It follows that the sets A_0, A_1, \ldots, A_m are connected.

Let Γ^{n-1} be an $(n-1)$-cycle of A contained in some closed set $D \subset A$. Let E_i be the component of $S^n - (B + D)$ containing A_i ($i = 0, 1, \ldots, m$) and let $E = S^n - (E_0 + E_1 + \cdots + E_m)$. It follows that (1°) E is a closed subset of A, (2°) $S^n - E$ consists of exactly $m + 1$ quasi-components (equals components), (3°) the points

3 Two points $x_i, x_2 \in X$ belong to the same quasi-component of X if there is no decomposition $X = A_1 + A_2$ such that $x_1 \in A_1, x_2 \in A_2$ and $A_1 A_2 + A_2 A_1 = 0$. If the number of quasi-components of X is finite then every quasi-component is a component.

z_0, z_1, \ldots, z_m belong to different quasi-components of $S^n - E$,
(4°) the cycles (1) and Γ^{n-1} are contained in E. According to the
duality theorem for closed sets the cycles (1) form a basis for $\mathcal{C}^{n-1}(E)$.
This implies the existence of $a_1, a_2, \cdots, a_m (a_i = 0, 1)$ such that
\[
\Gamma^{n-1} \sim a_1 \Gamma_1^{n-1} + \cdots + a_m \Gamma_m^{n-1} \text{ in } E.
\]
This proves the theorem since $E \subseteq A$.

Given a metric space X let the number $b_0(X)$ be defined as follows:
- $b_0(X) = 0$ if $X = 0$,
- $b_0(X) = m$ if $X \neq 0$ and X has exactly $m + 1$ components,
- $b_0(X) = \infty$ if X has an infinity of components.

Clearly the value of $b_0(X)$ remains unchanged if we replace in its
definition components by quasi-components. The duality theorem im­
plies therefore the following:

(I) For every subset A of S^n we have

$$p^{n-1}(A) = b_0(S^n - A).$$

(II) For every two homeomorphic subsets A and B of S^n we have

$$b_0(S^n - A) = b_0(S^n - B).$$

The invariance theorem stated in the introduction follows directly
from (II).

If X consists of an infinity of components, then instead of taking $b_0(X) = \infty$ we could define $b_0(X)$ to be the cardinal number cor­
responding to the class of all components of X. Similarly $p^k(X)$ could
be redefined as a cardinal number. But with these new definitions (I)
and (II) are no longer true. In fact, let A be a subset of S^1 such that $S^1 - A$ is closed and enumerably infinite, and let B be a subset of S^1 such that $S^1 - B$ is perfect and non-dense. It is clear that A and B
are homeomorphic, that $b_0(S^1 - A) = p^0(A) = p^0(B) = \aleph_0$, and that $b_0(S^1 - B) = 2^\aleph_0$.

That (II) is no longer true was first pointed out to me by Dr. L. Zippin.